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Quantum limits in interferometric gravitational-wave antennas in the presence
of even and odd coherent states
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We discuss a model for interferometric gravitational-wave antennas without dissipative or active
elements. It is predicted that the even and odd coherent states may play an alternative role to
squeezed vacuum states in reducing the optimal power of the input laser.
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I. INTRODUCTION

The problem of detecting gravitational waves has been
a subject of interest for many years [1]. Specifically,
the quantum sensitivity of Michelson interferometric
gravitational-wave detection (GWD) has been described
in detail by Caves [2]. An important ingredient improv-
ing the sensitivity of such detectors (GWD) is using the
appropriate states of light beam through the two ports of
the Michelson interferoineter. Caves [2] showed, in fact,
that if one uses coherent light [3] from the first port of
the interferometer, then the optimal sensitivity is limited
by the vacuum fIuctuations which enter through the un-
used port of the interferometer. In such a setup the lower
limit on the optimal power of the input laser comes out
to be quite large and of no experimental interest. Caves
[2] suggested to reduce considerably the above limit by
squeezing the vacuum Geld entering through the unused
port [4].

The main purpose of this paper is to answer the fol-
lowing question: Are there any other nonclassical states
difFerent &om squeezed states which can replace squeezed
vacuum in GWD for a better quantum sensitivity of the
Michelson interferometer? We predict a possible positive
answer to this question in the use of even or odd coherent
states [5]. Even coherent states are closely related to the
squeezed vacuum states because they too are superposi-
tion of even number states, but with difFerent coefBcients.
DifFerent nonclassical properties of even and odd coher-
ent states (which are called also Schrodinger cat states)
and theoretical predictions for their possible generation
have been discussed in detail in Refs. [6—11].

Another problem which we want to analyze is the pos-
sibility of presenting the description of light beams in
the interferometer in such a form as to have the factor-
ized expression for the noise contribution containing sep-
arately geometrical parameters of the interferometer and
the parameters characterizing the Geld state infiuence. It
should be noted that the most general analysis of Done}as-

sical states in interferometry was done by Yurke, McCall
and Klauder [12]. Here we present a different approach
the aim of which is to express the noise error as a prod-
uct of two factors with tensorial-like structure, each of
the factors being related to the geometry of interferomter
and light states correspondingly. The problem of achiev-
ing sensitivities better than the standard quantum limit
by correlating the radiation pressure and photon count-
ing noises has been analyzed in recent papers [13—15].

II. INPUT AND OUTPUT BEAMS

a1
C

b M

In the Michelson interferometer (Fig. 1) we have two
incoming fields through ports P, , i = 1, 2, described by

the operators (a;, a, ) acting on a Hilbert space 'R

'Ri js'Rz. To them correspond two fields at the mirrors M;
described by (b;, b, ) acting on 'Rs = 'Rsi 'Rz sand two out-

going fields at P; described by (c,, c,. ) on 'R' = 'Ri 'R2.
The basis in 'R~, p = a, b, c, will be denoted ([ n, i,, p)
n C Z+). We simplify the Michelson interferometer as
a device with two arms at the end of which two outer.
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FIG. 1. Schemetic of the simple Michelson interferometer.
a&, az and cz, c2 are, respectively, the input and output aelds,
while bi, b2 stand for the Selds incident on mirrors Mi and
Mg.
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mirrors M; are attached to some string, thus behaving
as two pendula, without considering Fabry-Perot cavities
and beam delaying optics into these arms. The positions
of the mirrors are controlled by the joint actions of the
restoring forces and the radiation pressure [16]. We will

suppose that in all processes the dissipative and active
eKects are negligible so that conservation of energy in

ensured. The Hamiltonian in 'R~ is taken to be

H' = ~(~&~~+ ~2~~)

III. NOISE IN PACTORIZED FORM

Az = Q(b.zRp) + (Azpc) (8)

In this

Following [2], we have two sources of errors which set
the lower quantum limit Az on the sensitivity z of GW
antennas: (i) radiation pressure (RP) on M; and (ii) pho-
ton counting (PC) noise due to the fiuctuations in the
number of photons in the input fields

(2)

where

with u the f'requency and h the Planck's constant. Im-
plicit here is the assumption of equal &equencies for
modes 1 and 2. This can be achieved by introducing
some degree of interaction among the two modes, which
anyhow can be ignored in a first approximation, as in
Ref. [2]. All 'R~ are unitarily equivalent and the op-
erators H~ are connected to each other by 2x2 unitary
matrices, the elements of which depend on the physical
and geometrical parameters of the interferometer. For
instance, we will write

b=v. , b~= t V~,

(AZRp) = O'Rp (fRIJ7'/mc)

where

crrtp
——((b osb) ) —(btcrsb)

and

where

& a(cto, c) ~
'

(»pc)' = ~pc
(~ 6 —4i)

(10)

t a')
a~ =

(an't a2~)

b
I

bI
t/

ibr '

; bt = (bt bt),

In the above, v. is the observation time and m the mass
of each end mirror. Here we consider fixed BS as in Ref.
[2]. After a little algebra we can write

and V E U(2) group. We conveniently write

with

(4)
Rp =(U o V), (U o V) „,T;2

opc: (V o'3V) 'Q(V (73V) „T'g

with the summation over repeated indices taken &om 1

to 2 and

T;~ „——(a, a~a a„)—(ai ag)(a a„).t t t (i4)

c = u a; ct = atII~ (6)

and

U= —K 4K= —V V. (7)

The presence of a negative sign in the above equation
is due to the phase change on re8ections at the mirrors.
Thus all the information about inBuence of optical ele-
ments of the interferometer on the light acting on the
mirrors is contained in the unitary matrix V described
in a generic case by four independent parameters. The
infiuence of the interferometer elements (beam splitter,
mirrors, etc.) on the outgoing field is described by the
unitary matrix U which in the case under consideration
is completely determined by the matrix V due to the
relation (7).

In the above u; and P, are the complex transmittivity and
refiectivity parameters of the beam splitter (BS) arbitrar-
ily oriented for the ith input field mode, respectively, and

P; is the phase distance between BS and the mirror M, .
Also

This allows an easy comparison between situations aris-

ing &om the use of different types of input fields. Com-
bining Eqs. (8)-(13) yields

(Az)' = X,A, „T;g„(ikmn = 1, 2),

where X;g „contain the geometrical and physical prop-
erties of the antenna while the second factors T;y „de-
pend only on the incoming fields.

For a simple Michelson interferometer, Caves sug-
gested using squeezed vacuum light in order to minimize
the input laser power [2]. Equation (15) permits us to
investigate very general states of the input Geld like even
and odd coherent states, correlated states, states with
higher order squeezing, etc. In particular, we will illus-
trate in this communication the dependence of the opti-
mal Az on the characteristic parameters of the even or
odd coherent states from the second port of the interfer-
ometer.

First, we will evaluate the matrix X;~ „asfar as the
geometrical and physical parameters of the Michelson in-
terferometer are concerned. If we consider a 50—50% BS,
then the elements of the matrix K are
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ib
Ck'1 = 0!2 =

V osV=
I

(oi&
(17)

and

I(
—cos P —sin P)

g
—sing cosP

in P = 2(P2 —Pq). Also

c cr3c = a osa cos

If the interferometer has to operate in a dark &inge then
the arm's lengths can be adjusted to have P =
and dark fringes correspond to the situation where no
field contributions are present in the difference of the
output photon numbers. In such cases we have

e'"
Pi =P2= ~,

where b is the phase because of the BS which can be set to
zero for an ideally thin BS while p is the phase introduced
by the BS between the reBected and transmitted waves
and for simplicity we take p, = vr/2. Then (24)

where B;(o.) = el~~ ~ ~'l i=1,2, a 6 C, and ( = re' '.
It is easy to see that in such states (aqa2), (aza2), etc. ,
are equal to zero.

If we take n to be real for simplicity then we have
2

T1111—~
T1122 —0 )

T1212 ———a sinhr coshr e' ',
T1221 = cl slnh r + A

T2112 ——o. sinh r + sinh r,
T2121 ———n sinhr coshr e

T2211 0 )

T2222 ——2sinh r . (25)

show the important role played by these states in order
to get a better detection sensitivity and to reduce the
optimal input laser power.

When coherent laser light &om port one and squeezed
vacuum &om the other port of the interferometer are
applied, the two Gelds are anticorrelated. The states of
'R can be written as

where

(~~'l
&mc)
(BIi
az)

Then X,g „become

X1212 ——X2121= -A + B2 2

X1221 = X2112 = A + B )
2

(20)

(2I)

(22)

Thus we have calculated noise factor depending on the
input field state for the case of coherent light at port one
and the squeezed vaccuum light at the other port. This
tensorial-like factor corresponds to the case considered in
Ref. [2].

V. FIELD FACTOR FOR EVEN AND
ODD COHERENT STATES

When even or odd coherent states replace squeezed
vacuum in port two the states of 'R to be taken into
account are, with P C C,

I @)= I
~ P+)

= By (a) I 0, I, a)N+ [Bz(P) + B2(—P)] I 0, 2, a), (26)
I = (c 0'sc)

Z=P—
24)

(23)

IV. FIELD STATE PARAMETERS

The variable Z corresponds to the difference between the
displacements of the two outer mirrors caused by the ra-
diation pressure with respect to their mean positions in
the absence of any Geld.

where +, —signs correspond to even and odd coherent
states, respectively, and their normalization constants are

1

2e ~ /cosh
I P I2

I
2e ~ gsinh

I P lz
(27)

For the even light, coefBcients T;g
„

take the following
values:

We will now evaluate the factors 7;s „
in (i) Caves'

setup and (ii) a new one which replaces the squeezed light
with even or odd coherent light. In order to evaluate the
contribution of the Gelds which are applied to the two
ports of the interferometer for GW detection, we will
assume a coherent light for the Geld relative to port 1
of the interferometer while for the second port we will
consider the two situations (i) by squeezing the vacuum
fluctuations (the situation considered by the Caves [2])
and (ii) by applying even or odd coherent states. We will

T1111

T1122

T1212

T1221

T2112

T2121

T2211

T2222

=0
2 2 2i8g

=n IP I tanhlP I
+n

= a'
I p I' tanh

I p I' + I p I' tanh
I p I',

2 Ip]2 —28

=0,
=IPI' —IPI't»h' IPI' +!PI't»hlPI'

(2S)
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This is the Caves result, which allows us to reduce the
intensity of the input laser beam to values experimentally
significant.

The analogous analysis for the cases of even or odd co-
herent states replacing squeezed vacuum, under the con-
dition that a »[ P ~

tanh
[ P [, gives

(
2 )(ev)

3
\

I

4

and

2
~ p ~

tanh
~
p ~

+2
~ p )

cos 2g+ ] 2 ( )
2

( P (
tanh

( P )

—2
( P (2 cos 2g+ 1

(3l)

FIG. 2. Relative value (a.'),~ of the optimal laser intensity
in the presence and of the squeezed vacuum mode a2 versus
the squeezing parameter r.

in which g2 is the phase of P. For odd coherent states we

get the same expressions as above, except that tanh
~ P ~

2

should be replaced by coth
~ P ~

.

(~2 )
(odd)

2
[ P ~

coth
~ P )

+2
~ P )

cos 2g + ]
( )

2
i P i

coth
i P [

—2
i P i2 cos 2g + 1

(32)

Thus using even coherent light, under the limit 1

~ p ~
&& n and g2 ——x/2, yields

VI. NOISE FOR EVEN
AND ODD COHERENT STATES

The general expression for (b,z), irrespective of the
nature of the incoming fields, can now be written as

(+z ) ~ (T1221 + T2112 T1212 T2121)

+B (T1221 + 72112 + T1212 + T2121)

This quantity depends on the incoming field through
PI and we denote by (I2, ,)( ) =mc /(2hcuv) the inten-

sity of this field which minimizes (b,z)2 when at P2 the
ordinary vacuum Is present. Then it can be seen that the
value which minimizes (Az), which we call (n, )('q), in
presence of squeezed vacuum at P2, under the condition
n )) sinh r and Hq ——0, is

(30)

i(o)
( 2 ) (ev) 4 oPt)

2(P[
This result, which is also true for odd coherent states,
allows an alternative way to decrease the optimal input
power, i.e., an alternative way to increase the sensitiv-
ity of the interferometer. We have, therefore, given a
positive answer to the question originally posed. The
question whether this new way might be experimentally
achievable or not is left open, depending on the actual
physical generation of the even and odd coherent states.

We wish now to consider more general situations:
namely for case (i) ( is arbitrary and for case (ii) P is
arbitrary and in both situations n is real. (Az)2 is a
function of such variables and we can look for its mini-
mization with respect to n2. This results for case (i) in
g1 ——0 and (a ~)('q) function of r and for case (ii) in

0.4

FlG. 3. (a) Three dimensional plot of the
relative value (a'),„ofthe optimal laser in-

tensity in the presence of even coherent states
versus

~ P ~

and 82. (b) (o.'),„versus
~ P ~

for
82 ——s /2.

I I I ( I I I ) I ~ ~

4 8 12 16 20
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FIG. 4. (a) Three dimensional plot of the
relative value (n') ee of the optimal laser in-
tensity in the presence and in the absence of
odd coherent states versus

I P I
and Hs. (b)

(o )oaa versus
I P I

for 82 ——s/2.
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I I

I I I
I
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I
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82 ——m/2 and (n2 t)&'"), (a t)( & functions of
I P I.

In each case, n ~ as function of the respective indepen-
dent variable is given through a solution of the following
equation in (:

r,g' —r,( —2r, (I+ r, ) = o (34)
in which

Cl

(~!,t)"
and

e2
)

F2 ——e

(35)

(36)

(3S)

sinh r
(~! t)"

for the squeezed vacuum, and

r = 2
I p I' t»h

I p I' —2
I p I' c»28 + &,

r, = 2
I p I' t»h

I p I'+2
I p I' c»28 + I,

IPI tanh[PI
(~! t)" (37)

for the even coherent states. For the quantities rela-
tive to odd coherent states the same formulas apply with
coth

I P [2 in place of tanh
I P [2.

Equation (34) has three roots, two of them complex
and the physical one has the following form:

2 3l~r, r,r, +9r, +r2
(~.'„) 3l ~r, r,

r, = gr, ~r, (I+r, )

+ 81F,F,' 1+F, 2 —I'3 '.

Figure (2), illustrates case (i) and cr' is plotted versus the
squeezing parameter r. For r = 0 we have the situation
in which the only vacuum Quctuations enter &om P2 and
in this case a'=1. For large values of r, we have Caves'
result [2j, i.e., the optimal value of the input coherent
field through Pq can be decreased to a large amount.

With the same spirit, in Fig. 3(a), we have plotted
(n'),„~versus

I P I
and 82 and in Fig. 3(b) this quantity

versus
I P I

at 82 ——vr/2, which is the value for all the
local minima, when even coherent light enters froin port
2. The analogous graphical analysis for odd coherent
states is shown in Figs. 4(a) and 4(b). Such figures
illustrate how the optimal values of the input coherent
field in Pz can be reduced considerably and allows us to
predict an application of even or odd coherent fields.

In conclusion it has been shown that such states might
o8'er a new technique to reduce the optimal power of the
input coherent laser and for a better sensitivity of the
interferometer. In kame of suggested formalism it is pos-
sible to analyze the sensitivity of interferometric gravita-
tional wave antenna for other electromagnetic Geld states.
We will do it in future presentations.
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