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We present a simple, analytic, and fully quantum theory of high-harmonic generation by low-
frequency laser fields. The theory recovers the classical interpretation of Kulander et al. in [Pro
ceedin9s of the SILAP III Workshop, edited by B. Piraux (Plenum, New York, 1993)] and Corkum
[Phys. Rev. Lett. 71, 1994 (1993)] and clearly explains why the single-atom harmonic-generation
spectra fall ofF at an energy approximately equal to the ionization energy plus about three times the
oscillation energy of a free electron in the field. The theory is valid for arbitrary atomic potentials
and can be generalized to describe laser fields of arbitrary eOipticity and spectrum. We discuss the
role of atomic dipole matrix elements, electron rescattenng processes, and of depletion of the ground
state. We present the exact quantum-mechanical formula for the harmonic cutoK that difFers from
the phenomenological law I„+3.17U„where I„ is the atomic ionization potential and U„ is the
ponderomotive energy, due to the account for quantum tunneling and diffusion efFects.

PACS number(s): 42.65.Ky, 32.80.Rm

I. INTRODUCTION

In recent years, high-order harmonic generation (HG)
has become one of the major topics of multiphoton
physics [1]. When an intense short-pulse laser inter-
acts with an atomic gas, the atoms respond in a nonlin-
ear way and emit coherent radiation at frequencies that
are multiples of the laser &equency. In order to pro-
duce high-order harmonics and consequently to generate
high-energy photons, one can use either high-&equency
excimer (e.g. , KrF) lasers ( [2,3]) or low-frequency lasers
(Nd:glass, Ti:sapphire) such that the laser frequency io

is much smaller than the ionization potential. In the lat-
ter case the harmonic spectrum has a very characteristic
and universal shape: it falls oK for the 6rst few har-
monics, then exhibits a plateau where all the harmonics
have the same strength, and ends up with a sharp cut-
og Several groups (see, for example, [4,5] and references
therein) have performed experiments in which they ob-
served generation of harmonics of the 100th and higher
order, extending as far as 150 eV.

One of the most interesting questions regarding these
harmonic-generation spectra concerns the nature and lo-
cation of the cutoK Obviously, this question is of great
importance from the point of view of possible applica-
tions. The cutoK location sets the ultimate limit for
the highest &equency that can be efhciently generated.
Numerical calculations of Krause et al. [6] have shown
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that the maximum energy at the end of the plateau is
well approximated by the simple and universal formula
Ip + 3Up where Iz is the atomic ionization potential,
while U„= E2/4ur2 is the ponderomotive energy in the
laser 6eld of strength E and &equency u. U„ is the mean
kinetic energy aquired by a &ee electron in the oscillating
laser field of the strength E. The cutoH' in the harmonic
spectrum occurs for harmonics of order higher than

N „(Ip+ 3U„)/io.

The overall maximal photon energy (in units of io) that
can be achieved is then approximately given by the value
of this expression at the saturation intensity I, t, at which
the atom ionizes. Note, however, that Eq. (1) deterinines
the location of the cutofF in a single-atom spectrum. It
can be modified when collective effects (phase matching)
become relevant [7].

A very important insight into the physical understand-
ing of this cuto8' law formula has recently been given by
Kulander et al. [8] and by Corkum [9], using a semi-
classical approach. In this model, electrons first tun-
nel through the barrier formed by the atomic potential
and the laser field [10,11] and appear in the continuum
with zero velocity. Their subsequent motion in the field
is treated classically. Only those electrons that return
to the nucleus can emit harmonics by recombining to
the ground state. Classical simulations [8,9] show that
the maximum kinetic energy acquired by the &ee elec-
trons &om the 6eld when they return to the nucleus is
3.2U&. Thus the maximal energy of emitted photons is
I„+3.2U~, close to the prediction of [6]. The semiclas-
sical approach is based on three basic assumptions. The
dominant contribution to HG comes &om electrons that
(i) return to the nucleus, (ii) appear in the continuum
with zero velocity, and (iii) finally, have an appropri-
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ate kinetic energy to produce a given harmonic at the
time of return. This classical interpretation shows that
in order to control harmonic-generation processes, one
should try to control the motion of free electrons in the
laser field. Shaping appropriately electron trajectories
might allow for various fascinating applications, includ-

ing, for example, the generation of subfemtosecond high-
frequency pulses [12].

In a recent paper [7], we have discussed the harmonic-
generation cutoff in a low-&equency high-intensity
regime, presenting experimental data and calculations in-

volving the response of a single-atom and of the macro-
scopic medium. Systematic measurements of the har-
monic generation yields in neon have been performed us-

ing a short-pulse low-&equency laser. The experimental
cutofF energy was found to be approximately Ip + 2Up,
therefore lower than that predicted in single-atom the-
ories [9,6,13]. A simple, analytic, and fully quantum-
mechanical theory of harmonic generation valid in the
tunneling limit has been formulated. It agrees well with
the predictions of other single-atom theories and in par-
ticular with the cutoff law. It recovers the semiclas-
sical interpretation of harmonic generation in this low-

&equency regime. The difference between the prediction
for the single-atom cutoff and the experimental results
have been explained by accounting for the inQuence of
propagation effects [14] in a tight focusing geometry [7].
A good agreement between theory and experiment has
been obtained.

In the present paper, we give a full account of the the-
oretical part of Ref. [7] which deals with the response of
a single atom. Propagation effects will be discussed in

a future paper. We give a detailed formulation of the
theory with, in particular, a discussion of its range of va-

lidity. We study different potentials and we investigate
the inBuence of the various relevant parameters. One
could argue that the fully quantum and exact theory of
HG has been already formulated in terms of the solu-

tion of the time-dependent Schrodinger equation (TDSE)
[6,15—18] or, equivalently, in terms of the solution of the
time-independent Floquet equations [19]. On the other
hand, the simple quasiclassical model of Refs. [8,9] al-

lows for a physical interpretation of the results of Ref.
[6]. Therefore, at 6rst sight, there is no need for any

approximate theory that would link the two mentioned
approaches. However, the TDSE method requires a lot
of computer time. In particular, although it works well

for linearly polarized laser fields, it cannot be easily ex-

tended, for the time being, to elliptically polarized fields

or nonmonochromatic fields with a time-dependent po-
larization. In contrast, the present theory can easily de-

scribe the interaction with laser light of arbitrary po-
larization and frequency content, allowing one to study
strong-field coherent control of high-harmonic emission,
for example in the field of two lasers with related fre-

quencies. On the other hand, the semiclassical approach
used in Refs. [8,9] mixes classical and quantum argu-
ments (first quantum tunneling, then classical motion,
then quantum recombination). It does not account for
many important quantum effects, such as quantum dif-

fusion of wave packets, quantum interferences, etc. The

motivation of the present work was to find an interme-
diate approximate solution to the problem of harmonic
generation valid in a low-&equency high-intensity regime
that would provide a link between the methods of Refs.

[6] and [8,9], on one hand, and would allow one to study
the effects of multicolor or elliptically polarized light on
harmonic generation, on the other hand.

Recently, several authors [20—22] have emphasized the
importance of bound states in harmonic generation on
the formation of the plateau (see also [23,24]). Other
cutoff laws, difFerent from Eq. (1), e.g. , involving Rabi
frequencies, have been derived [21,22]. The present the-
ory applies to a regime of parameters where bound states
should be relatively unimportant: it is valid in a low-

frequency, high intensity limit (U„) I„), and for high
harmonics, with energy higher than, say, the ionization
energy. It is well adapted to a discussion of the cut-
off location, but it obviously cannot describe well those
low-order harmonics below or just above the ionization
limit. On the other hand, it includes important quantum-
mechanical effects such as quantum diffusion, quantum
interferences, depletion of the ground state which are not
included in the classical approaches [8,9,25] and it allows
us to get a better physical understanding of harmonic
generation in the tunneling limit.

The plan of the paper is the following. Section II
contains a general presentation of our theory and a dis-
cussion of its quasiclassical interpretation. We present
general expressions for harmonic spectra and harmonic
strengths. Section III is divided into several subsections
in which we describe applications of our theory to vari-
ous model potentials. In particular, we study the case of
a transition &om a 1s state to a continuum for a Gaus-
sian model and also for hydrogenlike atoms. We address
the question of electron rescattering, i.e., the process in
which the electron returning to the nucleus is scattered
away from it instead of being recombined. In Sec. IV, we

reexamine our theory using the saddle-point technique.
The most important result of this section is the deriva-
tion of the quantum-mechanical cutoff law. We find that
it actually differs &om the phenomenological expression
I„+3.17U„and has a form 3 17U~+I„F(I„/.U„) where the
factor F(I~/U„) is equal to 1.3 for I~ (( U~ and decreases
slowly towards 1 as I~ grows. In Sec. V, we discuss the
efFects of saturation and depletion of the atomic ground
state. Finally, Sec. VI contains the conclusions, whereas
the Appendixes A and B are devoted to some more tech-
nically involved derivations of the formulas used in the
main body of the paper.

II. THEORY OF HARMONIC GENERATION

The theoretical problem that we attempt to solve is the
same as in the case of the TDSE method. We consider
an atom (or an ion) in a single-electron approximation
under the influence of the laser field E cos (t) of linear
polarization in the x direction (we use atomic units, but
express all energies in terms of the photon energy). In the
length gauge, the Schrodinger equation takes the form
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z~@(x,t)) = ——V + V(x) —Ecos (t)x ]4(x, t)). (2)
2

Initially, the systexn is in the ground state, denoted as
~0), which in general has a spherical symmetry.

We consider the case when I„»1 (typically Ip 5—20
laser photons) and when Up is comparable or larger than
I„.We start our discussion by considering the case when
ionization is weak, so U„should be large, but still below
the saturation level, U, t, when all atoms ionize during
the interaction time. In this regime of parameters, the
tunneling theory [10,11] becomes valid [26]. The inten-
sities are large enough (10 —10 W/cm ) so that inter-
mediate resonances, including dynamically induced ones
(see, for instance, [27]), play no role. The electron leaves
the atoms typically when the field reaches its peak value.
The effects of the force due to the potential, —VV(x),
is then negligible. The electron undergoes transitions to
continuuxn states which we label by the kinetic momen-
tum of the outgoing electron ~v). As it is accelerated
in the field, it immediately acquires a high velocity, so
that the role of V(x) is even less pronounced. That is
particularly true if the electron returns to the nucleus
with a large kinetic energy of the order of 3U„. At the
turning points, the electron velocity might be quite small
but these points are located typically very far &om the
nucleus.

The above considerations suggest that the following
assumptions should be valid in the regime of parameters
that we consider.

(a) The contribution to the evolution of the systein
of all bound states except the ground state ~0) can be
neglected.

(b) The depletion of the ground state can be neglected
(Up ( Usat)

(c) In the continuum, the electron can be treated as a
&ee particle moving in the electric field with no effect of
V(x).

Assumption (b) can be used only for intensities smaller
then saturation intensity. Otherwise, the depletion of the
ground state has to be taken into account, as discussed
in Sec. V. Assumption (c) is non-questionable for short-
range potentials, but is also valid for hydrogenlike atoms,
provided U„ is large enough. It is important, however,
to be aware of what is the regime of validity of the as-
sumptions (a) and (c). Generally speaking, they hold
when there are no intermediate resonances and when the
Keldysh parameter p = QIp/2Up is smaller then one, i.e.,
in the tunnebng or over-the-barrier ionization regimes.
The latter condition requires Ip & 2Up and implies that
(i) when the electron appears in the continuum it is under
the inHuence of a very strong laser field, and (ii) when
it comes back to the nucleus it has a large kinetic en-

ergy, so that the atomic potential force can be neglected.
Obviously, the latter implication concerns only highly en-
ergetic electrons, responsible for the production of har-
monics of order 2M + 1 & I„.

There are several theoretical approaches that incorpo-
rate assumption (c) in solving Eq. (2). Ammosov et aL
study the "classical" dynamics of the electron with time
in the complex plane in order to describe tunneling ion-

(4)

ization. Keldysh used a version of the S-matrix theory
with final states described by Volkov wave functions ([10],
see also [28]), i.e., solutions of the Schrodinger equation
describing the motion of a &ee electron in the laser field.
An alternative approach based on the tixne-reversed S-
matrix theory and called strong-Geld approximation has
been proposed by Reiss [29].

We prefer to follow Ref. [30], since this approach is
xnore closely related to standard methods of quantum
optics, in the sense that it neglects, or treats as a
perturbation, part of the interaction Haxniltonian. In
particular, we put emphasis on the role of a singular
part of continuum-continuum (C-C) dipole matrix ele-
ments. The most singular part of these matrix elements,
(v[x[v'), is iV'„h(v —v'). The other parts of the C-C
dipole matrix element are either less singular or regular,
and we shall neglect them in the following. Although
such a procedure might be incorrect in the context of
Above-Threshold Ionization [31],it should be reasonable
for HG, since C-C transitions between the states of dif-
ferent energies do not contribute to it [32). The singular
part of the C-C dipole matrix elements iV„h(v —v') is
treated by us exactly. It describes the motion of the
&ee electron in the laser field. It is worth stressing that
the part of C-C matrix elements that we neglect may be
treated as a perturbation and one can systexnatically ac-
count for corrections to the solution of the Schrodinger
equation coming from this perturbation (see Ref. [30]).
We should also mention that our method is very similar
to the one used in Ref. [13] for the case of a zero range
potential. Our approach is, however, xnore general and
can be applied to any potential.

After making the assumptions (a)—(c), the time-
dependent wave functions can be expanded as

~4'(t)) = e' '
~

a(t)~0) + d vb(v, t)[v) ~, (3)
)

where a(t) 1 is the ground-state amplitude, and
b(v, t) are the amplitudes of the corresponding contin-
uum states. We have factored out here &ee oscillations
of the ground-state amplitude with the bare frequency
I„. The Schrodinger equation for b(v, t) reads as

. fv'
b(v, t) = i

/

—+Ip
/
b(v, t)—

E2

Ecos(t) ' —+iEcos(t) d (v).
Bb(v, t)

Bv~
Here d(v) = (v[x~0) denotes the atomic dipole matrix
element for the bound-free transition and d (v) is the
component parallel to the polarization axis. In writing
Eq. (4) we have neglected the depletion of the ground
state, setting a(t) = 1 on the right-hand side. The whole
information about the atom is thus reduced to the form
of d(v), and its complex conjugate d'(v).

The Schrodinger Eq. (4) can be solved exactly and
b(v, t) can be written in the closed form,

t
b(v, t) = i dt'E cos(t') d (v + A(t) —A(t') )

t
xexp —i dt" ~+ A t —A t" 2+ Ip

gl

(5)
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where A(t) = ( —Esin(t), 0, 0) is the vector potential of
the laser field.

In order to calculate the x component of the time-
dependent dipole moment, we have to evaluate z(t)
(@(t)~z~tI)'(t)). Using Eqs. (3) and (5) we obtain

z(t) = f d vd (v')b(vt)+, cc. (6)

In writing the above formula, we have neglected the con-
tribution from the C-C part [32], i.e., we have considered
only the transitions back to the ground state. Introduc-
ing a new variable which is a canonical momentum

p = v+ A(t)

we get the final expression

t

z(t) = i dt' d pEcos(t')d (p —A(t'))
0

x d* (p —A(t) ) exp [
—iS(p, t, t')] + c.c., (8)

where

S( t tt) dttt
(

[P ( )] + I
2

(9)

Equation (8) has a nice physical interpretation [33]
as a sum of probability amplitudes corresponding to
the following processes: The first term in the integral,
Ecos(t')d (p —A(t')), is the probability amplitude for
an electron to make the transition to the continuum at
time t' with the canonical momentum p. The electronic
wave function is then propagated until the time t and
acquires a phase factor equal to exp[ —iS(p, t, t')], where

S(p, t, t') is the quasiclassical action. The effects of the
atomic potential are assumed to be small between t' and
t, so that S(p, t, t') actually describes the motion of an
electron &eely moving in the laser field with a constant
momentum p. Note, however, that S(p, t, t') does in-

corporate some effects of the binding potential through
its dependence on Iz. The electron recombines at time
t with an amplitude equal to d*(p —A(t)), which gives
the last factor entering Eq. (8).

Strictly speaking, Eq. (7) defines the canonical mo-
mentum at time t, which does not have to be the same
as p at t'. Note, however, that between t' and t, p is
a conserved quantity, due to neglection of the effects of
V(x). For this reason, our interpretation is correct, since
we can identify p equally well as a canonical momen-

tum at t' or t It is worth st. ressing that Eq. (8) allows
also for an alternative interpretation in which the elec-
tron appears in the continuum at time t with the kinetic
momentum p —A(t), is then propagated back until t',
and recombines back to the ground state ~0) with the
amplitude E cos(t')d (p —A(t')). This interpretation is
not as intuitive as the previous one, but, owing to the
invariance of the problem with respect to time reversal,
is equally correct. This is an example of a situation in
which approximate versions of the ordinary S matrix and
time-reversed S matrix approaches give the same results
(compare with Ref. [29]). Another way of looking at Eq.

In the present work, we shall restrict ourselves to the
simple case of the linearly polarized monochromatic field,
with the time-dependent dipole moment given by Eq.
(8). The dipole matrix elements that enter Eq. (8)
change typically on a scale of the order of p I„. On
the other hand, the quasiclassical action (9) changes on
a characteristic scale p2 I/(t —t'), due to quantum
diffusion effects. For t —t' of the order of one period of
the laser field the quasiclassical action varies thus much
faster than the other factors entering Eq. (8). Therefore,
the major contribution to the integral over p in Eq. (8)
comes &om the stationary points of the classical action,

V,S(p, t, t') = 0.

On the other hand, V'~S(p, t, t') is nothing else but the
difference between the position of the free electron at
time t and time t',

(12)

Therefore we conclude that the stationary points of the
classical action correspond to those momenta p for which

the electron born at time t' returns to the the same po-
sition at time t. It is also evident that x(t) must be
close to the origin, because it is the only position where

the transitions to the ground state (and from the ground

state) can possibly occur. Mathematically, this state-
ment follows &om the fact that the Fourier transforms
of d (p —A(t')) and d*(p —A(t)) are localized around
the nucleus on a scale comparable to ao, where ao is the
Bohr radius.

The physical meaning of the mathematical result ex-

pressed by Eq. (12) is clear: the dominant contribution
to the harmonic emission comes from the electrons which

tunnel away &om the nucleus but then reencounter it
while oscillating in the laser Geld. Thus, our quantum
theory justifies one of the basic assumptions of the semi-

classical model of Refs. [8,9].
According to the above discussion, the integral over p

might be performed using a saddle-point method. The
result is

tzct
p q

3/2

z(t) = i d7
~ ~

d'(p, q(t, 7) —A (t))
p ) e+z7 2)

x d (p.~ (t, r) —A (t —7))E cos (t —T).
x exp[ —iS,), (t, r)] + c.c. (13)

(8) is to interpret it as a Landau-Dyhne formula for tran-
sition probabilities applied to the evaluation of the ob-
servable z [33]. Finally, note that Eq. (8) is evidently

gauge invariant.
The expression (8) can be easily generalized to the case

of laser fields E(t) of arbitrary polarization and temporal
shape. If we want to evaluate the component of the time-
dependent dipole moment along the direction n, where n
is an unit vector, the result is

z„(t) = i dt' f d p n d*(p —A(t))
0

x E(t') d(p —A(t')) exp [
—iS(p, t, t')] + c.c.,

(10)
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p, t,. (t, r) = E[cos(t) —cos(t —r)]/r. (14)

Other components of the momentum are zero. The value
of the quasiclassical action in Eq. (13) is

t
S.,(t, r) = — dt" (p., —A(t"))'

2 t-
= (I„+U~)r —2U~[1 —cos(r)]/r —U„C(r)

x cos(2t —r). (»)

with

C(r) = sin(r) —4 sin'(r/2)/r. (16)

Finally, the first factor in the integral over r in Eq. (13),
(z/e+ ir/2)a~2 with infinitesimal e, comes from the reg-
ularized Gaussian integration over p around the saddle-
point. It expresses the effects of quantum diffusion (the
spread of the electronic wave packet deposited to the con-
tinuum) and cuts off the contributions from return times
7 much larger than a laser cycle.

The integral over r in Eq. (13) can also be calculated
using the saddle-point method, as will be shown in Sec.

]

In writing Eq. (13), we have introduced a new variable
(the return time) r = t t—' and extended integration over
it to oo. The stationary value of the xth component of
the momentum, p,q(t, r), allows the electron trajectory
starting near the origin at t —w to return to the same
position at t. It is equal to

IV. However, it is worth mentioning here that Eq. (13)
shows a further relation between our quantum theory and
the semiclassical model of Refs. [8,9). Indeed, in the limit

Ip Up the saddle point of the integral over w in Eq.
(13) tends to the stationary point r = r,t of the classical
action S,t(t, r) = f, dt" (p,t —A(t")) /2 [Eq. (15)].
One can easily see that this point corresponds to the zero
value of the initial velocity, v(t —r) = p, q (t, r) —A(t —r) =
0. Thus, the second basic assumption of the semiclassical
two-step model is justi6ed in our theory: the electrons
which contribute most to harmonic generation are not
only those which return to the nucleus, but also those
which appear with zero initial velocity.

The close relationship between our quantum theory
and the semiclassical picture of Refs. [8,9) becomes even
more striking when the harmonic emission spectrum is
calculated. The spectrum is given by the Fourier trans-
form of x(t), and can also be analyzed by using the sta-
tionary phase method. It turns out that the station-
ary point of the fast oscillating phase in the Fourier in-
tegrand is determined by the energy conservation law:

(p,t(t, r) —A(t)) /2+ I„=2M+ 1. Physically, it means
that the (2M + 1)-th harmonic is emitted only at those
instants t at which the electrons returning to the nucleus
have appropriate kinetic energy. This conclusion justi6es
the last basic assumption of the semiclassical model.

Since S,t(t, r) is a linear function of sin(2t) and cos(2t),
the Fourier components of x(t) can be calculated exactly.
Let us introduce the Fourier components of the product
of the dipole moments at t and t' and the 6eld at t' as

d~(p, q(t, r) —A~(t))d~(p, t(t, r) —A~(t —7))Ecos(t —r) = ) bM(r)e ('I+i&"
M

Owing to the properties of the dipole matrix elements
due to the central symmetry of the atomic potential, all
even Fourier components on the right-hand side of the
above expression vanish. Typically bM(7) decreases quite
rapidly with ~M~ (for instance, in the case of the broad
Gaussian model discussed in Sec. III, bM's are nonzero
for M = 0, +1,—2 only).

The final formula for the (2K + 1)-th Fourier compo-
nent of z(t) reads as

I

A(t —r)) /2. The dashed line in Fig. 1 represents this
gain in kinetic energy, calculated by using the classical
Newton equation for the case when the electron appears
in the continuum with zero initial energy at the moment
t —7 and revisits the nucleus at t. The two curves, classi-
cal b,Eg;o/U„and quantum 2~C(r)

~
(resulting from inte-

gration over all initial momenta p) are remarkably similar
and have both maxima and zeros at the same values of
w. Moreover, the values of the maxima are the same.

oo ~ ( y
3/2

*21c+i = i ). e+ir 2)
x e ' ' bK M(r) JM(U~C(r))(i) e* (18)

3,5

3.17
3.0

2.5

where Eo(r) = (Uz + Iz)r —2U&[1 —cos(r)]/r. The in-
tegration over r in Eq. (18) is complicated and can be
performed either numerically or by using a saddle-point
method (see Sec. IV). A lot of insight, however, can be
drawn already from the analysis of the function 2~C(r)

~

which is shown in Fig. 1 (solid line). 2C(r) determines
the variation of S,t(t, r) as a function of t. Since the
action is the integral of the kinetic energy Eg;„(t") plus
I~ over t", the maxima of 2C(r) correspond therefore to
the maxima of the kinetic-energy gain of the electron at
t, Ek;„(t)—Ei,;o(t—r) = (pg (t~ rt) —A(t)) /2 —(p,g(t, r)—

LsJ

1.0

0.5

0
0 10 15

f
20 25 30

FIG. 1. The function 2~C(r)
~

(solid line) and the ki-
netic-energy gain EEq;„(r) (dashed line) as a function of the
return time 7'. Note that both functions have the same ex-
trema at the same values of r.
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As we see &om Fig. 1, both functions have several
maxima. They correspond to trajectories of the electron
that contain one, two, or more returns to the vicinity of
the nucleus (with the last one at t) T. he first maximum
appears at r,„z 4.08 and 2~C(r,„z)

~

= 3.17. The follow-

ing maxima are between 2 and 2.4. Since the Bessel func-
tion Jic(z) becomes exponentially small when K ) z,
from Eq. (18) we conclude that the absolute cutoff of HG
for U„)) I„ is at JZ/ „=2K + 1 2~C(r,„z)~U„
3.17Up. In the range of 2 4Up & 2K & 3 17Up only the
contributions from the trajectories that contain one re-
turn are relevant. As we shaB see in Sec. IV, there are
typically two such trajectories that correspond to two dif-
ferent values of 7. When 2K becomes smaller than 2Up
more and more maxima of 2~C(r)

~

contribute, giving rise
to a more complex interference structure.

Physically, the quantum interference results from the
existence of more than one possible trajectory that leads
to the same 6nal state. In particular, it becomes more
and more complex as the number of trajectories returning
to the nucleus several times grows. Obvioulsy, when I„is
comparable to Up, the eKects of the atomic potential on
these secondary returns can be very signi6cant. Electron
rescattering will dramatically afFect the phases accumu-
lated along those trajectories and will destroy the inter-
ference patterns due to multiple returns. Note, however,
that even if multiple returns are not possible because of
scattering on the atomic potential, due to the existence
of two trajectories with a single return the quantum in-
terference between them is unavoidable.

III. HARMONIC SPECTRA FOR VARIOUS
ATOMIC POTENTIALS

turning to the nucleus is scattered away instead of being
recombined. Section IIIF discusses the efBciency of har-
monic emission for various laser frequencies.

A. Gaussian model

We assume that the ground-state s-wave function can
be written in the form

(19)

where o, is a parameter of the order of I„.There are sev-
eral models for which Eq. (19) applies. They all, how-

ever, correspond to short-range potentials that describe
negative ions. First of aB, we can consider a truncated
harmonic-oscillator potential

X
V{x) = —P, (20)

for ~x~ & /2P/n2 and V(x) = 0 otherwise. Here P
is another parameter of the order of I~. If P is large
enough, the ground-state wave function for a potential
(20) takes approximately the form (19). The ground-
state energy is then I„=—P—+3n/2. It is worth stress-
ing, however, that Gaussian wave functions approximate
well ground states of other short-range potentials, such
as the screened Coulomb potential discussed in Ref. [34].

Since we are interested in transitions to and from
highly energetic states in the continuum, it is safe to as-
sume that electronic wave functions in the continuum can
be described as plane waves. The dipole matrix element
takes also a Gaussian form,

In this section, we present specific results for harmonic
spectra and harmonic strengths that follow from our the-
ory. We consider and compare results for various models
of atomic potentials and ground state wave functions.
This section is divided into several subsections in which
we discuss a Gaussian model, the same model within the
saddle-point approximation, a broad Gaussian limit, and
hydrogenlike atoms. Section IIIE deals with the role of
electron rescattering processes in which the electron re-

(21)

Note the characteristic proportionality of d(p) to p which
is universal if we consider transitions from 8 states.

An appealing side of the Gaussian model is that it
allows us to evaluate the integral over p in Eq. (8) ana-
lytically. After tedious, but elementary calculations, we

obtain the harmonic strengths

/U )s/ 2()R+i / ~ ~ /

z2K+i ——
( [

dr
]

.
)

exp[ —iF~(r)]
(zrnj a2 o (1 n+zr 2)
x (B(r)JR+2(UpC(r)) + i[B(r)e* + D(r)]Jr+i(UpC(r))
+[B(r) + D(r)e' ] Ja-(U&C{r)) —iB(r)e* J~ i(U&C{r))),

(22)

where the functions B(r), C(7), D(r), and F~(r) are
given in Appendix A. Note that Eq. (22) describes z2Ic+i
in the units in which the laser frequency is one. In order
to express harmonic strengths in atomic units one has to
multiply z2a+i by the factor QI„/IFo~, where Eo is the
ground-state energy in a.u.

The above results are now compared with approxi-
mated formulas that make use of the saddle-point in-
tegration over p.

B. Gaussian model and saddle-point technique
When n is large enough (which, in fact, is usually

the case) we expect that the saddle-point integration
over p should give a reasonable approximation to the
expressions (22) and (Al) —(A4). In fact, the harmonic
strengths when calculated with this method are given by
the same expression as Eq. {22)except that this time the
functions B(r), C(r), D(r), and F~(r) take a different
form (see Appendix A).
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C. Broad Gaussian limit 10

Finally, it is interesting to note that in the limit of large
a, Eqs. (A5)—(A8) may be even more simplified. To this
end, we let formally o, m oo and keep only the leading
terms. The result for the harmonic strength again has the
form (22) and the functions B(7.) and C(7 ) are the same
as the ones defined in Eqs. (A6) and (A7), respectively.
The other functions can be found in Appendix A.

The expression (22) in the broad Gaussian limit have
been used by us in Ref. [7]. It is interesting to compare
the results from the three approaches discussed above
which we denote by GEX (for the exact Gaussian model),
GSP (for the Gaussian model with saddle-point approx-
imation), and GBR (for the broad Gaussian limit). In
Fig. 2, we present spectra obtained &om the three corre-
sponding sets of expressions. These models give similiar
results. For moderate harmonic orders (in the middle
of the plateau), GBR, GSP, and GEX are practically
indistinguishable. For high harmonic orders, GSP and
GEX are indistinguishable. Both of them give results
smaller than GBR, since they account for the energy de-

pendence of the dipole matrix element (21) that falls ofF

slowly as the energy increases. GBR, however, produces
the same kind of spectra as the other two, except for a
global shift towards higher harmonic strengths by a fac-
tor slowly changing with the harmonic order.

This is a very general property of our theory. In any
of its realizations (GBR, GSP, or GEX), it produces the
same spectral shape except for a slowly varying energy
dependent factor. The same is also true for individual
harmonic strengths. They follow the same intensity de-

pendences in the three cases, except for a constant factor,
which is almost independent of the laser intensity. Mack-
lin [35] compared the results from our theory with the
exact results obtained for the zero-range potential [13].
He obtained a very good agreement for the intensity de-
pendences of the high harmonics (but with a difFerence
in absolute value).

10 11

-1210

10 13

10-14

10
0 20 40 60

Harmonic order 2M+1
80 100

FIG. 2. Comparison of harmonic spectra obtained with
GEX (open squares), GSP (stars), and GBR (black squares)
methods; I~ = 13.6, U„= 20, a = 2I„.

D. Hydrogenlike atoms

(23)

where this time a = 2I„. Again, since we consider transi-
tions to and from the highly energetic continuum states,
it is legimate to treat continuum states as plane waves,
even though the Coulomb potential is a long-range one.
The dipole matrix element takes in this case the form [36]

(27/2~5/4 ) p
d(p) = i

I )I (,+ ), (24)

After rather technical calculations, we obtain the follow-

ing expression for the harmonic strengths:

It is a little more difficult to calculate harmonic spectra
for hydrogenlike atoms. In this case, the ground state s-
wave function takes the form

+2K+1
s=—~

x (i) e ' iBs(r)Jr+i s(U&C(7)) + e' Bs(r)J~ s(U~C(w)) (25)

In Appendix B, we explain how analytic formulas for the
coefficients Bs(7 ) can be derived by performing an inte-
gration in the complex plane. The functions C(v) and
Fa (v) are given in Appendix A by Eqs. (A9) and (A10),
respectively. %e compare the results for the hydrogen-
like atoms with those for the Gaussian model in Fig. 3.
The 35th harmonic strengths calculated from GBR and
&om expression (25) are plotted as a function of intensity
in a logarithmic scale. As we see, apart from a constant
absolute factor, both curves follow a similar intensity de-
pendence and interference pattern. The change of slope
in both curves corresponds to the intensity at which the

35th harmonic enters the plateau region. It determines
the location of the cutofF at this particular intensity (for
discussion see [7]). Note that the cutoff location for hy-
drogen is shifted downwards in comparison to the Gauss-
ian model, since the 35th harmonic reaches it at a higher
intensity. An explanation for this eKect is presented in
Sec. IV.

E. Electron rescattering

One of the important problems connected with the
present theory deals with rescattering of the electrons
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FIG. 3. Comparison of intensity dependences of the 35th
harmonic for the GBR model and for a hydroaenlike atom;
Ip ——13.6, n = 2'.
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that return back to the nucleus. Such processes have
been estimated [9] to be quite efficient. Our theory does
not include them since we have completely neglected the
part of the C-C matrix elements that is responsible for
those processes. We have only taken into account the
part of the C-C matrix elements that describes the mo-
tion of the free electron in the field. On the other hand,
the part of the C-C elements that we treat exactly does
describe the spread of the wave packet accurately. This
is, of course, another process which decreases quite sig-
nificantly the probability for the electron to recombine
after more than one return to the nucleus.

A simple way of investigating the importance of elec-
tron rescattering is to limit the integration over ~ in Eqs.
(8), (13), or (22) to v & 2m. Thus we account only for
the trajectories such that the electron returns to the nu-

cleus only once at time t. We eliminate all possibili-
ties of multiple returns, which are not likely for typical
experimental parameters (ur 1 —2 eV, I„20 eV,
I 10i4 —10isW/cm ).

The inHuence of electron rescattering effects is illus-
trated in Figs. 4(a) and 4(b), which show results ob-
tained using GBR for the Gaussian model and the expres-
sion (25) for the hydrogenlike atoxn. We compare here
two curves: one with the integration range for w unre-
stricted and one with the range restricted to 2m. The re-
sults in both cases are very similar and thus very encour-

aging, because they clearly show that indeed the major
contributions to HG come from the electron trajectories
that contain one and only one return to the nucleus. The
contributions from those trajectories give slightly more
pronounced interference patterns, but otherwise they are
in a very good agreement with the more rigorous results.

In summary, we see that quantum diffusion effects
alone eliminate to a great extent the impact of trajec-
tories with multiple returns. In other words, spreading
of the electron wave packet in the continuum leads to a
strong decrease in the emission eKciency. One might say
that although our theory -formally does not take into ac-
count electron rescattering processes, it gives almost the
same results as if it would. Note that the role of quantum
diffusion has also been stressed in Refs. [37,38]

10
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1 0 22

0.6 0.8
I

1.0
log10 U

1.2 1.4

FIG. 4. (a) Comparison of intensity dependences of the
35th harmonic ss for the GBR model with (black squares) and
without (open squares) taking into account effects of electron
rescattering (these effects are included by restricting the in-
tegration over return time 7 to one optical cycle). (b) Same
ss (s) for s hydrogenlike atom; I„=13.6, a = 2I„

F. Harmonic efficiency

High harmonics can be used as a source of coherent
short-wavelength radiation. Therefore the eKciency of
harmonic generation is a very important issue. One pos-
sible parameter which can be varied to optimize the har-
monic efBciency is laser frequency. Using the model de-
scribed above one can study the effects of laser frequency
on the harmonic intensity.

Let us assume that we are interested in the emission
at some fixed frequency Oo, and let us take Oo 50 eV
for the sake of argument. We can obtain this radiation
as the 49 harmonic of 1064-nm laser light or as the 25
harmonic of 532-nm laser light. The question is in what
case the harmonic intensity will be higher?

According to the cutoff rule [6] 0 „=I~+ 3U„, for a
given atom and a given intensity, (e.g. , close to the satu-
ration intensity of tunneling ionization) the length of the
plateau in the case of 532-nm light will be shorter owing
to smaller ponderomotive potential. Obviously, if the fre-

quency Oo we are interested in is not in the plateau region
for the higher incident laser frequency, it is better to use
lower frequency. However, if Oo is within the plateau
region in both cases, in general we will be better of us-

ing shorter wavelength laser. There are two reasons for
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that. First, the number of harmonic we have to produce
to get 00 is lower for higher laser &equency. Second, for
higher laser &equency the laser period is shorter. There-
fore, the spreading of the wave packet before the moment
of re-encounter with the nucleus is smaller. As we have
seen in the previous subsection, this is a very dramatic ef-
fect which strongly reduces the intensity of emission due
to electron-parent ion collision. Indeed, the wave packet
spreads as w /, and for the harmonic intensity this factor
should be squared.

We performed calculations for I& ——24 eV and laser fre-
quencies 1 and 2 eV, at intensities around 10is W/cm2
and harmonic &equeneies around 50 eV. In all calcula-
tions the harmonic intensities were 1—2 orders of magni-
tude higher for 2-eV laser light than for 1-eV light. For
these laser frequencies the efFect of spreading alone will
give only a factor of 2 = 8 advantage to the shorter
wavelength laser. Therefore, the fact that the harmonic
number we need to obtain the given radiation &equency
is lower for shorter wavelength is also quite important.

Summarizing, shorter wavelength radiation can be sig-
nificantly more eKcient for generating harmonic radia-
tion at a given, not very high, frequency. This conclusion
is consistent with experimental data [2].

IV. SADDLE-POINT ANALYSIS AND THE
EXACT CUTOFF LAW

The main aim of this section is the derivation of the ex-
act quantum cutoff law in the limit U„~ oo, with I„/2U„
constant, but smaller than one. In the semiclassical pic-
ture of Ref. [9] the cutoff law results from the energy con-
servation principle. One calculates the maximal kinetic
energy of the electrons born at the origin with zero ve-
locity and returning to the origin. This maximal kinetic
energy turns out to be 3.17U„. One argues then that the
maximal energy of the photons emitted due to recombi-
nation is I„+3.17U„. Obviously, in quantum case, this
picture cannot be exactly valid because of quantum tun-
neling and diffusion effects. First of all, in the quantum
theory, the tunneling electrons are not born at the origin,
but rather at zo such that I~ = Exocos(t —7'). When
they return to xo with Eg;„——3.17U„, they may thus
acquire an additional kinetic energy as they move &om
zo to the origin. Moreover, the electrons are not local-
ized in the quantum case, due to the finite size of the
ground-state wave function and to quantum difFusion ef-
fects. The "additional" kinetic-energy gain therefore has
to be averaged over all electron trajectories. As we shall
see below, the exact quantum cutofF law actually difFers
slightly from I~ + 3.17U„.

In order to derive the quantum cutofF law, we shall
examine the asymptotic behavior of Eqs. (8) and (18)
in the limit when U„, I„, and K are large. The Fourier
components of x(t) are defined as

technique is quite eKcient in calculating the integral over
p, we apply the same technique to evaluate the remaining
integrals over 7 and t. This method is asymptotically
exact provided Uz, Iz, and K are large enough. The
saddle-point equations that arise &om the derivatives of
the classical action (9) take the form

S(p, t, r) = x(t) —«(t —~) = 0, (27)

BS(p, t, 7.) [p —A(t —~)]2
+Ip ——0,87 2 (28)

The first of these equations indicates, as we already men-
tioned, that the only relevant electron trajectories are
those where the electron leaves the nucleus at time t —w

and returns at t. Equation (28) has a somewhat more
complicated interpretation. If I„were zero, it would sim-
ply state that the electron leaving the nucleus at t —~
should have a velocity equal to zero. In reality, I„g 0
and in order to tunnel through the Coulomb barrier the
electron must have a negative kinetic energy at t —~.
This condition cannot be fulfilled for real ~'s, but can
easily be fulfilled for complex 7's. The imaginary part of
r can then be interpreted as a tunneling time, just as it
has been done in the seminal papers of Ammosov et al.
[11].Finally, we can rewrite the last expression (29) as

[ —A(t)l
2

+I, = Ek;„(t)+I,=2Ky1.

This is simply the energy conservation law, which gives
the final kinetic energy of the recombining electron that
generates the (2K + 1)-th harmonic.

These equations can be used to derive the cutofF law.
Indeed, Eq. (30) clearly says that the maximum emitted
harmonic &equency is given by the maximum possible
kinetic energy the electron has at the moment t of col-
lision with the nucleus. Qualitatively, this conclusion is
fully consistent with the classical model of Refs. [8,9].
Quantitatively, there is a difFerence because Eqs. (27)
and (28), which have to be considered together with Eq.
(30), naturally account for the tunneling process and its
infIuence on the electron kinetic energy at the moment it
encounters the nucleus again.

In order to obtain the cutofF law, we must use the first
two of saddle-point equations to express any two of the
variables p, t, v via the remaining third. Then we have
to substitute the results into Eq. (30) and find the maxi-
mum of the left-hand side expression as a function of the
remaining variable. In practice, it is very convenient to
use the return time v and solve Eqs. (27) and (28) for p
and t as functions of v. Thus, the cutofF law reads as

~S(» t ) [
—A(t)l' [

—A(t — )]'
2 2

= 2K+1.

(29)

tp+2m

(t) (2K+1)it
2K to

(26) (2K+ 1) „=maxRe
/

C [p(r) —A(t(~))] )
)~

+ I„(31)

Since we know already from Sec. III that the saddle-poiat under the constrat~t that the imaginary part of the right-
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hand side expression is equal to zero.
Inserting the solution of Eq. (27), i.e. the expression

for p, (, (t, T), into Eq. (28) it is easy to solve the latter
with respect to sin(t —T/2) and cos(t —7/2). Namely,
Eq. (28) reduces to the form

is C(T) = 2s(T)a(T). From Eq. (32), we obtain

i)/s~ a(s)ks(~)/s (~)+a (~)+
("(-)+-'(-)I

'E~s (T)+a(T) ps(7 )+as (7 )+~
cos(t —T/2) = ' ' (,( ),( )I

(36)

2sin T 2
a(T) = cos(T/2)— (33)

8(T) = sin(T/2).

Note that the function C(T), as expressed by Eq. (16),
I

Ip
sin(t —T/2)a(T) —cos(t —T/2)s(T) = i ", (32)2' '

where

There exists also a pair of complex-conjugated solutions.
The choice of the appropriate pair is dictated by the re-
quirement that the resulting imaginary part of the classi-
cal action must be negative, so that it causes an exponen-
tial decrease of the corresponding transition amplitudes.
The results do not depend on the choice of the sign in
front of the square root in Eqs. (35) and (36), provided
it is the same in both of them.

Inserting these solutions into Eq. (29), we obtain a
closed form equation for 7. ,

o~(r)s~(7) s~(r) pa~(r) + s ~ o(7)s(v)(a~(v) —s~(v)))(s~(v)+a~(r)+ &U

(8 (T) + G (T))2 2'
- +8i ["( )+ '( )]'

2K+ 1

Up
(37)

I et us first consider a limiting case I„=0. Eq. (37)
takes then a simple form

8
a (T)8 (T) 2K + 1

[8 (T) + a (7.)[ U~
(38)

The function on the left-hand side of Eq. (38) is noth-
ing else but the classical kinetic-energy gain, AEi„„(T),
as plotted in Fig. 1 (dashed line). Equation (38) allows
for real solutions (tunneling time equal to zero) provided
K is not too large. In order to find out how large it
can be, we have to find the maxima of EEk,„(T) . As
we already learned in Sec. II, these maxima occur ex-
actly at the same points as the maxima of the function
C(T). There are two families of maxima, corresponding
to a(T) = s(T) and to a(—T) = s(T). The first family are
the solutions of the equation

t

solutions of Eq. (38) then acquire a significant imag-
inary part which introduces an exponentially decreas-
ing factor to exp[ —iS(p, t, T)] at the saddle point and
causes a sharp (exponential) cutoff in the harmonic spec-
trum. %e conclude that for I„=0, the cutoff occurs at
2E + 1 3.17'.

It is much more difficult to study the case of finite I„.
One way to do it is to perform a systematic expansion in

Iz/Uz It is easy .to see, however, that the zeroth order (in
I„/U~) solution of Eq. (28) is doubly degenerated and the
corresponding saddle point is not Gaussian but rather of
third order. Integration around such a saddle point gives
rise to Airy functions [39] and will be discussed elsewhere.
In the present paper, we shall use a simple approximation
valid in the limit Iz && Uq and a numerical evaluation in
the general case, where I„is of the order of U„or slightly
smaller.

I et us denote

1
tan(T/2) = (39)

and contains m & wi ( 2a, w3 4', etc. The first solu-
tion vi 4.08 is the same as 7,„& discussed in Sec. II. For
this solution, the kinetic-energy gain attains the absolute
maximum equal to 3.17. Further solutions give maxima
in the range 2—2.4. The second family [a(T) = s(T)] ful-

fills

f(T)= 8

g(T)= 8

Equation (37) then takes a simple form

G (T)8 (T) 8 (T) + G (T) + ~&

["(T)+ a'(T)l'

G(T)8(T)[a (T) —8 (T)] 8 (T) + G (T) +
["(T)+ '( )]'

(41)

(42)

1
tan(T/2) =

2/T + 1' (40) I„2E+1
f(T) + i g(T) =

and contains v2 3', v4 47t etc. , with values of max-
ima also in the range 2—2.4.

For 2K + 1 ) 3.17U~ there are no real solutions to
Eq. (38). The reason is not because of the impossi-
bility of tunneling, but rather because of the impossi-
bility of gaining sufficiently large kinetic energy. The

Strictly speaking the exact quantum cutofF law [see Eq.
(31)] is thus

(2K+ 1) „=U~maxRe f(T) +i " g(T), (44)
2 Up )
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under the constraint that

(
Im f(r)+i P g(~) = 0.

2Up )
(45)

1.4—

1.32
1.3—

CL

Let us first discuss the case when I„((Up We expect
that the maximum of the left-hand side of Eq. (44) in
this case is reached at w vi, so that we may write
'r = 7y + b'rg + irl, where both &~ and 7.I are small.
The real part of r, rq + be~ has the meaning of a return
time as before, whereas the imaginary part vi might be
interpreted as a tunneling time. Using this Ansatz and
expanding f(r) to the second order and g(7 ) to the first
order in brR + ill, we obtain from Eqs. (44) and (45)

1.2-

1.0
0

FIG. 5. Plot of the function F(Ip/Up) that enters the exact
cutoff law, (2K + 1) „=3.17Up + IpF(Ip/Up)

Ip &'(&~)

2Up f"(rg) ' (46)

and &~ = 0. The primes denote here derivatives. After
complicated, but otherwise elementary calculations, we

obtain the explicit form of the cutofF law for Iz && U&,

(2K+1) „=3.17Up+Ip
l
1+

8 7y 'ry —1 )
= 3.17U„+1.32I,. (47)

This result shows that the phenomenological semi-

classical law 2K + 1 = 3.17U„+ I„ is modified by the
efFects of quantum tunneling and quantum diffusion even

for Iz && U„. In this regime of parameters the small

change of the prefactor in front of the I„ is not very im-

portant and is hardly detectable both in numerical anal-

ysis and in experiments. There are, however, quite signif-

icant difFerences in comparison to the phenomenological
law 3.17U„+ Ip for Ip O(Up) In order .to illustrate
this point we need to consider larger values of I„, and
therefore to find the exact cutofF law from Eq. (44).

The exact evaluation of the cutoff presents no numer-

ical difficulties. The cutofF law has a form

saddle-point equations for I„=0, we recover the result
(2K+ 1) = 3.17Up + 1.32I„. (ii) The electron under-

goes diffusion which tends to average and decrease the
efFect of the additional kinetic-energy gain for larger Ip.

The exact cutoff law is asymptotically valid when both

Up and Ip tend to infinity, so that the ratio I„/2U„
remains constant (and not too large). Strictly speak-

ing, however, the saddle-point equations, Eqs. (27)—
(29), are valid if and only if the atomic dipole moment

d(p —A(t —r)) is not singular at the saddle point. This is

the case for the Gaussian model. Unfortunately, it is not
true for more realistic models for which d(p —A(t —v))
behaves as ([p —A(t —r)]2/2 + Ip) " with some posi-
tive exponent ri (equal for instance to 3 for hydrogen).
Evidently, the atomic dipole moment is singular at the
saddle point. This behavior of the atomic matrix ele-

ments is the direct consequence of the asymptotic be-
havior of the ground-state wave function which is propor-
tional to exp( —/2Ipr) for large r. Therefore, in order
to be more accurate one has to incorporate the effects of
the finite size of the ground-state wave function in solv-

ing the saddle-point equations. This leads to corrections

to the cut-off law of the order of U„,which vanish as

(2K + 1) = 3.17Up + IpF(Ip/U„), (48)

and the factor F(Ip/Up) is plotted in Fig. 5 as a function
of Ip/Up As we see, F.(x) = 1.32 for small z, in agree-
ment with expression (47). F(x) decreases slowly as z
grows. In Fig. 6 we show harmonic spectra for I„=30
and U„= 20 and 10. The phenomenological expression
gives in those cases cuts off at 2K+ 1 equal to 93 and
62, respectively. The exact quantum expression predicts
them at 101 and 69. Evidently, the quantum expression
is more accurate.

Physically, the shift of the cutoff energy compared to
the classical picture results from two efFects. (i) Since
the electron must tunnel out, it cannot appear at the
origin. It appears at xp such that Ip = Exo cos(t —7 ).
After it comes back to xo, it can gain an additional ki-

netic energy on the way towards origin, equal approx-
imately to the work of the electric field over the in-

terval [2:o,0], i.e., Exocos(t). The cut-off law should
therefore be 3.17Up + cIps(ot)/ cos(t —w). Inserting the
values of cos(t) and cos(t —v) as obtained from the
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FIG. 6. Harmonic spectra for the GBR model with I„=30,
a = I„.The curve with open squares is obtained for U„:10
and the one with black squares for U„= 20. The locations of
the phenomenological and exact cutoffs are indicated by the
arrows.
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V. GROUND-STATE DEPLETION

It is possible to generalize our theory to include the
effect of the ground-state depletion. To this aim, we con-
sider the Schrodinger equations,

o(t) =tEcos(t) f d v d (v)b(vt), , (49)

b(v, t) = i
~

——+ I„~ b(v, t) —Ecos(t)
. fv2 (9b(v, t)

Bv

+iEcos(t) d (v)a(t). (50)

We solve Eq. (50) and insert the solution into (49). As-
suming that a(t) changes slowly we can set a(t') a(t).
The differential equation for a(t) takes the form

a(t) = -~(t)a(t) (51)

U„m oo, but rather slowly. These corrections counter-
act the cut-off shift discussed in this section and move
the cutoff location to a lower energy. They are responsi-
ble for the difference in the position of the cutoff between
hydrogen and the GBR model observed in Fig. 3. These
points will be discussed in detail in a future publication.

where the complex rate p(t) is defined by,

p(t) = f d p dvEcos(t)d (p A(—t))
0

xEcos(t —w)d (p —A(t —w))e
' i~" ). (52)

p(t) is in general time dependent and becomes periodic
as t grows, having maxima at the peak values of the elec-
tric 6eld, when the electron has a much larger chance
of tunneling. Equation (52) can be analyzed using the
saddle point method and in the limit of U„)& I„&& 1,
one recovers the tunneling rate obtained by Ammosov et
al. [11]. Note, however, that our theory is more general,
since it takes into account quantum interference effects
and the returns of the electron to the nucleus, which are
completely absent in the approach of Ref. [11].We leave
the detailed discussion of the time-dependent rate to a
future publication and we limit our discussion here to the
case where p(t) can be substituted by its time average

OO

p = lim — dt' p(t').
t —+oo g

For the Gaussian models (GEX, GSP, and GBR) the ex-
pression for p takes this form,

(U„) '
p = 4( —"[, d7

] .
)

exp[ i+o(&)]
q n ) sn' o (1/n+ i~/2)

x (—B(r)J2(U„C(r)) + [B(w) + D(7 ) cos(w)] Jp(U„C(v)) + 2i[B(w) cos(r) + D(r)/2] Ji(UpC(~)))t (54)

In Fig. 7, we present the intensity dependence of p as obtained from the GBR model. As we see, both the real and
the imaginary parts of p [see Figs. 7(a) and 7(b)] increase (in absolute value) with intensity. The real part of p, p~
describes the rate of depletion of the ground state. For the laser pulse duration tD the saturation intensity is achieved
at p, ttDE 1, i.e., when the atom is fully ionized during the interaction with the laser pulse. The imaginary part
of p, pl describes a dynamical shift of the ground-state energy (not to be confused with the ponderomotive shift). It
is proportional to the laser intensity and becomes quite large as pR

Taking into account the depletion, the expression for the time-dependent dipole moment takes the form

t

s(t) = sf d p dcd (p —A(t))Fco's(t —v)d, (p —A(t —v)) ~

0
(55)

The Fourier transform of x(t), or rather its modulus squared, now consists of a sequence of Lorentzian peaks with
width 2pR. The harmonic strengths can be calculated as the total area covered by each of these peaks (equal to the
total energy radiated at the corresponding harmonic frequency).

Using Eq. (18) we obtain

tz)

z(A) = ) dT bR M(7) JM(U~C(w))(i) e* h(r, 0 —2M —1),
27( p

(56)

where

—2p~ a+i(O —2M —1)7 —2p~ t~+i(O —2M —1)t~
h(v', 0 —2M —1) = e~

2pR+i 0 —2M —1
(57)

The peaks are centered at 0 = 2M+1. The harmonic strengths ~x&M+i
~

are thus approximately equal to ~x(2M+1)
~

times a factor that accounts for the area of the peak, 2vrpR/[1 —exp( —2p~t~)]. For Gaussian models, for instance,
we obtain
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l»M+il =2
/ 2(.)M+ ~ ( & q /

I —exp( —2p~tD) gvra) a2 o q 1/a + i7/2)

x ( B—(7.)JM+2 (UpC(w) ) + i[B(~)e' + D(w)] JM+z (UpC(7. ))

exp[—iFM(r)]h(w, 0)

+[B(7) + D(w)e' ]JM(U~C(r)) —iB(r)e' JM q(U~C(r))) (58)

A similar expression can be derived for hydrogenlike
atoms.

In order to study the effects of depletion, we have first
treated p as a &ee parameter, [i.e., not determined &om

Eq. (53)] and we have calculated harmonic spectra for
U„= 20 and several values of p. In particular, we have
performed calculations for pl ——0 and pR ——0.01 and 1.
The duration time of the laser pulse was chosen to be 20
optical cycles. The spectrum for pR ——0.01 differs only
slightly &om the result obtained for pR

——0, even though
the system is already close to saturation. A further in-
crease of pR decreases the harmonic strengths quite sig-
nificantly, and smoothes out the spectrum, i.e., reduces
the effects of quantum interferences. The depletion does
not change the cutofF location for the single-atom spec-
tra. That can be understood since even for pR ——1, when
the ionization takes place more or less within one optical

10

C

IQ

cycle, the electron still has a chance to come back at least
once to the origin.

In order to study the full dynamical infiuence of the
depletion on harmonics, we have evaluated p &om Eq.
(54) (see Fig.7) and the harmonic strengths &om Eq. (58)
for the GBR model. An example for the 35th harmonic is
shown in Fig. 8. Again, the main effect of the depletion
consists of the decrease of the harmonic strength. For
high enough intensities, the harmonic strength becomes
a slowly decreasing function of the laser intensity.

It is now clear that in order to get higher conversion
eQciency of harmonic emission one should use shorter
laser pulses. Indeed, according to the results of this sec-
tion and Sec.III E, the main contribution to the harmonic
emission is given by the first re-encounter of the contin-
u»m electron with the nucleus, and the effects of sec-
ondary collisions are not very strong. Therefore, one can
use very short —a few cycles long —laser pulses of high
intensity. Even though the ground state of the atom will
be depleted very fast, the electron will still be able to
return to the nucleus and collide with it at least once.
As a result, the absolute harmonic intensity will not de-
crease significantly. On the other hand, the energy of
the shorter incident laser pulse will be reduced. In other
words, at high intensities, when the depletion of the atom
is very fast and harmonic emission occurs only at the be-
ginning of the pulse, most of the pulse energy is wasted
and using short pulses will solve this problem.
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FIG. 7. Intensity dependence of the depletion rate pR for
the GBR model; I~ = 5, a = 2I~; (b) Same as (a) for the
ac-Stark shift of the ground-state energy —7I.
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FIG. 8. Comparison of intensity dependences of the 35th
harmonic with (open squares), and without (black squares)
depletion. Both curves are obtained for the GBR model with
I„=5, o. = 2I„. The duration of the pulse t~ is taken to be
50 optical cycles.
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VI. CONCLUSION
In summary, we would like to point out the important

aspects of our theoretical formulation and in particular
how it complements both the exact quantum-mechanical
calculations of [6] and the semiclassical calculations pre-
sented in Refs. [8,9].

The formulation exposed in this work allows us to de-
rive analytically the cutofF law determined by extensive
numerical calculations 6] and interpretated with semi-
classical arguments [8,9 . In fact, this derivation gives an
expression very close numerically but slightly more com-
plicated than the linear formula 3.17U„+I„,as discussed
in Sec. IV.

Our approach provides a description of HG into two
steps, as is also done in Refs. [8,9]. However, we do
not assume as in Ref. [9] that the electron appears near
the origin with a zero velocity. As always in quantum
mechanics, we deal with amplitudes describing processes
in which the electron has any initial velocity and initial
position. It is the result of the theory that shows, rig-
orously, that the main contribution to HG comes from
the electrons that appear at the nucleus with a velocity
close to zero, and return to it. Thus, we present here
a quantum-mechanical justification of the two-step semi-
classical picture. In other words, we demonstrate that
the problem of coherent control of HG indeed reduces to
the problem of the laser control over classical electron
trajectories.

Our approach allows for a simple analysis of harmonic
efficiency as a function of different laser and atomic pa-
rameters, such as laser frequency, pulse duration, and
atomic ionization potential. According to our results,
radiation at a given &equency can be obtained with
higher efficiency by using shorter laser pulses of higher
frequency.

This theory is very similar to the one developed in Ref.
[13] but it is not restricted to a zero range potential. We
can describe hydrogenlike atoms and account for electron
rescattering processes (as we did in Sec. III). The effects
of the Coulomb potential, introducing corrections to the
classical action could be included as in Ref. [11].We can
also investigate the influence of the ground-state deple-
tion on the high harmonic production and on the cutoff
formula (see Sec. V).

Finally, we should emphasize that the approach de-
veloped in the present paper for a linearly polarized
monochromatic laser field can easily be generalized to
laser fields of arbitrary, and in particular time-dependent,
ellipticity or to multicolor laser fields. Moreover, in or-
der to make a realistic comparison with the experimen-
tal data one has to take into account propagation efFects.
Our theory provides a relatively easy way of calculating
the single atom response in a very general situation. The
results can be used as an input to the propagation equa-
tions.

ACKNOWLEDGMENTS

2i 2i
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Obviously, the function C(r) is an analog of the function
C(r) &om Fig. 1, which is why we denote them in the
same way. For the Gaussian model treated with the help
of saddle point method (GSP), we get

2i
C(r) = slI1(r) ——cos(r)

4sin (r/2) ( 2i l .sinr
/

1+ /+4ir ( ra) (A5)
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2 2' (A6)
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FJc(r) = (I~ + U~ —K)r
2iU„4U„sin (7/2) (1+r \

2i 5

a7)
4zUp sill(r)+
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Finally, in the broad Gaussian limit (GBR), the functions
B(r) and D(r) are the same as the ones defined in Eqs.
(A6) and (A7), respectively. Other functions are given
by

4 sin (r/2)

4U~ sin (r/2)F~ (r) = (I„+Up —K)r—

(A9)

(A1O)

APPENDIX A

In this appendix, we present the explicit expressions for
the functions C(r), B(r), D(r), and F~(r) that enter the
expression (22). For the exact Gaussian model (GEX),
we obtain
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APPENDIX B
The coefficients Bs(r) that enter Eq. (25) are defined
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dt [p., (t, r) —A(t)][p., (t, r) —A(t —r)]2Sst

([p.t( ) —A( )]'+ ) (.-)'([p.t( ) —A( — )l'+ ')'
where a = a' = 2I~. Introducing a new variable z = exp (—2it) we obtain

cLz
Bs(r) = .H(z),

c 2

where the integral runs around the unit circle along the contour C. The function H(z) is given by

z'+'W. (z)
[Wg(z) W2(z)]s

'

and the quadradic polynomials W;(z), i = I, 2, 3, take the form

Wq(z) = U~[s(r) —ia(r)] e ' z + (U~[s (r) + a (r)] + n) z+ Uz[s(r) + ia(r)) e',

W2(z) = U„(s(r) + ia(r)) e ' z + (U~[s (r) + a (r)] + o.') z+ U„[s(r) —ia(r)] e',

Ws(z) = U„[s(r) + a (7.)] (e
' z + 2z+ e* ) .

The function H(z) has two singularities inside the contour C. These are

2("+a') + ~/U~ —V'(~/U. )'+ 4("+a')~/U. ..
2(s+ ia)z

(B2)

(B4)

(B6)

(B7)

2(s +a ) +u'/Up —Q(a'/Up) +4(s + a )a'/Up, .z2- e' .
2(s —ia) 2 (B8)

(B9)

At these points, the function H(z) has poles of third or-
der at least. Using Cauchy's theorem, we obtain analytic
expressions for the coefBcients Bs(r) as

d2
Bs(r) = —) lim (z —z;) H(z)

i=1,2

Strictly speaking expression (B9) is valid only if the two
poles are not degenerated, i.e., zq P zq. Unfortunately

for the values of r when either s(r) or a(r) vanish that
is not the case. The singularity is then of the sixth order
and the calculations become very tedious. In numerical
calculations, it is very convenient to solve this problem
by using o. f cr', at least in the vicinity of r's for which
zq ——z2. For o;, o," of the order of 20, it is enough to
set the difference between them to about one to assure a
good convergence of the results.
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