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A general theory of quantum-limited feedback for continuously monitored systems is presented.
Two approaches are used, one based on quantum measurement theory and one on Hamiltonian
system-bath interactions. The former gives rise to a stochastic non-Markovian evolution equation
for the density operator, and the latter a non-Markovian quantum Langevin equation. In the limit
that the time delay in the feedback loop is negligible, a simple deterministic Markovian master
equation can be derived from either approach. Two special cases of interest are treated: feedback
mediated by optical homodyne detection and self-excited quantum point processes.
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I. INTRODUCTION

Although feedback is used widely to control noise in
open quantum systems (such as lasers), a general theory
to determine the quantum-limited behavior of such feed-
back has not previously existed. There are two main ap-
proaches to a quantum theory of feedback. The first is a
theory based on quantum Langevin equations (stochastic
Heisenberg equations of motion). Over the past decade,
a number of authors [1-3] have used this approach to
describe particular feedback systems. All of these treat-
ments have used the approximation of linearizing around
a constant large mean amplitude to avoid issues of oper-
ator ordering. The second main approach is to use quan-
tum trajectories [4-7], which in essence are a consequence
of quantum measurement theory applied to continuously
monitored systems. Using this technique, it was found
possible to derive a master equation describing the effect
of the feedback on a cavity in the limit of small time de-
lay [8,9]. For linearized systems, it is possible to solve
the stochastic equations, and incorporate arbitrary loop-
response functions [9], as is possible with the quantum
Langevin approach. However this quantum-trajectory
approach was only understood for homodyne measure-
ment (which is equivalent to direct detection with the
large-amplitude approximation).

These two approaches to feedback are conceptually
quite different. The first treats the fed-back current as an
operator with quantum fluctuations, whereas the second
treats it as a classical quantity with objectively real fluc-
tuations. In this paper, I show that these two pictures
are in fact equivalent. Furthermore, the treatment given
is exact; it does not rely on any linearization approxima-
tion, and it applies to direct detection as well as to ho-
modyne detection. The result of the quantum Langevin
approach is a non-Markovian stochastic evolution equa-
tion for an arbitrary system operator. The corresponding
quantum trajectory is a non-Markovian stochastic evolu-
tion equation for the system state matrix. In the limit
that the time delay in the loop goes to zero, one obtains
a Markovian Langevin equation in the first case, which is
equivalent to the master equation derived for the second
case.

Irrespective of their origin, the equations are simple
to apply. For some applications, either the master equa-
tion or quantum Langevin equation form may be more
apt, so it is good to have a choice. The theory applies
to feedback onto any system that obeys a master equa-
tion. It does not apply to the traveling wave problem
[1], to which a linearized approximation is the only al-
ternative to a stochastic numerical solution. The most
obvious applications are for quantum optical cavities, in
which, for example, the driving, or the loss rate, or non-
linear coupling strengths could be controlled by feedback.
This is possible using various electro-optic devices, such
as a current-sensitive birefringent crystal combined with
a polarization-dependent beam splitter [10]. The Marko-
vian approximation (which allows the use of a master
equation) is generally valid if the time delay in the loop
is much smaller than the cavity lifetime. If this is not the
case, the only tractable approach is to linearize, using ei-
ther the quantum trajectory or the quantum Langevin
method.

This paper is organized as follows. Section II presents
the quantum-trajectory approach to feedback. The gen-
eral feedback master equation is first derived from prin-
ciples of measurement theory. It is then rederived in a
way that shows its relation to experiments using pho-
tocurrents and electro-optic devices. To do this, it is
necessary to develop a general stochastic calculus, be-
cause of the noisy character of the fed-back photocur-
rent. Next, an approximate master equation including
the effect of a small time delay is derived. This imme-
diately gives the condition on the feedback time delay
necessary to justify the Markovian approximation of the
original master equation. In Sec. III, I present the al-
ternative derivation using quantum Langevin equations
and input-output theory [11,12]. To do this, it is first
necessary to review quantum stochastic differential cal-
culus, and extend it for interactions such as that describ-
ing photon pressure on a mirror. Section IV treats the
special case of feedback mediated by homodyne measure-
ment, using both approaches. This case is interesting
because, as noted above, linear systems with feedback
having an arbitrary time delay can be treated analyti-
cally. This enables comparison with the short delay ap-
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proximate master equation derived in Sec. IID. In Sec. V
the measurement theory approach is used in order to de-
scribe self-excited quantum point processes. This is an-
other interesting special case which can be treated with
a master equation under some circumstances. Section VI
concludes.

II. FEEDBACK FROM QUANTUM
TRAJECTORIES

A. Master equation, measurement, and feedback

As the title of this section suggests, the foundation
of the feedback theory presented here is the theory of
master equations and quantum measurement. A mas-
ter equation (ME) is a generalization of the Schrodinger
equation for open systems interacting with a bath. In
deriving a master equation, it is necessary to make a
Markovian assumption, which is that the influence of
the system on the bath is dissipated so quickly that the
change in the system depends only on its present state.
This is a good approximation for many open quantum
systems, such as a good optical cavity or a free atom. Of
course, by putting in a feedback loop, the evolution of
the system is deliberately made to depend on its history.
However, in the limit of a small delay in the feedback
loop, this non-Markovian behavior can be approximated
by a Markovian ME.

The most general form of ME for the density operator
of an open quantum system is [13,14]

p=—i[H,p+Y_Dleulp (2.1)

where H is a Hermitian operator and D is a superoper-
ator taking one of the arbitrary operators c, as its argu-
ment, defined by D[c] = J[c] — Alc], where for all p,

(2.2)

Jlelp = cpct; Alclp = %[ctcp + pcle].

The vector of operators c,, is not unique; a unitary trans-
formation in the complex vector space indexed by p will
leave the ME unchanged [6]. For simplicity, consider the
case where there is only one source of irreversibility so
that

b= —ilH, p] + Dlclp.

Even here, this representation is not unique, for this ME
is invariant under the transformation

(2.3)

c—c+vy; H— H—ii (fyc—'yc) (2.4)
where v is an arbitrary ¢ number. It is even possible for
v to be an operator on another system, in the quantum
theory of cascaded open systems [15,16].

Next, we need the most general formulation of quan-
tum measurement theory. In orthodox quantum mechan-
ics, this is as follows [17,14]. A measurement in the time
interval (¢,¢ + T') yields the answer o with probability

Prob(a)

= Tr[pa(t + T)], (2.5)
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where

t+T) = (2.6)

P(t)Q g(T)

Zﬂaﬂ

is the unnormalized state matrix after the measurement.
The Q4 g(T) are arbitrary operators that satisfy the com-
pleteness relation

> 4 (D)Rp(T) = 1,
B

where the sum over a is the sum over all possible results
of the measurement. The normalized density operator,
conditioned on the result « is, of course,

(2.7)

pa(t +T) = po(t + T)/Prob(a). (2.8)
The presence of the extra parameter 3 indicates classi-
cal ignorance in that the measurement result o does not
distinguish results that potentially could be distinguished
without altering the nonselective evolution of the system.
This nonselective evolution is obtained by averaging over
all possible measurement results

p(t+T) = Prob(a)pa(t +T), (2.9)
=3 Qup(T)p(H)R, 5(T). (2.10)
a,B

The general form of the ME (2.3) and the general form
of quantum measurement can be put in one-to-one corre-
spondence once a particular representation of the ME has
been chosen. That is to say (for the case of one output
channel), when a physically meaningful value for the pa-
rameter v has been chosen. For continuous measurement,
the appropriate measurement time is the infinitesimal dt.
Assuming perfect measurement (as will be done in the re-
mainder of this section), the parameter 3 is not needed
and there are just two measurement operators,

= Vdte, (2.11)
(2.12)

21 (dt)
Qo(dt) =1 — (iH + %cfc) dt.

It is easy to verify that the nonselective evolution under
this measurement
(2.13)

p(t+dt) = > Qa(dt)p(t)QL(d2).

a=0,1

is equivalent to the ME (2.3).

We thus see that noninvasive measurements on a
Markovian quantum system necessarily yields a mea-
surement record which is a point process. For almost
all infinitesimal time intervals, the measurement result
is @ = 0, which is thus regarded as a null result. At
randomly determined (but not necessarily Poisson dis-
tributed) times, there is a result & = 1, which I will call a
detection. Furthermore, if a detection does not occur, the
system changes infinitesimally, but not unitarily, via the
operator Qo(dt). On the other hand, the effect of a de-
tection is a finite change in the system, via Q;(dt). This
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change can validly be called a quantum jump [7]. Real
measurements that correspond to this ideal measurement
theory are made routinely in experimental quantum op-
tics. If ¢ is the annihilation operator of a cavity, mul-
tiplied by the square root of the cavity damping rate,
then this theory describes the cavity evolution in terms
of photodetections. Because at present the primary ap-
plication of this measurement theory is quantum optics,
the terms photodetection and photocurrent et cetera will
often be used instead of the more general terminology.

To incorporate feedback into this model is quite
straightforward. In order for the feedback to be Marko-
vian, the mechanism must cause an immediate change in
the system based only on the result of the measurement
in the preceding infinitesimal time interval. Because the
null result & = 0 occurs almost all of the time, feeding
back this information is pointless. The feedback must act
immediately after a detection, and cause a finite amount
of evolution. Let this finite evolution be effected by the
superoperator e, where K is a Liouville superoperator
[so that ICp conforms to the right-hand side of Eq. (2.1)].
Then the unnormalized density operator following a de-
tection at time ¢ is

pr(t + dt) = eFep(t)cltdt. (2.14)
The superoperator acts on the product of all operators to
its right. Note that the feedback does not alter the trace
of this density operator, as is required by conservation of
probability. The nonselective evolution of the system is
still given by

p(t +dt) = p1(t + dt) + po(t + dt). (2.15)

Since po(t+dt) is unchanged by feedback, we have simply

p = —ilH, p| + e T[c|p — Alc]p. (2.16)

This is the most general form of feedback master equa-
tion for perfect detection via a single loss source. If the
detection is not perfect, or if there are other loss sources,
then the Hamiltonian evolution term must be replaced
by a more general Liouville term. It can be shown that
Eq. (2.16) does conform to the general form of the ME
(2.1). Assuming for simplicity that K acts as

Ko = —ilZ, 0] + Dltlp, (2.17)
the master equation (2.16) can be written
Rt 1 8m
p=—ilH,pl+ ) / dsm/ dsp_y--
m=0"0 o
82 .
X / d351D[hm (8m, Sm—1,- - -, 51)C|p, (2.18)
0

where

hm(sm, Sm—1y--- ,31) = e—(iZ+%b'b)(1—.m)

xbhe~(iZ+5b'b)(sm—8m_1)

xb--.e~(iZ+5b0)s1 (9 19)
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In the special case where Kp = —i[Z, p|, this simplifies
greatly to

p = —i[H, p| + Dle"*%¢]p. (2.20)

B. Stochastic calculus for feedback

The general feedback master equation (2.16) derived
in the preceding section is an essential result of this pa-
per. In many ways, however, it is unsatisfying. What
is the relation to a real experimental feedback mecha-
nism? How fast must the mechanism respond to justify
the Markovian approximation? Is it possible to formu-
late the problem without a measurement step? In this
section, I will attempt to answer the first question. To
do this, I define a general stochastic differential calculus
which can deal with point processes as well as Gaussian
processes. This is necessary to make the connection be-
tween a physical feedback mechanism, which functions
smoothly in time, and the fed-back measurement result,
which is a point process, as the preceding section showed.
The reason that past feedback theories [1-3] have not
been concerned with this distinction is that they used
only linear approximations, for which it is not necessary
to be careful. The explanation of the general stochastic
differential calculus will occupy the greater part of this
section.

First, it is useful to explicitly represent the selec-
tive evolution of the monitored open systems using the
real random variable dN,(t), rather than the operators
Q4(dt). The point process dN,(t) is the increment (ei-
ther zero or one) in the photon count N,(t) (or whatever
the detection tally is called) in the time interval (¢, t+dt)
[7]. It is defined by

[dN.(t)]* = dN.(2), (2.21a)

E(dN(t)) = Tr[Q (dt)pc(t) (dt)] = (c'c)c(t)dt, (2.21b)

where F denotes expectation value, and the subscript
c indicates that the quantity to which it is attached is
conditioned on the history of measurements up to that
time. It is easy to verify that the normalized conditioned
density operator obeys the following nonlinear stochastic
evolution equation

dpc(t) = {dN.(t)Glc] + dtH [—iH + Lctc]} po(t). (2-22)

Here, the nonlinear superoperators G and H are defined
by

t
Glalp = ﬁ"[;’;j—af] 3 (2.23)
H[a]p = ap + pat — Tr[ap + pallp. (2.24)

Because of the assumed perfect detection, the stochastic
equation for the state matrix is equivalent to the follow-
ing stochastic equation for the state vector:
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dJye(t) = [dN,;(t)(—(Cch _ 1)

+dt<ﬂ°%°—(-t—) - % - ZH)] [e(t)).  (2.25)

In practice, experimentalists usually consider a pho-
tocurrent I.(¢) rather than a photocount N(t). In terms
of the photocount, a photocurrent may be defined as

)

(2.26)

Note that this mathematical photocurrent is a highly
singular object. A typical feedback circuit would use
the photocurrent to control an electro-optic or electro-
mechanical device which influences the source. For
Markovian feedback (which is the desired end), the pho-
tocurrent should be fed back unaltered. In reality, a finite
time delay in the feedback loop is inevitable. The feed-
back will approach a Markovian process in the limit that
the loop delay 7 goes to zero. The simplest assumption
is that the feedback adds a time-dependent term to the
system Hamiltonian, linear in the photocurrent
Ha(t) = 1.(t — 7)2, (2.27)
where Z is an arbitrary Hermitian operator which is di-
mensionless (using units such that # = 1). This Hamil-
tonian generates the evolution of the state matrix by

[pe(t))ro = —i[Hp(t), pe()]-

Naively, substituting in the expression (2.26) for the cur-
rent would suggest that the increment to the conditioned
density operator would be

[dpe(t)lg, = —1lZ, pe(t)]dNc(t — 7).

(2.28)

(2.29)

Unfortunately, this term is arbitrarily large [when
dN.(t — 7) = 1] and so the positivity of the density
operator may be not preserved. If one were to naively
add the extra Hamiltonian term (2.27) to the stochastic
Schrodinger equation (2.25) instead, one would get

[d[Ye(t)]g = —1Z|9c(t))dNe(t — 7).

Then positivity would be preserved, but trace would not.

The problem lies in attempting to treat equations such
as (2.28) by the regular rules of calculus, ignoring the
highly singular nature of the mathematical photocurrent
dN/dt. Of course a real photocurrent, like any physi-
cal classical quantity, is a sufficiently smooth function
of time to be treated by standard calculus. Thus, the
stochastic equations should be interpreted as if the term
dN/dt were a smooth function of time, even though it is
not according to the definitions (2.21). It is useful to in-
troduce some terminology. An equation like Eq. (2.22) or
Eq. (2.25) is called an ezplicit equation. The increment
is explicitly given by the right-hand side of the equation,
and will always be indicated so on the left-hand side by
dp or d|¥). In contrast, Eq. (2.28) is an implicit equation.
The quantity on the right-hand side is not equal to the

(2.30)

increment divided by dt, even though the quantity on the
left-hand side is dp/dt. To emphasize this, the left-hand
side of an implicit equation will always be written as p
rather than dp/dt.

The implicit feedback evolution equation (2.28) is com-
plicated by the fact that the stochastic current is already
correlated with the system, because it is being fed back
with a finite time delay. This complication can be ig-
nored for the present, as it is not essential to the ar-
gument. That is, I(t — 7) is simply to be treated as a
stochastic quantity. Now, if the noise in the current were
Gaussian white noise, then the explicit (implicit) form
discussed in the previous paragraph would be identical
to the It6 (Stratonovich) form of stochastic differential
calculus [18]. For the one-dimensional case, an equation
written like

& = a(z) + B(z)¢(?)

would, in my notation, be a Stratonovich equation, where
£(t) represents Gaussian white noise. On the other hand,
one written like

(2.31)

dz = a(z)dt + b(z)dW (t), (2.32)
would be an Ité equation, with dW(t) = £(t)dt. The
infinitesimal Wiener increment is defined by the It6 rules

E(dW (t)) =0; [dW(t)]* = dt. (2.33)
The It6 form allows an explicit calculation of the state
of the system evolved forward in time by dt. If these
equations were meant to be equivalent, then they would
be related by [18]

a(z) = a(z) — 3b(z)b (z), (2.34a)

(2.34b)

where the prime denotes differentiation with respect to
z. Thus a generalization of this Stratonovich to It6 con-
version rule is needed, which would apply to any sort of
stochastic evolution, not just to Wiener processes. For
the jump processes considered here, the explicit rules
of the stochastic calculus analogous to Eqs. (2.33) are
Egs. (2.21). This is the appropriate calculus for the con-
ditioning equation (2.22) because the jumps are not due
to any physical process, but rather to a change in the
observer’s state of knowledge about the system.

The general problem is as follows. The implicit form
of a stochastic differential equation is given as

z(t) = x(=(t))u(t)-

Here, x(z) is an arbitrary function of x and pu(t) is a
possibly stochastic function defined by

u(t) = 2L o),

(2.35)

(2.36)

where dM(t) could be dt (deterministic), dW (t) (diffu-
sive), dN(t) (as above), or some other stochastic incre-
ment. The normal rules of calculus apply in the implicit
form, because p(t) is acting as if it were a smooth func-
tion of time. Thus, for a suitable function f(t) = f(z(t)),
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f(2(2)) = ' (@) x(2(t)u(t) = {f (z(t))}u(t), (2.37)

where ¢(f) is defined here implicitly. However, the im-
plicit equation is difficult to solve because one cannot
simply apply the stochastic rules. To do this the equa-
tion must be in the explicit form. This procedure is well
known for dM(t) = dW(t) but not in general. The ap-
proach adopted here is to solve Eq. (2.35) under the rules
of regular calculus, to all orders in dM. This can be writ-
ten formally as

z(t + dt) = exp (dtd,) z(8)|s=t (2.38)
= exp [x(z)dM (t)0z] T|z=z(t), (2.39)
where 8, = 8/8u. Here I have used the relation
d dM ()
— = —_—t 4
{fo =xeTG2} . @

which is the explicit meaning of the implicit Eq. (2.35).
The explicit stochastic differential equation (SDE) is
then defined to be

dz(t) = [exp {x(z(@)dM ()8} — 1a(t),  (241)
which means
dx(t) = [exp {x(z)dM (t)0;} — 1] T|o=z(s)- (2.42)

Providing this expression converges (which it will do for
dM = dW or dM = dN), it is compatible with the re-
quirement on the implicit form [Eq. (2.37)], independent
of the nature of the stochasticity. This can be seen by
calculating the increment in f(z) using the explicit form

df (z(t)) = f(x(¢) + dz(t)) — f(=(t)) (2.43a)
= f(exp {x(x)dM(t)0:} T|s=zr)) — F(z(t))

(2.43b)
= exp {x(z)dM (t)8;} f(2)le=a(t) — f(z(t))
(2.43¢)
= [exp {¢(f)dM (t)35} — 1] fls=f(=(t))-
(2.43d)

The final expression here is precisely what would have
been obtained by turning the implicit equation (2.37)
into an explicit equation. This completes the proof.

For deterministic processes, there is no distinction be-
tween the explicit and implicit forms, as only the first-
order expansion of the exponential remains with dt in-
finitesimal. For Gaussian white noise, the formula (2.41)
is the usual rule (2.34) for converting from Stratonovich
to It6. That is, if the Stratonovich SDE is Eq. (2.35)
with dM(t) = dW(t), then the It6 SDE is

dz(t) = x(z(t))dW () + 1x(z(t))x'(=(t))dt. . (2.44)

Here, the It6 rule [dW(¢)]2 = dt has been used. This
rule implies that it is only necessary to expand the ex-
ponential to second order. This fact makes the inverse
transformation (It to Stratonovich) easy [18]. For the
jump process [dM (t) = dN(t)], the rule [dN(t)]2 = dN(t)
means that the exponential must be expanded to all or-
ders. This gives

da(t) = dN(t) [exp {x((t))8.} — 1] 2(2).

In this case, the inverse transformation would not appear
to be easy to find, in general. The multidimensional gen-
eralization of the above formulas is obvious. If the im-
plicit form is (using the Einstein summation convention)

(2.45)

i(t) = x5 (x(2)) 5 (2), (2.46)
then the explicit form is
dzi(t) = {exp [xk; (x(t))dM;(t)0%] — 1} zi(t).  (2.47)

The quantum mechanical state matrix p in general
must be specified by a double infinity of real numbers.
Fortunately, however, its equations of motion are linear,
with

Pe(t) = Kpe(t)Le(t — 7),

where Kp = —i[Z, p]. Since this feedback equation (2.29)
must be treated as an implicit equation, the explicit form
is

(2.48)

[dpe(t)]g, = dNe(t = 7) (X = 1) pe(t).

This is, of course, equivalent to the result which would
have been obtained by replacing Eq. (2.30) by the appro-
priate explicit equation

[dl%e(t))lg, = dNe(t — 7) (€7 — 1) |he(t)).-

This is guaranteed by the fact that an implicit equa-
tion follows the normal rules of calculus. Equations
(2.48,2.49) are in fact valid for any Liouville superoper-
ator K, not merely the Hamiltonian evolution generator.
For the general case, it is necessary to use the state ma-
trix description. The complete selective evolution equa-
tion of the system under feedback is thus

dpe(t) = {dNe(t — 7) (" — 1) + dN,(t)G[c]
+dtH[—iH + Lctc]}pc(t).

(2.49)

(2.50)

(2.51)

It is not possible to turn this stochastic equation into a
master equation by taking an ensemble average, as was
possible with Eq. (2.22). This is because the noise term
at the later time is not independent of that at the earlier
time. Physically, it is not possible to derive a master
equation because the feedback is not Markovian.

C. The Markovian limit

In order to make Eq. (2.51) more useful, and to com-
pare it with the result of Sec. IT A, it would be desirable
to take the Markovian limit 7 — 0, and hopefully derive
a master equation. To understand how this limit can be
taken, consider first the one-dimensional case with Gaus-
sian white noise. The deterministic part of the evolution
is irrelevant, so it will be ignored. The explicit equation
of motion is thus

dz(t) = b(z)dW (t). (2.52)
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Now let the noise interact again with the system at a
time 7 later, via the implicit feedback equation

(D) = v(z(8))E(t — 7).

Turning this into an explicit equation gives the complete
evolution

(2.53)

dz(t) = b(z(t))dW (t) + v(x(t))dW (t — 7)
+37(2(t))7' (z(t))dt.

This is the analog of Eq. (2.51). Note that it is an ex-
plicit equation, which I have previously stated is an Ito
equation for Gaussian white noise. However, in another
sense, it is not an It6 equation because the noise term
dW (t — 7) is not independent of the system state at the
time it acts. This fact is what makes the process feed-
back. What would be desirable would be to derive a
true Ité equation, with all stochastic increments being
independent of the state. This would only be possible
in the limit 7 — 0. In taking this limit, it is necessary
to remember that the feedback must act after the “mea-
surement” (2.52). Taking this into consideration suggests
the following expression derived using the general rules
stated above:

(2.54)

z(t + dt) = exp [y(z)dW (t — 7)0,]

x{z(t) + b(z(t))dW (¢)}. (2.55)
For 7 finite, the placement of the feedback after the other
dynamics is not important, and expanding the exponen-
tial gives the above expression (2.54). However, for 7 = 0,
the later action of the feedback is essential. In this case,
expanding the exponential yields

dz = y(z)b' (z)dt + 3v(z)v'(z)dt
+[b(z) + v(z)]dW (¢). (2.56)
This equation is a true It6 equation, with the noise dW (t)
being independent of the state x(t). The first determin-
istic increment here represents the feedback, while the
second is simply a consequence of the noisiness of the
fed-back quantity.
This approach can be applied to the quantum feedback
equation by putting

pe(t + dt) = exp[dN.(t — 7)K]{1 + dN.(t)G|c]

+dtH[—iH — Lcle]}pe(t).  (2.57)

For 7 finite, this reproduces Eq. (2.51). However, if 7 =
0, expanding the exponential gives

dpc(t) = {dN:(t)e*Glc] + dtH [—iH — Lcte]} po(t).
(2.58)
I

B(L()1(t)) = Tr {T (e 05 T elp(®) } + Tr{T[clo(®)} (¢ — 1

=Tr [cfcec(t"‘)e'ccp(t)cT] + Tr [cTep(t)] 6(t' —t),

In this equation, it is possible to take the ensemble aver-
age because dN,(t) can simply be replaced by its expec-
tation value (2.21b), giving

p={e"Tlc] — Ale]} p — i[H, p]. (2.59)
This master equation is of course the same as Eq. (2.29)
derived from general principles. Now, however, the rela-
tion of the superoperator K to experiment via Eq. (2.48)
is known. Although it might seem that the assump-
tion that the feedback is linear in the photocurrent is
too restrictive to give a general feedback master equa-
tion, this is not the case. Because of the stochastic rule
(dN)2 = dN, any function of the instantaneous pho-
tocurrent is actually linear.

The general ME (2.59) is most obviously applicable to
a quantum optical cavity, as discussed above. Provided
the external continuum is in the vacuum state, taking
¢ to be the annihilation operator of the cavity allows an
interpretation in terms of direct photodetection. Rewrite
Eq. (2.59) as follows:

p={Lo+Dlc]+ (e —1) T[]} p = Lp, (2.60)
where the internal Hamiltonian evolution has been gen-
eralized to possibly include irreversibility via the Liou-
ville superoperator £o. If £y and K are “classical” su-
peroperators, preserving the positivity of the Glauber-
Sudarshan P function [14], then it is manifest that the
ME (2.60) also describes a classical process. This fol-
lows from the fact that the jump operator J[c] preserves
coherent states. That is, feedback based on direct de-
tection cannot produce nonclassicality. This shows that
earlier models which predicted contrary results [19,20]
are flawed. In fact, this result holds for feedback based
on any form of extra-cavity detection, as the different
forms correspond merely to the transformation (2.4).
The transformed jump operator still preserves coherent
states, and the transformed Hamiltonian simply has an
extra driving term. These transformations will be pur-
sued in Sec. IV.

From the preceding paragraph, it is evident that
controlling intracavity classical dynamics by an exter-
nally measured photocurrent cannot produce nonclassi-
cal (sub-Poissonian) photon statistics as measured by an
independent detector. The in-loop detector may record
such statistics, however. This does not mean that there is
nonclassical light incident on the in-loop detector. If all of
the superoperators are classical, then the entire feedback
process may be described in terms of coherent states.
The explanation for the possibility of sub-Poissonian in-
loop statistics is that the two-time correlation function
for the current no longer measures normally ordered in-
tensity correlations. Rather, it is easy to show (by the
method of Ref. [7]) that

(2.61)

(2.62)
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where L is as defined in Eq. (2.60). This expression shows
that it is the effect of the feedback specific to the in-
loop current via e®, not the overall evolution including
feedback via e£('~t) which may cause sub-Poissonian
statistics for the fed-back current.

D. The effect of a small time delay

This fairly brief section returns to the question raised
at the beginning of the Sec. II B, how fast must the feed-
back mechanism respond to justify the Markovian ap-
proximation? In answering this question, I derive an ap-
proximate master equation which is valid in the limit
where the feedback time delay is small but not negligi-
ble. The approach used is a perturbative one. That is,
it is assumed as a first approximation that the evolution
of the system can be described by

p(t)) = £ =D p(t)

where L is the superoperator defining the entire feedback
process, as in Eq. (2.60).

Now consider feedback in the selective picture, as de-
scribed by Eq. (2.51), with a time delay 7. Consider a hy-
pothetical photodetection at time t—7. The conditioned-
state matrix is

pe(t — 7+ dt) = {1+ dN.(t — 7)G[c] + O(dt)} p(t — 7).
(2.64)

(' >1), (2.63)

Here, all of the nonjump evolution has been included in
the term of order dt. This includes the feedback from
earlier jumps, which will be of order dt on average. This
is equivalent to making the Markovian approximation to
the feedback, which also allows the nonselective state ma-
trix p(t) to be used. Now the secondary effect of this
possible detection at time ¢ — 7 on the system due to
feedback is delayed by 7. By that time, the state of the
system has evolved to

pe(t) = €™ {1 + dN,(t — 7)G[c] + O(dt)} p(t — 7),
(2.65)

where the zeroth order approximation to the evolution
[Eq.(2.63)] has been used. Over the next infinitesimal
time step, the feedback takes effect, so that the condi-
tioned state is

pe(t + dt) = (1 + dNe(t)G[c] + dt {Lo — Alc]} )pc(t)
+ dN (t — 7)(e® — 1) pc(2). (2.66)

The form of this equation has been chosen so that the
nonselective equation is simple to see. In taking the en-
semble average, the first term simply turns into the usual
expression for the state matrix without feedback,

(14 dt{Lo + D[c]}) p(t). (2.67)

However, for the second term, it is necessary to use the
expression (2.65), because of the feedback correlations,
to get

E[(e® — 1)e£7dN.(t — 7){1 + dN.(t — 7)G[c]

+0(dt)}p(t —7)].  (2.68)

Using the stochastic rules (2.21), this expression becomes

(eX — 1)e£™ {T[c] + O(dt)} p(t — 7)dt. (2.69)
Adding the two terms together gives the first order ap-
proximation to the effect of a finite delay 7,

p(t) = {Lo + DI} p(t) + (€* — 1)e“" T[Jp(t — 7).
(2.70)

It must be emphasized that this is an approximate so-
lution only. In fact, since it is a solution of first order
in 7, it is quite proper to expand its individual terms to
first order in 7 also. That is, one can approximate e‘™
by 1+ L7, and use

p(t —7) ~ (1 — L7)p(t). (2.71)
Substituting these into Eq. (2.70) gives
bt = (£ +7(F = VLTI - TIICHo(e):  (2.72)

This final approximate master equation is equal to the
instantaneous feedback master equation (2.60), plus a
correction linear in 7. The condition for this correction to
the Markovian feedback master equation to be negligible
is obviously

7" = ){LT[c] = T[c]L}oll < [ILpll, (2.73)
where p is a suitable density operator [perhaps the steady
state solution of Eq. (2.60)], and the bounds || || indicate
a suitable norm. To elucidate this expression, consider
a typical quantum optical system, damped to the vac-
uum at a rate of unity, so that ¢ represents the annihila-
tion operator for the intracavity field. Let the intracavity
photon number n have a large mean p and a relatively
small variance ~ u. In this case, the evolution can be
successfully described by a Fokker-Planck equation for a
distribution function such as the P or W function [14].
The magnitude of the damping evolution || D[c]p|| can be
seen to be of order 8,n ~ 1. If the feedback is to be of the
same order of magnitude then we require X ~ u~1. Now,
[£,T[c]] ~ [0nn,n] ~ p. Thus the condition (2.73) sim-
ply reduces to 7 <« 1. That is to say, the feedback loop
delay must be much less than the cavity lifetime. This is
quite feasible, with loop delays of order 10~2 s and cavity
lifetimes of order 10~7 s. It is important to note that it is
not necessary for 7 to be much less than the time between
detections, which is of order the cavity lifetime divided
by p. If the latter condition were necessary, then Marko-
vian feedback would probably be quite impractical. In
Sec. IV, it is shown that Eq. (2.72) agrees with the exact
results for time-delayed feedback which may be obtained
from a special case of homodyne-mediated feedback.
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III. FEEDBACK WITHOUT MEASUREMENT

This section uses a different approach to feedback from
the preceding one. The physical system being modeled is
the same as that of the preceding section: an open quan-
tum system continuously monitored by a detector, the
output of which is used to control the evolution of the sys-
tem. However, the theory in this section lacks any mea-
surement step; the entire analysis is undertaken within
the framework of unitary quantum mechanics. Unitary
evolution of the system plus bath can give rise to non-
unitary evolution of the system. The bath carries away
information about the system, causing it to change ir-
reversibly. A detector can regain this information, and
feed it back into the system. In the approach of the pre-
vious system, the information was explicitly realized as
a classical measurement result before being fed back. In
this section, the information remains in a virtual form,
as the entire loop is treated formally as a quantum sys-
tem. I begin by reviewing and extending the theory of
system-bath coupling [11,12].

A. Input-output formalism

The theory presented here describes a system inter-
acting locally with a bath consisting of a continuum of
harmonic oscillators. Physically, the system may be an
optical cavity, and the bath the external electromagnetic
field modes with momentum aligned to the cavity axis.
The electric field (or rather, one polarization component)
at a particular point in space-time (parametrized by z,t)
is represented approximately by the Heisenberg-picture
operator [12]

E(z,t) = ,/zfokA [b(2,t) +bT(2,¢)] .

Here, A is the cross sectional area of the beam, and only
frequencies near the central wave number k are assumed
to be of interest. The canonical commutation relations
for the complex amplitudes b(z,t) are

(3.1)

(b(2,t),bt (2, t)] = cb(z — 2'), (3.2)
where c is the speed of light, and for regions where the
field propagates freely,
b(z,t + 1) = b(z — c7,t). (3.3)
Let the external field be coupled to the cavity by a very
good mirror at z = 0. The field with z < 0 then repre-
sents an incoming field and that with z > 0 an outgoing
one. Assume for now a linear coupling of the form
Hi(t) = iAfb' (0, H)e(t) — e (1)b(0, )], (3.4)
where c(t) is the annihilation operator of the cavity
(tuned to the frequency ck), multiplied by the square

root of the cavity decay rate. Ignoring other dynamics,
the evolution of an arbitrary Heisenberg operator a(t) is
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a(t) = —[B1(0, )c(t) — T (b0, B),a(t).  (35)
Now because of the singularity of the canonical commuta-
tion relations (3.2), it is necessary to be careful in dealing
with this evolution equation. As explained in the preced-
ing section, Eq. (3.5) is an implicit equation, which must
be converted to an explicit equation. The noise is of
a Gaussian nature, but is complicated by being opera-
tor valued. What is required is quantum It6 stochastic
differential calculus [11,21]. Define an input field, repre-
senting the field just before it interacts with the cavity
at time t by

bi(t) = b(07,¢). (3.6)
This can be thought of as a white noise term, independent
of the state of the cavity at time ¢. The analog of the
Wiener increment in the It6 calculus is then

dB,(t) = by (t)dt, (3.7)

which satisfies

[dBi(t),dB](t)] = dt. (3.8)
The evolution of an arbitrary operator is then given ex-
plicitly by

a(t + dt) = Uf(t,t + dt)a(t)Us (¢, t + dt), (3.9)

where

Ui(t,t + dt) = exp [dB{ (t)c(t) — dBy (t)c(t)] . (3.10)

In Eq. (3.9), the bath operators dB; (t) and dBI (t) are
independent of the system operator a(t), and U; (¢, t+dt)
must be expanded to second order. Now if b;(t) is to be
thought of as a bath, it should be specifiable simply by
its moments. For simplicity, assume that the bath is in
the vacuum state. Then it is completely specified by

dB; (t)dBl(t) = dt, (3.11)
with all other first and second order moments vanish-
ing. This nonvanishing second order contribution could
be thought of as vacuum noise. Using this relation, the
explicit quantum Langevin equation is

da = (c'ac — tactc — Lctea) dt — [dBic — dBict, al.
2 2 1
(3.12)

The final, stochastic term in this equation is essential to
preserve canonical commutation relations [11]. However,
the stochastic terms can be ignored when changing from
the Heisenberg to the Schrodinger picture and deriving
the evolution of the density operator for the cavity mode
alone. This is found from the relation

(da(t)) = Trldp(t) dl, (3.13)
where the picture (Schrodinger or Heisenberg) is specified
by the placement of the time argument. The resulting
master equation is
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A(t) = D[c|p, (3.14)
as assumed in Sec. IL

In order to consider feedback, we are interested in the
light which leaves the cavity through the output mirror,
as well as the internal state of the cavity. From Eq. (3.3),
the expression for the field operator of the light leaving
the cavity is evidently given by

ba(t) = b(0F,t) = Uf (t,t + dt)by (t)Us(t, t + dt). (3.15)
To lowest order in dt, this is

ba(t) = by(t) + c(t). (3.16)
Just as by (t) is independent of, and so commutes with, an
arbitrary system operator a(t') at an earlier time t' < t,
the output field commutes with all system operators at a
later time [11]. This fact will be essential to the feedback

theory developed later. The output photon-flux operator
is defined by

L(t) = bl(2)ba(t). (3.17)
Define a photon count increment operator [21]
dN,(t) = Ix(t)dt. (3.18)

From the relations (3.11) and (3.16), it is easy to verify
that

[dN2(t)]2 = dNa,
(dNa(t)) = (ctc)dt.

(3.19a)
(3.19b)

That is to say, the photon flux output is equivalent to
the photocurrent, as would be expected. This is another
fact essential to the feedback theory to be developed. It
is also useful to list the nonzero products of dN with the
quantum Wiener increments:

dB(t)dN(t) = dB(t) = [dN(t)dB'(t)]'. (3.20)

B. Photon flux pressure

The quantum stochastic calculus used in the preceding
section assumed a coupling linear in the bath amplitude.
To my knowledge, applying the quantum stochastic cal-
culus to a nonlinear coupling has not been attempted
before. However, such a nonlinear coupling arises natu-
rally in physics from the light pressure force. This ex-
ample will be used to illustrate the use of the nonlinear
coupling which will be needed for feedback. The classi-
cal expression for the pressure due to an axially reflected
light beam at position z and time t is [22]

P(t) =2U(z,1), (3.21)
where U is the energy density of the field, and the bar
indicates an average over one optical period. For a freely

propagating field, the energy density is related to the
electric field by U = ¢|E|?. Using the expression for
the electric field (3.1), while remembering that b and bf
rotate oppositely at frequency ck, gives

U0 = %’“bf(z,t)b(z,t),

(3.22)
where A is the area of the beam. Now the pressure (3.21)
is related to the potential energy V by PA = VV. Thus
the interaction Hamiltonian is

V(z,t) = 2kkb!(2,t)b(z, 1)z, (3.23)
where z is the coordinate of the mirror. As promised,
this expression is bilinear in the field amplitude.

Now, if the mirror does not move significantly, the ar-
gument z for the field operators can be assumed constant
(say z = 0 as before). Then the evolution of some arbi-
trary mirror operator is given by

a = i[2kzb'(0,)b(0,1), a]. (3.24)

This is an implicit equation, and must be treated using
the formalism developed in Sec. II. Define an input pho-
ton flux operator

I (t) = b1(07,t)b(07, 1). (3.25)
This expression will not be well defined if the input bath
state is in a finite temperature thermal state, at least
if the latter is treated in the white noise approximation
which is standard [11]. That is because the white-noise
approximation assumes an infinite bandwidth of modes,
each with a nonzero occupation number. This adds up
to give an infinite photon flux. On the other hand, a zero
temperature bath will give a zero photon flux, and have
no effect on the mirror at all. However, it is possible for
Eq. (3.25) to be well defined and nonzero, if for example
the input operator is in a coherent state of amplitude
B. This corresponds to replacing b by 3 + v, where v
represents a vacuum state. Then the operator dN,(t) =
I, (t)dt satisfies

[dN1(2)]” = dNy(2),
(dN1(2)) = |B|*dt.

(3.26a)
(3.26b)

In fact these relations will also hold for an input state
in a phase-diffused coherent state, such as that produced
by a laser.

The implicit equation (3.24) can be rewritten

a=-I(t)Ka, (3.27)

where Ka = —i[2kz,a]. The explicit counterpart is then
da(t) = {exp[—KdN1(t)] — 1}a(t) (3.28)

= dNy(t) [Uta(t)U —a(t)], (3.29)

where U = exp[—2ikz]. Just as in Eq. (3.12), the stochas-
tic term is necessary to preserve the commutation rela-
tions. This can be seen by calculating the increment in

the product of two system operators, using the It6 (ex-
plicit calculus) rule



2142 H. M. WISEMAN 49

d(aiaz) = (da1)az + a1(daz) + (dai)(daz). (3.30)
The result is
d(aiaz) = dNq(t) [UTalazU - alaz] , (3.31)

as necessary for (3.29) to be a valid quantum Langevin
equation.

When turning (3.29) into a master equation for the
mirror by the relation (3.13), the noise term dN;(t) is
replaced by its expectation value giving

b= 18I (UpU" — p) = 1B Dlexp(~2ik=)}p.

This is precisely what could have been predicted straight
away from Eq. (3.21), with a photon flux of |3|*> and a
photon momentum of %k. Each photon gives a kick to
the momentum of the mirror of magnitude 24k as it is
reflected. The effect on the output field is to cause a
phase shift

(3.32)

ba(t) = b(0T,t) = e N1 p, (¢) = e~ 2*2b, (t), (3.33)

due to the shifting of the mirror away from the position
z = 0. Of course, the photon flux operator is unchanged
by the feedback, as

I,(t) = b (t)ba(t) = bl(t)e* e ~2*by(2)

= bl (t)b1(t) = Li(2). (3.34)

C. Feeding back the output

The point of the preceding section was not to describe
the quantum effect of light pressure, but rather to show
how an obvious result can be derived using the formalism
of implicit and explicit stochastic quantum differential
equations. In this section, the formalism will be applied
to the problem of feedback. An arbitrary system operator
obeys the Langevin equation

da = i[H,a]dt + (c'ac — 1ac'c — Lctea)dt

—[dBlc — dBct,a], (3.35)
and the output field is defined as
ba(t) = ba(t) + c(t), (3.36)

where by(t) is a vacuum operator. As shown above, the
output photon flux operator Iz(t) = b;(t)bz(t) is equiva-
lent to the photocurrent derived from a perfect detection
of that field. This suggests that feedback could be treated
in the Heisenberg picture by using the Hamiltonian
Hg,(t) = I(t — 1) Z (1), (3.37)
where now each of these quantities is an operator (and
h =1 again).
It might be thought that there is an ambiguity of op-
erator ordering in this expression, because I, contains
system operators. In fact, the ordering is not important

because bz(t) commutes with all system operators at a
later time [11], and so I5(t) does also. Of course, bs(t)
will not commute with system operators for times after
t + 7 (when the feedback acts), but I(t) still will be-
cause it is not changed by the feedback interaction, as
shown above. This fact would allow one to use the for-
malism developed here to treat feedback of a photocur-
rent smoothed by time averaging. That is to say, there
is still no operator ambiguity in the expression

Ha(t) = 2() / h(s)Ix(t — s)ds. (3.38)
0

For a sufficiently broad response function h(s), there is

no need to use stochastic calculus for the feedback; the

explicit equation of motion due to the feedback would

simply be

dPC(t) = ——i[Hfb(t)a pc(t)]dt‘

However, this approach makes the Markovian limit dif-
ficult to find. Thus, as in Sec. II, the response function
will be assumed to consist of a time delay only, as in
Eq. (3.37).

Proceeding as in the photon pressure case, the total
quantum Langevin equation including feedback is

(3.39)

da = i[H,a]dt + dN,(t — 7) (eizae_iz — a.)

+ (cTac - %acTc - %cfca) dt — [dBIc — dB;cl,a).
(3.40)

Here all time arguments are ¢ unless otherwise indicated.
This should be compared to Eq. (2.51). The obvious
difference is that Eq. (2.51) explicitly describes direct
photodetection, followed by feedback, whereas the irre-
versibility in Eq. (3.35) does not specify that the output
has been detected. Indeed, the original Langevin equa-
tion (3.35) is unchanged if the output is subject to homo-
dyne, rather than direct, detection. This is the essential
difference between the virtual quantum fluctuations of
Eq. (3.35) and the fluctuations due to information gath-
ering in Eq. (2.51). Expanding dN(t) gives

da = i[H,a]dt + [c!(t — 7) + b (t — 7)] (¢*Zae ™% — a)
x[e(t — 7) + by (t — 7)]dt

+ (c'ac — 3acfc — ictea) dt — [dBlc — dBct,a].
(3.41)

It can be verified that this is a valid non-Markovian quan-
tum Langevin equation, in the sense explained in the sec-
tion on photon flux pressure.

In Eq. (3.41), the vacuum field operators b;(t) have
been deliberately moved to the outside [using the fact
that by(t — 7) commutes with system operators at time
t]. This has been done for convenience, because in this
position, they disappear when the trace is taken over the
bath density operator. Taking the total trace over system
and bath density operators gives
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(da) = (i{H, ] + ¢} (¢ — 7)(¢'Zae™% — a)eft — 1)
+(ctac — Lactc — Lcfea))dt. (3.42)

In the limit 7 — 0, so that ¢(t — ) differs negligibly from
c(t), this gives

(da) = (c'(e*?ae™*%? — a)c + i[H, a]

+(ctac — Lactc — Lctca))dt. (3.43)
This is precisely what would have been obtained from the
Markovian feedback ME (2.59) for Kp = —i[Z, p].

Moreover, it is possible to set 7 = 0 in Eq. (3.41) and
still obtain a valid Langevin equation:

da = i[H,a]dt — [a,c'] (3c + by) dt + (%cT + bI) la,c]dt

+(ct + b)) (eZae™*Z — a) (c + by)dt. (3.44)
This equation is quite different from Eq. (3.41) because
it is Markovian. This implies that in this equation, it
is no longer possible to freely move by = (c + b1), as it
now has the same time argument as the other operators,
rather than an earlier one. In this case, it is b; rather
than b, which commutes with all system operators. This
must be borne in mind when proving that Eq. (3.44) is
a valid Heisenberg equation of motion. This trick with
time arguments and commutation relations enables the
correct quantum Langevin equation describing feedback
to be derived without worrying about the method of deal-
ing with the 7 — 0 limit used in the Sec. IIC. This
method is actually quite difficult to apply in the Heisen-
berg picture. The subtleties involved will become ap-
parent in Sec. III B, where I will use both methods to
treat quadrature feedback in the Heisenberg picture. In
any case, there is no disputing that Eq. (3.44) is the cor-
rect quantum Langevin equivalent to the feedback master
equation,

p = —i[H, p| + Dle~*2c]p. (3.45)

IV. QUADRATURE FEEDBACK
A. Quantum trajectories

A special case of the feedback theory presented here
is feedback mediated by homodyne detection. This has
been considered in detail elsewhere [8,9], so here only a
brief account will be given. Homodyne detection involves
the addition of a coherent field (called a local oscillator)
to the output field before detection, and is equivalent to
a transformation of the master equation as in Eq. (2.4)
of Sec. II. This can be achieved by putting the output of
the cavity through a low-reflectivity beam splitter, where
the other input is a very intense coherent local oscillator.
The amplitude of the transmitted field is effectively ¢ +
B, where 3 is a complex number. From Eq. (2.4) and
Eq. (2.22), the stochastic evolution of the state matrix of
a cavity under homodyne measurement is
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dpe(t) = {dN.(t)G[c + B] + dtH[—iH + L(—cB* + c'B)

-3+ c+Apc(t)-
(4.1)

Let 3 be real, so that a measurement of the z quadra-
ture of the field can be made. This is evident from the
rate of detections at a detector placed at the output of
the beam splitter,

B(HE0) -+ gl o)+ tote). 62

In the limit 8 > 1, this is equal to a constant, plus a term
proportional to 2z = c+c', plus a much smaller term. In
this limit, it can be shown [23] that the photocurrent can
be approximated by a signal plus Gaussian white noise:

IZ(t) = (c+ ') + (), (4.3)

where the normalized homodyne photocurrent is defined
by

dN.(t)/dt — B?

i 1
12(t) = Jim < (4.9)
The conditioning equation for the state matrix is

dp = —i[H, p|dt + Dlclp + dW (t)H[c]p, (4.5)

where dW () = £(t)dt.

Now consider feedback. Because the homodyne pho-
tocurrent (4.3) has indefinite sign, only Hamiltonian feed-
back can be considered. That is to say, the feedback must
be modeled by

Ha(t) = FI(2), (4.6)
where F = Ft. Because the noise involved is Gaussian,
this equation can be treated simply using the method
explained in Sec. IIC. In fact, this feedback model was
solved before that based on direct detection, precisely
because the nature of the noise was better understood.
The conditioned equation including feedback is

pe(t + dt) = {1+ K[(c + c')(t)dt + dW (t)] + 1K2dt}
x{pe(t) — i[H, pe(t)]dt + D[c]pe(t)dt

+dW (O H[clpe()}, (47)
where Kp = —i[F, p]. This becomes
dpe(t) = dt{—ilH, po(t)] + Dlclpe(t)
—i[F, cpc(t) + pe(t)c'] + D[Floc(t)}
+dW (t)H[c — iF)p.(t), (4.8)

which is a true Itd equation with dW(t) independent of
pc(t). Thus, the ensemble average evolution is simply

p=—i[H + }(c'F + Fc),p| + Dlc — iFlp = Lp, (4.9)

where the terms have been arranged deliberately to con-
form to the general master equation Eq. (2.1). The effect
of the feedback is thus seen to replace ¢ by ¢ — iF, and



2144 H. M. WISEMAN 49

to add an extra term to the Hamiltonian. The two-time
correlation function of the current can be found [9] from
Eq. (4.8),

E(IZ(t)IZ (1)) = Tr{(c + e I [(c — iF)p(t)

+p(t)(ct +iF)]} +8(1). (4.10)

Note that the feedback affects the term in square brack-
ets, as well as the evolution by L for time 7.

All of the above results can be obtained from the for-

malism of Sec. II, keeping (3 finite until the last step.
Defining the feedback by

dN.(t)/dt — B2

[l.’C(t)]fb = —":[Fv PC(t)]——ﬁ-“—‘“a (4'11)
the feedback master equation becomes
p=—i[H+ij(—cf* +c'8) - FB,p]
+D [e—”"//’(c + 6)] p. (4.12)

Expanding the exponential to second order in 1/8 and
then taking the limit 5 — oo reproduces (4.9). Thus
the feedback theory for direct detection includes feed-
back based on homodyne detection as a special case. In
another sense, however, feedback based on homodyne de-
tection is more general. As noted above, direct detection
in the presence of thermal (or squeezed) white noise is
not well defined, because the photon flux becomes infi-
nite. The “quadrature flux,” on the other hand, remains
finite, and the equations [(4.3) and (4.5)] can be general-
ized to cover this case [24]. The effect is merely to change
the coefficient of the Gaussian noise term. The noise
will be increased by thermal noise, but may be decreased
by suitably squeezed white noise. Physically, the reason
that homodyne measurement may be well defined, even
though direct detection is not, is that no noise is truly
white. For direct detection, broad-band noise is as good

as white for masking the signal. For homodyne detection,
the local oscillator amplitude can always be increased in-
definitely so that the signal (the slowly varying system
quadrature with the same phase as the local oscillator)
will be amplified while the rapidly varying (but finite)
noise cancels out on average. The equations pertaining
to feedback in the presence of white noise are given in
Ref. [24] and so will not be reproduced here.

B. Quantum Langevin equation

The quantum Langevin treatment of quadrature flux
feedback is relatively straightforward, again because of
the Gaussian nature of the noise. The homodyne pho-
tocurrent is identified with the quadrature of the outgo-
ing field

I2(t) = ba(t) + bh(t) = c(t) + c(t) + by (t) + bI(2).
(4.13)

The feedback Hamiltonian is defined as

Hg(t) = F(8)I%(t — 7). (4.14)
The time delay 7 ensures that the quadrature output op-
erator I(t) commutes with all system operators at the
same time. Thus it will commute with F(t) and there
is no ambiguity in the operator ordering in Eq. (4.14).
Treating the equation of motion generated by this Hamil-
tonian as an implicit equation, the explicit equation is

[da(t)]e = i[I7(t — T)dt][F(t),a(t)]
—1[F(t),[F(t),a(t)])dt. (4.15)

Adding in the the nonfeedback evolution gives the total
explicit equation of motion

da = i[H,a)dt + i{[c!(t — 7)dt + dB](t — 7)][F,a] + [F, a][c(t — 7)dt + dB (t — 7)]}

— L[F,[F,d]]dt + (ctac — laclc -

Here, all time arguments are ¢ unless indicated otherwise.

In Eq. (4.16), I have once again used the commutability
of the output operators with system operators to place
them suitably on the exterior of the feedback expression.
This ensures that when an expectation value is taken, the
input noise operators annihilate the vacuum and hence
give no contribution. This is the same trick as used in
Sec. IIIC, and putting 7 = 0 in Eq. (4.16) also gives a
valid Heisenberg equation of motion. That equation is
the counterpart to the homodyne feedback master equa-
tion (4.9). However, this trick will not work if the input
field is not in the vacuum state, but is for example in a
thermal state. For direct detection, it is impossible to
treat feedback in the presence of white noise, so the op-
erator ordering trick is perfectly legitimate. However, for
quadrature-based feedback, as explained in Sec. IV A, it

3cfca) dt — [dBlc — dB;ct,a).

(4.16)

f

is possible to treat white noise. Thus it is necessary to
give a method of treating the Markovian (7 — 0) limit
in this general case (although I will only give results for
a vacuum input). The necessary method is just that ex-
plained in Sec. IID. In applying it to Heisenberg equa-
tions of motion, it will be seen that one has to be quite
careful with operator ordering.

If 7 = 0 then the feedback Hamiltonian (4.14) does
have an ordering ambiguity. Choose a symmetric order-
ing as a starting point

Hp = LH{F,c+ct + b, +bl}, (4.17)
where the curly brackets denote an anticommutator. Al-
though the time argument of all the operators in this
expression is supposedly ¢, the operator F' must actually
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be of a slightly later time, after the bath operators b; and
b‘; have interacted with the system. That is to say, the
actual expression for the feedback Hamiltonian should be

Hp, = 1{F — dBl[c, F] + dB[c!, F)

+0(dt),c +ct + by + b}, (4.18)

where here the time arguments really are all t. Using the

|

a(t + dt) = expliHpdt){a + i[H, a]dt + (c'ac — Llacte — cfca)dt — [dBlc — dBic', a]} exp[—iHgpdt],

rules (3.11) gives

Hgp,dt = F(dB; + dB}) + (c!F + Fc)dt, (4.19)
where the ordering of the first term is unimportant be-
cause dB; and dB;r commute with F at the same time.
From Sec. IIC, the total evolution of the system is thus
given by

(4.20)

where all time arguments are t. Expanding the exponentials using Eq. (3.11) gives

da = i[H,a]dt — [a,c'] (Lcdt + dBy) + (%cfdt + dB{) [a,c] + i{[c'dt + dB}][F,a] + [F,a][cdt + dB1]} — }[F, [F,a]}dt.

This equation is a valid Markovian quantum Langevin
equation, equivalent to the homodyne feedback master
equation (4.9). It is a true quantum Ité equation, in the
sense of Ref. [11].

C. The effect of a finite time delay

In this section, I show that it is possible to solve ex-
actly the problem of non-Markovian feedback for linear
systems, and furthermore that the result is in agree-
ment with the approximate master equation derived in
Sec. IID for the case of small time delays. By a lin-
ear system, I mean one in which the equation of mo-
tion for the quadrature operator of interest (z) is linear.
The non-Markovian feedback is solved using the quantum
Langevin approach, although it is quite possible to use
the quantum trajectory approach also [9]. Let the sys-
tem be a cavity with an output mirror with decay rate
unity, allowing a homodyne measurement of the output
z quadrature to be made. Also let there be a second loss
source, with loss rate . The cavity could be driven, but
this would merely lead to a moving of the equilibrium po-
sition away from the vacuum, and so will be ignored. The
only other sort of dynamics which gives a linear equation
for z is parametric driving with H = k(yz + zy). The
total equation of motion for the x operator is then

&= —yo - 36 - VI, (422)
where £; = by + bl is the input  quadrature noise oper-
ator for the first mirror, and ( is likewise for the second
loss source, and v = (1 +1)/2 — & will be assumed posi-
tive in order to guarantee stability. This equation is the
most general linear equation. The two loss sources are
necessary because only one of them will be used for feed-
back. Although this equation is written as an implicit
equation, it is only necessary to multiply both sides by
dt to obtain an explicit one, because of the linearity.

Let the feedback be effected by driving the system,
with Hamiltonian

(4.21)

He(t) = —Xy(t) A ~ h(s)[2a(t — 8) + 1t — )]s,
(4.23)

where h(s) is an arbitrary response function normalized
so that fooo h(s)ds = 1. For a simple time delay of 7,
as previously considered, h(s) = §(7 — s). Because this
gives a linear equation for z, it is again unnecessary to
use stochastic calculus. The overall result is

i=—yz— 3& - \/i%( - /\/:o h(s)[z(t — s)

+16i(t—s)lds.  (424)

This equation may be solved by Fourier transform, giving

~VI{() = [1 + M ()€1 (w)
2[~iw 4+ v+ A(w)]

B(w) = (4.25)

Here the noise terms in the Fourier domain commute and
are independent. Their properties (here defined only for

&) are
&(w)* = & (~w),
(E1 (W)€ (")) = 2m8(w + ).

The expression (4.25) may be used to find observable
quantities, such as the spectrum of a homodyne measure-
ment of the free output of the cavity, from the second
mirror with loss rate . The normalized spectrum (equal
to one at high frequencies) is defined as

(4.26a)

(4.26b)

S(w) = 5% / du' (7% () J= (=u)), (4.27)
where the free homodyne current is
J=(t) = 2l (t) + VIL(t). (4.28)

The result is
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L MR +1 - 2{y + ARelh(w)]}
| —iw + v + Ah(w)|?

Sw)=1

(4.29)

In the limit of small time delay 7, l~1,(w) can be approxi-
mated (over the bandwidth of the cavity) by

h(w) = 1 + iwT. (4.30)
Expanding (4.29) to first order in 7 gives
Q+X2+1-2(v+ )
S(w)=1+1
) =TI+ (r+ 22
1 24—
=1 +l[( +A)2 +1—=2(y+ A)J(1 + 2)7) (431)

w? + [(v+ A)(1 + A7)]2

Note that this expression is Lorentzian, just as it would
be with zero time delay. The effect of the time delay is to
broaden the bandwidth (for A positive). This increases
the total amount of noise, which is as expected for a less
than optimal feedback loop.

Now consider the other approach to treating a small
time delay, the approximate master equation derived in
Sec. IID. If the homodyne feedback master equation in
the 7 = 0 limit is

/.7 = _i[Ha P] + D[C]p - l[F, CP+ ch] + D[F]p = Lpa

(4.32)
then the equation corresponding to Eq. (2.72) is
5= —ilH, ] + Dlclp — ilF,cp + pe'] + D[Flp
+ 7(=3)[F, L(cp + pct) — c(Lp) — (Lp)cl].  (4.33)
For the linear case considered above, F = —\y and
Lp = —iklyz + zy, p| + (1 + 1)D[cp
+iA[y, cp + pc'] + D[Ay]p. (4.34)

J

[(I+ 14224+ 22)(1+2X7) —227(y +A)] - 2(y + M)A + ,\r)'

H. M. WISEMAN 49

Now an alternative definition for a linear equation for
z is that the marginal distribution (the Wigner function)
for z obeys an Ornstein-Uhlenbeck equation [18]. That
is, it obeys an equation of the form
W(z) = (kd.z + 1 DO2) W(z), (4.35)
where k and D are constants. It is easy to verify that the
Liouville differential operator corresponding to Eq. (4.34)
is

LW = [(v+ N8z + 2(1+ 1+ 21+ A*)BZ| W. (4.36)
The correspondence

cp+pct = (2z+ 16,) W (4.37)
then allows one to write down the equation of motion for
W corresponding to the approximate master equation
(4.33)

. A
W= (C + 7582[11, 2z + %3,,]) w. (4.38)
Evaluating the commutators of the differential operators

yields another Ornstein-Uhlenbeck equation for W, but
this time with

k=(y+A)(1+ A7), (4.39a)
D=1(1+1+2X+X)(1+2X7) — IAr(v+A). (4.39b)

For linear systems, there is a simple relationship be-
tween the output quadrature spectra and the internal dy-
namics [14]. In terms of the drift and diffusion constants
of the general linear Wigner function equation (4.35), the
spectrum defined above (4.27) is

4D — 2k

(4.40)

Substituting in the constants (4.39) for the approximate
master equation gives

(4.41)

Sw)y=1+1

This is easily seen to be equivalent to the expression
derived above (4.29) from the exact treatment of non-
Markovian feedback. This supports the derivation of the
approximate equation in Sec. IID. Moreover, it is easy
to see from the above expressions that the condition for
the time delay in the loop to be negligible is simply

AT L 1. (4.42)

Since A will typically be of order the cavity linewidth, this
condition is quite feasible experimentally, as explained
in Sec. IID. If this condition does not hold, then it is
necessary to use the exact non-Markovian treatment. Of
course this is only possible if the dynamics are linear, but
for many systems that is a good approximation.

S+ [+ N+ AP

f

V. SELF-EXCITED QUANTUM POINT
PROCESSES

The concept of a quantum point process (QPP) arises
naturally from quantum measurement theory in the con-
text of Markovian open systems. That is to say, as shown
in Sec. IT A, the result of continuous monitoring is a mea-
surement record consisting of detections. Classically, a
Poissonian point process can be made non-Poissonian
by making its rate depend on past detections. This is
called a self-exciting point process [25]. The quantum
analog to this is a source of irreversibility whose strength
is controlled by the rate of detections from that source.
This can be called a self-excited quantum point process
(SEQPP). This sort of feedback has not before been given
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a correct quantum treatment. Classically, the spectrum
of the self-excited point process is of primary interest
[25]. In the quantum case, the effect of the SEQPP on
the source is of more interest. The aim of this section is
to derive a master equation which describes this effect in
the Markovian limit. The concept of a SEQPP is inter-
esting for a number of reasons. Firstly, it is a nontrivial
extension of the general theory developed in Sec. II. Sec-
ondly, it is an example in which the measurement theory
approach is clearly easier to apply than the Langevin ap-
proach. Thirdly, a SEQPP was the first feedback system
for which a model was attempted using the measurement
theory and master equation approach [19,20]. It turns
out that this early approach was flawed, which will be
seen by comparison with the correct equation. Fourthly,
a SEQPP has potential applications in noise reduction,
of which one is treated explicitly.

A. Master equation for a SEQPP

Consider a QPP with a time-variable rate x(t), so that
the ME is

p = &(t)D[clp — i[H, p].

If the QPP is to be a self-exciting QPP, then x(t) becomes
K<(t), conditioned on the photocurrent

(5.1)

Ke(t) =1+ AL(¢), (5.2)
where I.(t) = dN(t)/dt and it is necessary to use the
selective ME

dpe(t) = {dN.(t)G[c]
+dtH[—iH — Lro(t)ctc]}pe(t)pe(t) (5.3)

where now

E(dN.(t)) = re(t){cle)e(t)dt. (5.4)
Note that since k.(t) must always be positive, A must
always be positive also, hence the self-excitation rather
than self-inhibition.

The same considerations of physicality [causality and
smoothness of I.(t)] explained in Sec. II also apply to
Eq. (5.2). Thus the general theory of Sec. II implies that
the nonselective ME must be of the form (2.59). Compar-
ison of Egs. (5.1) and (5.2) with Egs. (2.48) would suggest
K = ADl[c]. Under more careful consideration, it is ob-
vious that this equation describes feedback controlling a
second irreversible coupling, rather than a self-exciting
process. Since the original superoperator has been mod-
ified from D to eXJ — A, the action of the feedback
superoperator should be

K =T - A). (5.5)
Here, the argument [c] to the superoperators .7, A, and D
is being omitted for convenience. The Markovian SEQPP
ME can be written

p=A"Kp—ilH,p|, (5.6)
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Unfortunately, there is no closed-form solution to the
transcendental superoperator equation (5.5).

If X were small in some sense, then K could be approx-
imated by iterating Eq. (5.5). However, this is not a very
satisfactory solution, as the self-excitation does not even
become evident until the second iteration. An alternate
approximation may be found by constraining the nature
of the system, rather than the strength of self-excitation.
Let the state of the system have a well defined value of
ctc. That is to say, let the mean u of ctc be very large,
and the variance be of the same order. Then the super-
operator D is of order 1, but J is of order yu. For the
self-excitation to be of order one requires Ay ~ 1. This
implies that A is small, but the self-excitation strength
is not small. Expanding the SEQPP superoperator X
to second order in 1/u is then a good approximation for
the systems under consideration. Effectively, this can be
achieved by assuming a solution of the form

K = ADF + X*D2%S + 0(\3), (5.7)
where F and S are superoperators of order 1 to be de-
termined. This approximation also implies that the su-
peroperator ordering in the second order term AD2S is
not really important.

Substituting the ansatz (5.7) into Eq. (5.5) and equat-
ing powers of A yields

F=1+F)\T, (5.8)
S =8\T + 1Fi\T. (5.9)
Formally evaluating these gives
F=01-27)7"1 (5.10)
AT
Y 1)
Thus the approximate expression for the SEQPP ME is
. . _ AT
= —i[H 1— 1 2 .
p=—i[H,pl +D(1-AT)"'p+AD 21— 373"
(5.12)

This evidently includes terms which indicate an arbi-
trarily large number of detections within an infinitesimal
time interval. This is one reason why the calculation of
the spectrum of the SEQPP is too difficult to attempt
here.

B. Application to a noisy laser

There are obvious quantum optical applications for
which the approximations leading to Eq. (5.12) are valid.
Consider a laser cavity with one end mirror of variable
transmittivity controlled by a current. If the control-
ling current comes from a photodetector just outside that
end, then the photodetection is a self-exciting quantum
point process. Assuming that the time delay in the feed-
back loop is negligible, the formalism developed above
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can be applied. Furthermore, the quantity measured by
the point process (photon number) is well defined in a
laser, with standard deviation of the order of the square
root of the mean (which is much greater than one). Thus
it is appropriate to use the approximate expression (5.12)

]

oo

(S[c + E[c ] )p+ {Z Amemtl, 1m+1} -1 i A™ (cfemtpetm

m=0

+ 2

m=0

+ :11_ (CTZCm—f-chtm + 2CTCm+1chm+1c + CmpCTm+262)] P

where the operators in the D? term have been put in
normal order for simplicity. Here, p is the mean photon
number in the absence of feedback (u > 1 due to the laser
pump), and g is a measure of the pump regularity (equal
to zero for a Poissonian pump and —1 for a perfectly
regular pump). The laser pump superoperator £[c'] is
defined (for an arbitrary operator a) by [26]

Ela) = J(a] (Ala]) ™" ~ 1 = D[a] (A[a])

Before continuing, it is interesting to contrast
Eq. (5.13) with that from a previous model also intended
to apply to the apparatus described above, as an exam-
ple of a self-exciting quantum point process. The master
equation postulated in Ref. [19] was

. 1 q 12 - m _m+1 __tm+1
p-u(é’[c]—{-zg[c])p%—{mzzjox\ ™o }

Z A™ 1‘m+lcm+1p_+_pcfm+lcm+1).

m=0

(5.14)

Nh—l

(5.15)

The first feedback term in this equation (enclosed in curly
brackets) is identical to the corresponding term in the
correct equation (5.13). This part of Eq. (5.15) was
in fact the only feedback term which was “derived” in
Ref. [19]. The form of the remaining two terms was as-
sumed (wrongly as it turns out) to follow automatically
from that of the first term. It was these erroneous terms
which lead to the prediction of nonclassical light genera-
tion by the feedback loop. In contrast, the corresponding
terms in the correct equation (5.13) manifestly cannot
lead to nonclassical states. In addition, there are the
extra final terms in Eq. (5.13) which increase the pho-
ton number variance without significantly affecting the
mean.

Because Eq. (5.13) does not produce nonclassical states
(unless ¢ < 0), it can be solved using the Glauber-
Sudarshan Pgg(a, a*) function. The stationary state will
have zero phase information, so only the photon number
n = |a|? need be considered here. The normally ordered
statistics for the photon number are given by Pgs(n).

% — m(m+1) A [cm+2pctm+z _ ctema2 petml _

for the SEQPP superoperator.

Measuring time in units of the no-feedback cavity
linewidth, the operator c is the annihilation operator for
the cavity mode. In terms of ¢ and cf, the resulting mas-
ter equation is then

+ cmpcfm+1c)

=0
chm+2

(5.13)

3), this obeys

2 )
z (%"*q“)]l’csw% (5.16)

The drift term is just what would be expected classically
for a self-excited damping process. The steady state pho-
ton number is

A= p/(1+ ), (5.17)

which always exists. Furthermore, this gives A\ii always
less than one, so that the expressions in Eq. (5.16) are
well defined, at least for a linearized solution. Linearizing
around this steady state gives the Ornstein-Uhlenbeck
equation

2 (14 A n - )

P(;s(n) = |on

2

Fr g+ A+ s Pasn)

i (5.18)

Since all of the output light is used in the feedback
loop, the scheme as stated is only useful in reducing the

intracavity photon number variance. This is measured
by the Mandel Q parameter [27], defined by

Q= ‘_1/ dn(n — 7)?Pgs(n), (5.19)
which at steady state equals
Qx = la+ )/ + d). (5.20)

Without feedback, @ = Qo = ¢/2, while with optimal
feedback A = Aopt = [~1+ /1 +q]/u,

Qopt:_1+vl+q-

This shows that the intracavity variance can always be
reduced by the self-exciting loss source, unless Q¢ = 0.
However, the nature of the induced nonlinearity is such

(5.21)
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that it cannot produce a nonclassical state (Qopt < 0)
from a no-feedback classical state (Qo > 0). For a com-
parison with a non-SEQPP type of feedback, see Ref. [9],
and for a comparison with an intrinsically nonlinear loss
source, see Ref. [28].

VI. CONCLUSION

In this paper I have attempted to give the framework
in which a complete quantum theory of feedback can be
constructed. The central results for this framework were
derived in Secs. II and III. In Sec. II, a general algorithm
for dealing with stochastic differential equations with ar-
bitrary kinds of noise was derived, and applied to the
problem of quantum feedback. This is the first treat-
ment of feedback which does not rely on some linearizing
assumption. The second major achievement was Sec. III,
which showed that the measurement theory approach of
Sec. II is equivalent to an approach based on quantum
Langevin equations. This established for the first time
a link between the early work on quantum feedback us-
ing Langevin equations [1-3] and the more recent theory
using measurement theory [8,9]. The remaining sections
of the paper consisted of extending the basic formalism
to two special cases, homodyne-detection-based feedback
and self-exciting quantum point processes. For all of the
feedback schemes, a master equation could be derived in
the limit of zero time delay in the feedback loop. This is
an important simplification with many applications. It is
important to note, however, that the Markovian assump-
tion is not a necessary part of the general theory.

It is perhaps tempting to think of the two approaches
to feedback (based on quantum trajectories and quantum
Langevin equations) as being simply the Schrodinger or
Heisenberg picture equivalents of the same process. How-
ever, this is not the case. The distinction really is one be-
tween a measurement and a no-measurement approach.
It would be possible, but unwieldy, to do the quantum
Langevin calculations in the Schrodinger picture, using
the state matrix for the system and bath. The quan-
tum trajectory method must use a state matrix, because
quantum measurement theory is defined that way. The
stochastic quantum Langevin equation in the absence
of feedback is independent of any measurement process,
whereas the form of stochastic quantum trajectory in the
absence of feedback is defined by the choice of measure-
ment scheme. Thus the equivalence of the two methods
is not a trivial occurrence. From a philosophical point
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of view, it is desirable that the equivalence exists. This
is because it is a fundamental tenet of quantum mechan-
ics that any closed system can be described from within
the framework of unitary quantum mechanics. Measure-
ments are not part of that framework. In practice, mea-
surement theory is a convenient way to describe a macro-
scopic feedback loop, and it makes no difference whether
or not the experimenter chooses to become aware of the
information being conveyed by the feedback loop. How-
ever, in principle it should be possible to give a formal
description of the feedback loop without invoking any
measurement step. In essence, that is what the Langevin
equation approach to feedback is.

Finally, it should be noted that there are some feed-
back equations more general than those presented here.
They are detailed elsewhere [24]. The first generalization
is to consider feedback in the presence of white noise. As
explained in Sec. IV, this is only possible with homodyne
detection (or effective homodyne detection if the system
has a very large well-defined amplitude). It does not lead
to any radically different sort of behavior, and can be
treated using the same method as used in this paper. The
more important generalization is feedback which cannot
be produced by using the results of a measurement. In
the context of this paper, such a concept is a contradic-
tion in terms. However, it arises naturally from a consid-
eration of all-optical (no electronic devices) feedback [24].
Some all-optical feedback schemes reproduce the behav-
ior of electro-optical schemes (which is what this paper
analyzes). Others produce behavior with no electro-optic
equivalent. It is thus a matter of definition whether the
theory presented in this paper is considered the quantum
theory of continuous feedback, or merely the special case
of feedback which can be produced by measurements.
In practice, the all-optical schemes are complicated and
difficult to achieve, whereas electro-optic feedback is al-
ready in wide use. The theory presented here should
have an increasingly wide field of applicability as more
devices are becoming quantum limited, and controlling
noise becomes important.
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