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Propagation of quantum Suctuations in single-pass second-harmonic generation
for arbitrary interaction length
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By solving linearized wave equations of nonlinear polarization for a medium, we derive the input-

output relationship for the propagation of the quantum fluctuations in single-pass second-harmonic gen-

eration with arbitrary interaction length. Spectra of quadrature-phase squeezing are calculated from the

input-output relations. It is found that the intensity fluctuations of both harmonic and fundamental

fields are squeezed below the vacuum fluctuation level. For large interaction length, an arbitrary amount

of squeezing can be achieved for the fundamental field whereas only 50% squeezing is possible for the

harmonic field. The bandwidth of squeezing is determined by the phase-matching condition and can be

very broad in this case. The possibility of a quantum-nondemolition measurement in the process is dis-

cussed. Some interesting features in quantum fluctuations of the fields are presented.

PACS number(s): 42.65.Ky, 42.50.Lc, 03.65.Bz

I. INTRODUCTION

The discovery of second-harmonic generation (SHG)
by Franken et al [1]ma.rked the beginning of the field of
nonlinear optics. Because of its simplicity in the non-
linear coupling, SHG is among the first few problems
that were studied in the early development of nonlinear
optics [2] and has now become a typical example in most
nonlinear optics textbooks [3]. High conversion
efficiency from the fundamental to the harmonic field has
been routinely achieved in laboratories and can be de-
scribed quite well by the theory. Because of the nonlinear
nature of the process, high-intensity short pulses are
commonly used in single-pass SHG [4]. Continuous-
wave (cw) SHG with high conversion efficiency has also
been achieved with the aid of a resonant cavity (multiple

pass) [5]. Recent development in waveguide nonlinear
conversion [6] and availability of crystals with large non-

linearity such as KNb03 have made efficient conversion
possible in cw single-pass harmonic generation.

Quantum fluctuations in second-harmonic generation
have been studied by many people [7—11] in the past.
Most of them start with a Hamiltonian that describes the
nonlinear interaction between the fundamental and har-
monic fields and then derive the equations of motion for
the fields from the Hamiltonian. Although this model is
simple and can give some general pictures about the
quantum fluctuations in the process, it is an
oversimplified model. Later, Drummond, McNeil, and
Walls [12] considered a more realistic model of harmonic
generation inside a resonator with dissipation included.
This model predicted [13] that the quantum noise of both
the harmonic and fundamental fields is squeezed under
certain conditions. This was later confirmed experimen-
tally by Pereira et al. [14]. On the other hand, for the
problem of propagation of quantum fluctuations in the
nonlinear medium (single-pass case), the treatment with
the Hamiltonian is not appropriate because spatial propa-
gation of the fields needs to be taken into consideration.
So far there has not been a general treatment for arbi-

trary interaction length and conversion efficiency in the
propagation of quantum fluctuations in the nonlinear
medium. Generally speaking, when the conversion from
the fundamental to the harmonic field is high, the equa-
tions of evolution for the amplitudes of the fields become
nonlinear and hard to solve. It becomes even more com-
plicated when we consider multifrequency components,
where different frequency components are coupled
through frequency summation processes. As for the
problem of squeezing in the single-pass case, even in the
model with a simple Hamiltonian, there only exist short
time solutions up to the second order in interaction
length of the nonlinear evolution [9—11]. It was found
that there are quadrature-phase squeezing effects in both
fundamental and harmonic fields. Therefore it is neces-
sary to explore the problem even further into the regime
in which the conversion is large and higher orders in in-
teraction length are involved. Furthermore, the coupling
between the fundamental and harmonic fields in the pro-
cess suggests possible quantum correlations between the
two fields as they propagate in the nonlinear medium.
Indeed, such correlations are found to exist in cw har-
monic generation with a resonator and quantum-
nondemolition (QND) measurement is possible under cer-
tain conditions [15].

In this paper, we will start from wave equations with
nonlinear polarizations for the medium and derive the
nonlinear coupling equations for the propagation of
different frequency components of the amplitudes of the
fields in the nonlinear medium. To solve these equations,
we linearize in Sec. III the quantum fluctuations around
the large coherent components of the fields and derive a
set of linear equations for the quantum fluctuations of the
fields. We then solve these equations and find the trans-
formation relationship between the input and output of
the quantum fluctuations as the fields propagate inside
the nonlinear medium. From this relationship, we will

analyze in Sec. IV quadrature-phase squeezing in both
harmonic and fundamental fields and will discuss correla-
tions between the outputs as well as between the input
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the medium is local so that there is no integration over
the spatial variables. Because of causality, it is obvious
that g'z"(r)=0 for r &0 and y'.k(r), r2)=0 for r) &0 or
7 2 & O. i,j,k denote the polarizations of the fields. In
second-harmonic generation, because of phase-matching
condition for bulk material, the oscillation polarizations
for the relevant fields are fixed in certain directions so
that we can drop the indices i,j,k in Eqs. (1). The linear
part of polarization will give rise to a freauency-
dependent index of refraction n(co)=+1+4irg"'(co) for
the medium [see below in Eq. (9)], which causes the
dispersion effect of the medium.

For quantized fields, Eqs. (1) still stand except that P
and E are operators and the electric field operator E(t )

has the form of

and output of the fields which lead to realization of QND
measurement and quantum-optical tap in the process.

II. EQUATIONS FOR THE PROPAGATION
OF FIELDS IN HARMONIC GENERATION

In order to include the relevant frequency components,
let us consider the time-dependent polarization

P(r, t ) =P' '(r, t )+P'""(r, t )

P(L)(r, t)= f dry(J!'(t r)E,—(r, r)

defoe ' 'g', " co E r, co

E'(r, t)=E' '(r, t)+P'+'(r, t), (2a)
(la)

with

of the medium. It consists of two parts, the linear polar-
ization P' '(r, t ) and the nonlinear polarization P'""(r,t ).
The linear polarization P' '(r, t) is a linear function of
the electric field E(r, t ):

where g' '(r) is the linear susceptibility of the medium
and y,")(co) is its Fourier transformation. E (r, co) is the
Fourier component of the electric field E(r, t ) [see below
for its explicit form in Eq. (2)]. For second-harmonic
generation, the nonlinear polarization P'""(r,t ) is related
to the electric field E(r, t ) through the second-order non-
linear susceptibility gI~z in a general quadratic form [16]

P,'""(r,t)= f y',,'k(t t„t t, )E—,(r, t, —)

XEk(r, t2)dt, dt2 . (lb)

Here in Eqs. (1), we have assumed that the response of
I

[E' '(r, t)]t=E'+'(r, t)

=f dcot

1/2

g( )
i(kz tnt) —

(2b)
cn (co)

where 8(co) is the annihilation operator of the field and
satisfies [8(co),& (co') ]=5(co—co'). A one-dimensional
plane wave is used to describe the spatial mode and the
field propagates along z direction with wave vector
k(co) = nco( c)o/c The F.ourier transformation of the non-
linear polarization P'""(t) can then be calculated from
Eqs. (1) and (2) as

p(nl)( ) dt P ("')(t )
'"'

277

f dt f dt)dt, y"'(t t„t—t, )[E'—'(t, )E' '(t, )+E' '(t, )E'+'(t, )
1

2' 00

+E'+'(ti)E' '(t&)+E'+'(t) )E'+'(t2)]e' '

With Eq. (2b), the first term in Eq. (3) is calculated as

ll

IE' 'E' )}= f dt dt)dt2y( '(t t), t t2)e' 'f—dc—o'dco"e 'A'(z, co')e 'A'(z, co")2'
= f dco'dco"y' '( —co', —co"))5(co'+co"+co) A '(z, co')A "(z,co")

= f dco'g '( —co', co'+co) A "(z,co') A (z, —co —co'),

with

y' '(co', co")=f dr)dr~( )(r„r2)e
0

and
' 1/2

(3)

(4)

AN
A (z, co) =i

cn (co)
a(z, ~)e'", (5)

(4")

where the amplitude ct(z, co) is treated as a c number and is a slowly varying function of z as compared to e'"'. Similar-
ly, for the other terms in Eq. (3), we have

[E' 'E'+'] =f dco'y' '( —co', co+co')A*(z, co')A(z, co'+co), (4')

IE'+'E' '] = f dco'g' '(co', co —co')A(z, co')A "(z,co' —co),
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IE'+'E'+'[ =f dcd'g"'(cd', cd —co') A(z, co')A (z, co —co') . (4"')

In second-harmonic generation, the light field is strong at the fundamental frequency Np. A harmonic field at the fre-
quency 2cop is generated when the phases of the two fields are matched. Higher harmonic components are usually very
weak because they do not satisfy the phase-matching conditions and require much higher power to be significantly
strong. Thus we can assume that there only exist two bands of frequencies for the field which are centered at cup and
2coo, respectively. For the harmonic band, co-2coo, and we find from Eqs. (4} that only the term of Eq. (4"') contributes
to the polarization P' '(co) that is responsible for the generation of harmonic frequency co-2coo. Thus we have

p2""(co)=f dcd'y( '(co', co —co') A ) (z, co') A, (z, co —co') (co-2co()),
[~o]

where the subscripts 1,2 denote the fundamental and harmonic bands, respectively, and [coo] represents the integration
range around cup for co'. Similarly for the fundamental band, we have

P',""(co)= f dco'y( '( co—', co+co') A ( (z, co') A2(z, co'+cd)
[~0]

+ f dco g (co,co co )A2(z, co )A ) (z, co cd)
[2a)0]

—2f dco g ( co, co+co ) A ) (z, co )A2(z, co +cd) (co coo), (7)[~,]

where after we change the integration variable from co"

to co'+co in the second term, we used the symmetry prop-
erty of y' '(r„r2) =y '(~2, r) ). Usually, within the band-
width of interest, y' '(co', co") does not change very much
with frequency. Furthermore, under conditions of low-
frequency excitation (frequencies coo and 2coo are much
smaller than the lowest resonant frequency of the medi-
um), the nonlinear susceptibility y' ' is essentially in-

dependent of frequency for the bandwidth of interest [3].
Thus we can replace it with a constant y' ' in Eqs. (6) and
(7) and obtain

p',""(co)=2y( ' f dco'A ', (z, co') A2(z, co'+co)
0

d a(z, co)
k

da(z, co)«k
dz2 d

we end up with

1/2
Rcd da(z, co) 2m co („)) k,P" coe

cn(co) dz

Substituting P'""(co) in Eqs. (6) and (7) into Eq. (11), we
obtain the equations for the propagation of the funda-
mental and harmonic frequency components along the z
direction in the nonlinear medium,

( CO COO),

p'2""(cd)=y' 'f dco'A, (z, co')A, (z, co —co')
0

(8a)
da, (z, co) iAklz=2K dco'a; (z, co')a2(z, co+co')e

dz

(co-2co()) . (8b)

Next we consider the wave equation with the nonlinear
polarization P'"" given in Eqs. (6) and (7), in order to
derive equations of propagation of the field. Because the
spatial mode of the field is plane wave, we only need to
consider z direction for propagation. Therefore we have,
for the one-dimensional wave equation [3],

c} 1 c} 4n. (}E(z, r)+ E(z, t)= — P(z, r),
Bz c Bt c Bt

(9)

where P(z, t )=P' '(z, t )+P'""(z,t ) is the polarization of
the medium. Substituting Eq. (lb), Eqs. (2), and the re-
verse transformation of Eq. (3) into Eq. (9},we obtain for
the frequency component m

2 2 4 2

A (z, co)+ A (z, co) = — P'""(co), (10)

where n (co) —=+1+4my("(cd) is the index of refraction of
the medium. By substituting Eq. (5) into Eq. (10) and

making the well-known slowly-varying-amplitude ap-
proximation

(co —
co()), (12a)

da2(z, co) ib, k~z= —K d co'a ) (z, co')a, (z, co —co')e
dz

(co -2co()), (12b)

where K=(2ficdoln2c)' 2mco~' 'In)c with n, =n(coo),
n2 =n(2coo). —Ek)(co') =k2(co'+co) —k, (co') —k, (co) and
bk2(cd') =—k, (co')+k, (co —co') —k2(co) are the phase
mismatches with subscripts 1 and 2 representing the fun-
damental and harmonic fields, respectively. We used the
narrow bandwidth approximation that the integration
range [coo] ((cdo on the constants for the value of K.
Here only the slowly-varying-amplitude approximation
and narrow bandwidth approximation are used for the
derivation of Eqs. (12). Equations (12) are a set of non-
linear differential-integral equations that couple the har-
monic field with the fundamental field and vice versa for
the propagation of the fields in the nonlinear medium
(single-pass case). Given the initial conditions on the fun-
damental and harmonic field, we should be able to find
their values along the nonlinear medium for any given
length z. Although they are derived from classical wave
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equation, they are also valid for the quantized fields as
long as we treat the amplitude a(z, co) as the annihilation
operator.

d izak2(cuo)
6&2(co)= —2KC, M, (co —coo)e

' ' (co-2coo) .

(17b)

III. LINEARIZED INPUT-OUTPUT
RELATIONS FOR THE QUANTUM FLUCTUATIONS

Because of dispersion of the medium, hk„hk2%0 for
co%cop 2cop. Let us exPand n, (co ) around cop and n 2(co )

around 2coo. We then obtain the phase mismatches

hk, (coo) =(co co—o)[(co+coo)hn2 coh—n, ]Ic

=(co—cop)cop(2hn2 —hn, )/c = (co —cop)—hn /c

for co-cop, (18a)

(18b)hk, (2cop —co)= 2(—co coo—) bn(/c for co-cop,

(13)
2 0 0 0 1 2hk (co )=(co—2co )[(co—co )bn coh—n ]Ic

a, (z, co) =ci(z)5(co—coo)+b, iti(z, co),
= —(co —2cop)cop(2b n 2

—b,n, )Ic
—:—(co—2cop}hn /c for co-2coo .

where c& is a c number whereas A8& is an operator
characterizing the quantum fluctuation of the field with
( ~b,a(~ ) && ~c, ~

. After substituting Eq. (13) into Eq.
(12b), we find that the harmonic field has similar form:

(18c)

Here hn; = dn; I()co—(i =1,2}, b, n =(2bn2 bn—i)cop, and
we keep only the lowest-order nonzero terms in (co —c00)
and (co —2coo} in the approximation. Hence Eqs. (17)
change to

a2(z, co) =c2(z )5(co 2coo)+—ba2(z, co),

with center frequency at co=2coo. Substituting Eqs. (13)
and (14) into Eqs. (12) and keeping only the terms up to
the first order in M, (i =1,2), we have

i (a)—cop)zb, n /c
ba, (co)=2K [c i b a2(co+coo)e

Because of the nonlinear nature of the coupling equa-
tions in (12}, it is impossible to solve them analytically
without making any approximation. For the problem of
second-harmonic generation, it usually starts with a
strong fundamental field. Let us assume that the funda-
rnental field has a strong coherent component that is
monochromatic at frequency coo while the quantum Quc-

tuations are weak, that is,

dc)
5(co —cop)+ b,a((co)

Z dz

izaak) ized, k
~

(ct)p)=2K[c i c25(co cop)e +c 1 ~Q ( 2+coc)ope

dc2
5(co —2coo)+ 6&2(co)

dz dz

ized, k= —K [c i 5( co —
2co(i }e

izdkkp(a)p)+2c,b, d, (co co(i)e ] .—

(15a)

(15b)

dc)
=2EC1 C2

dz

dC2 = —Ec) .
dz

(16)

Similarly, for the first-order terms in ha, we obtain the
equations for the quantum fluctuations of the fields,

Here ski = —6k' 2cop(n2——ni )/c —with ni =ni(coo—)
and n2 ——n2(2cop) being the indices of refraction for the
fundamental and harmonic fields. When the phase-
matching condition is satisfied by the fundamental and
harmonic fields, we have n, =n2, thus b,k; =0 (i =1,2).
By equating the zeroth-order terms in b, a on both sides of
Eqs. (15), we have for the coherent parts of the fields

—2i(co—co ) zAn /c

(co-2cop) . (19b)

Thus the quantum fluctuation of the fundamental fre-
quency at co is coupled to the harmonic frequency com-
ponent at co+coo around 2coo and to the conjugate of the
fundamental frequency component at 2coo —co around No
whereas that of the harmonic field is only directly cou-
pled to the fundamental field.

Let us first solve Eqs. (16) for the coherent com-
ponents. Actually, the solution is already given in the
standard nonlinear optics textbook [3]. For harmonic
generation with initial fundamental input of

I g7pci(0)=QNoe ' and no harmonic input [c2(0}=0],the
solutions to Eqs. (16) are given as

c, (z)=e 'QNp sech/,

c2(z )= e'QN0 /2 tanh—g,
(20)

where (=z /zo is the normalized distance with

zp = 1/'((I 2K No being the characteristic distance.
When z=zp, g=1, and a significant amount of funda-
rnental field is converted into harmonic field with conver-
sion efficiency tanh (1)=58%. Notice the relation

(co —coo), (19a)

d —i (co—2cop)zb, n /c
6&2(co)= 2Kciha—i( co cop)e—

6&, (co)=2K[c;ha2(co+cop)e
dz /c, (z)/ +2/c2(z)/ =Np (21)

(co —cop }, (17a)
and recall that a(co) is the photon annihilation operator,
then Eq. (21) simply means energy conservation: to gen-
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crate one harmonic photon, two fundamental photons are
annihilated.

With solutions in Eqs. (20), we can substitute in Eqs.
(19) to find the equations for the propagation of the quan-
tum fiuctuations. Equations (19) change to

1 2ba (Q)=e 'i/2ba (Q)e'~ sech(

x, (j)=f i (g)x, (0)+f2(g)xz(0),

xz(g) =h;(g)x, (0)+h 2(g)xz(0),

y, (g) =f»i(g)y, (0)+f'2(g)yz(0),

yz(g) =h;(g)y, (0)+h»2(g)yz(0),

(26)

—e 'b, a i (
—Q)e '~ tanhg, (22a)

where the functions f, h are c numbers and satisfy the ini-
tial conditions expressed as

baz(Q) = —e 'i/2bai(Q)e '~ sech(, (22b)

where we changed ai to cuo+Q in Eq. (18a) and ai to
2coo+Q in Eq. (18b) and dropped the center frequencies

~0, 2~0 in the notation. The dimensionless frequency
offsets 5=Q/Q, and o —= Q/Qz with Q, =c/zob, n and

Qz=gc/2zohn, . As we will see in Sec. IVC, usually

Qz)) 0, so that we can divide the frequency 0 into three
ranges: (i) Q « Q, /g, Qz/g'» or (5,ger « 1; (ii)

Q -Q, /g « Qz/g'» or (5-1, but go « 1; (iii)
Q-Qz/g' or gc» l. —At this moment, for the simplici-

ty of discussion, let us assume Q is in ranges (i) and (ii) so
2

that go «1 and we can set e '~ =1 (we will come
back to the effect of this term in Sec. IV C). With this ap-
proximation, we now rewrite Eqs. (22) in terms of the
quadrature-phase amplitudes of the fields defined as

f 1
(0)=1, hz(0) =1, f-", (0)=1, h»2(0) =1,

f"(0)=0, h", (0)=0, f»(0)=0, h»(0)=0.
(27)

dh

dg
= —&2f;"e '~ sech(

(i =1,2), and

df,»

1
=&2h»e'& sechg+f»tanhg,

1

dh,~
= —i/2f»e '~ sech(

(28a)

(28b)

Substituting Eqs. (26) into Eqs. (24) and (25), we find the
functions f, h satisfying the following sets of equations:

df = i/2h, 'e'~ sech( —f tanhg,

x, (Q)—:[ba i (Q)e '+ ha, (
—Q)e ']/i/2,

y;(Q)—:[ba, (Q)e ' —b,a, ( Q)e ']—/i i/2,

xz(Q)—:[baz(Q)e '+diaz( —Q)e ']/U'2,

yz(Q):—[baz(Q)e ' —baz( Q)e —']/ii 2,

(23) f;"'(4 —5)= [f '(0 5) ]*

h,"'»(g, —5)= [h;"'»((,5) ]*
(29)

(i =1,2), with initial conditions given in Eqs. (27). From
the above equations, we can prove the identities

which should satisfy the canonical commutation relations

[xj(Q),yj(Q')]=i5(Q+Q') (j=1,2). Hence Eqs. (22)

change to

(i =1,2), which will be useful for later calculations of
spectra of squeezing and correlation functions. To solve
the sets of linear differential equations in Eqs. (28), we
first make the transformation of

dx i
2 1

=&2x e'~ sech( —x tanhg, (24a) f (g)=f;"(g)/cosh(, f»(g)=f»(g)cosh( (30)

dxp = —&2x, e '~ sech/, (24b)

(i = 1,2). Then we find that [fz, h z ] satisfy a same set of
transformed equations and initial conditions as [

—(h»i ),
(f»)*). Therefore they should be equivalent to each oth-
er:

=&2yze'~ sechg+yi tanhg,

3'p = —i/2y, e 'C'sech(.

(Zsa)

(25b)

fz(P) = —[h i(0)]*,

he(0) =If i(g)]* .
(31a)

Because of the phases in the coherent components of the
fields [Eqs. (20)] and in the definitions of x, 2, y, 2 [Eqs.
(23)], it can be proved that x,.(Q), xz(Q) are associated to
the intensity fluctuations of the fundamental and the har-
monic fields, respectively, and y, (Q), yz(Q) to the phase
fiuctuations. It can be easily seen that Eqs. (24a) and
(24b) are coupled and so are Eqs. (25a) and (25b) but Eqs.
(24) are independent of Eqs. (25). Thus we can solve
them separately. Notice that Eqs. (24) and (25) are linear
sets of equations. From the theory of linear differential
equations, we know that their solutions can be expressed
linearly in terms of the initia1 conditions, that is,

Similarly,

fz(0) = —[h i (0)]*

h z(k) =[fi(0)]* .

Or from Eqs. (30),

f i (g) = [h»z(g) ]*sech(,

fz(g) = —[h»i(g)]* sech/,

f»i(g) = [h z(g) ]*cosh',

f»z (g) = —[h ", (g) ]"cosh( .

(31b)

(32)
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Hence we only need to find h f'~2(g} which satisfy the sets
of equations

d(h~2)' . dh i=v'2h "ie'~s, = —v'2(h 2)'e '~s sech g
dg

' '
dg

with h~z(0)=1, h", (0)=0; (33a)

x i(g) =x &(0)(1—
g tanhg)sechg

+x2(0)( &2tanhg sechg),

x2(g) = —x
~
(0)(tanhg+g sech g)/&2+x2(0)sech g,

(37)

Hence

h", (g, n)[hi'(g, n)]"+h'(g, n)[h~(g, n)]'
=h", (O, Q)[h f(o, n)]"+h "(O,Q)[h~(o, n)]"

(34)

This identity together with Eqs. (29) and (32) can be used
to prove the canonical commutation relations

[x,(g, Q),y, (g, n')]=i5(n+Q') (j=1,2) (35)

for any g and Q just as the inputs x (0, Q ),

y, (o, n) (j=1,2).
For arbitrary value of 5, we are not able to solve Eqs.

(33) analytically. However, for the bandwidth in which
we are interested, 0 is usually small so that we can make
the approximation that g5 «1 and set e'&s= 1, which is
equivalent to perfect phase match with hk& =Ak2=0 for
all frequencies. Under this approximation, Eqs. (33) can
be solved with another transformation of h,~(g)
=hf(g) tanhg. The solutions of Eqs. (33) for 5=0 are
given as

h
&
(g) = —(tanhg+g sech g)/v'2,

h2(g)=sech g,
h f (g) = —v'2 tanhg,

h ~2(g) = 1 —
g tanhg,

and from Eqs. (32), we have

(36a)

ff(g)=(1 —gtanhg) sechg,

f2 (g) =V 2 tang sechg,

f~~ (g) =sechg,

f2(g) =(sinhg+gsechg)/&2 .

(36b)

Substituting the functions f, h in Eqs. (36} into Eqs. (26),
we obtain the input-output relations for the quantum
fluctuations of fundamental and harmonic fields for arbi-
trary interaction length g. They have the following form:

andd(hf)', dhi= —i/2hze'~, =~2(hf }'e '~ sech g,
dg

'
dg

with h i (0)=0 h 2 (0)= 1 . (33b)

It is easy to check from the above equations that

[h", (g, Q)[h~(g, n)]'+h "(g,Q)[h~(g, n)]"] =0 .
IV. QUANTUM FLUCTUATIONS

IN HARMONIC GENERATION

A. Quadrature-phase squeezing

With the input-output relations in Eqs. (26) and solu-
tions in Eqs. (37) for the coefficients f, h at g5«1, we
find the propagation of spectrum of squeezing in the non-
linear medium as

s", (g, n) = If", (g)l's", (o,n)+ If",(g) I's;(o,n),
s",(g, n) = Ih", (g) I's", (o,n)+ Ih", (g) I'u", (o,n),
s~j(g, Q) = Iff(g)I's~j(0, Q)+ I f~p(g)I's~q(o, n),
s&(g, n&= Ih;(g)I's~~(o, n}+Ih;(g&I's,'(o, n),

(38)

where S;"'~(o,n}, S;"'~(g,n) (i =1,2) are the input and
output spectra of squeezing for the quadrature-phase am-
plitudes of the fundamental and harmonic fields, respec-
tively, and are defined from the relations

(x;(Q)x;(Q') ) =5(Q+ Q')S; (Q),

(y;(Q)y;(Q') ) =5(Q+Q')Sf(Q)

(i =1,2}. To obtain Eqs. (38) from Eqs. (26), we assumed
that the inputs of the fundamental and the harmonic field
are independent of each other and used the relations in
Eqs. (29). It can be proved from Eqs. (2), (13), (14), (20),
and (23) that S;"(Q) (i =1,2) is the spectrum for the in-
tensity fluctuations of the fundamental and the harmonic
fields and Sf(Q) (i =1,2) is for the phase fiuctuations.

Because there are analytical solutions for the functions
f,h at g5 «1, we will mainly concentrate on the case of
g5 «1 in this and following subsections. For coherent-
state input of the fundamental field and vacuum-state in-
put of the harmonic field, S;"'i'(0)= 1 (i = 1,2). Therefore,
from the solutions off,h in Eqs. (37},we can find that

Sf(g, n)=(l —gtanhg) sech g+2tanh gsech g,

S2(g, Q) =(tanhg+g sech g)2/2+sech g,

Sf ( g, Q ) =sech g+ (sinhg+ g sechg) /2,

S2(g, n)=2tanh g+(1 —gtanhg)

(39)

y, ( g) =y, (0)sechg+y 2 (0)(sinhg+ gsechg )/Y2,

yz(g) = —y, (0)(~2tanhg)+y2(0)(1 —
g tanhg) .

As for 5%0, the solutions to Eqs. (24) and (25) will have
the general form in Eqs. (26). We can solve Eqs. (33) nu-
merically for the coefficients f,h. We will postpone the
discussion on the case of 5%0 to Sec. IV C.
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{a)

1.0

0.8 .

S,(g, a)
0.6-

04.

0.2

which are plotted in Fig. 1 . It is seen that the intensity
fluctuations (x quadrature) of both fundamental and har-
rnonic fields are squeezed below the vacuum fluctuation
of 1. For large enough g, the intensity fluctuation of the
fundamental field can be suppressed and an arbitrary
amount of squeezing is achieved whereas only half of the
input vacuum fluctuation is suppressed for the intensity
fluctuation of the harmonic field. On the other hand, the
phase fluctuations (y quadrature) of both fields, especially
of the fundamental field, increase quickly as the fields
propagate along the nonlinear medium. By calculating
the products S", (g)S~i(g) and Sz(g)S~i(g), we find that
S;"(g)S~(g)) 1 (i =1,2) and therefore the output funda-
mental and harmonic fields are not in a minimum uncer-
tainty state.

The presence of squeezing in the fundamental field is
attributed to the sech( factor in the transformation of
(32). This factor comes from the tanhg-dependent inten-
sity of the harmonic field [Eqs. (20)]. Therefore squeezing
of the fundamental field in the second-harmonic genera-
tion process results from parametric amplification
(deamplification) pumped by the generated harmonic
field. This point can be better understood in type-I I har-
monic generation where two orthogonally polarized fun-
damental fields are coupled to each other as well as to the
harmonic field. After a rotation of 45' of the polariza-
tions, the fundamental fields are transformed to two other
orthogonally polarized fields denoted as a and b which
are decoupled from each other but each field is still cou-
pled to the harmonic field in the same way as type-I
second-harinonic generation process [17]. Thus the

where the tanhg factor comes from the harmonic field
which acts as the pump. The solutions to Eqs. (40) are
given as

x, (g) =x, (0) cosh(,

y, (g) =y, (0) sech( .
(41)

Thus X, is amplified and y, is deamplified just like in

parametric amplifier. If the input to x „y, is in vacuum
state, then the output is in a minimum uncertainty state
with y, squeezed. It is interesting to note that in this
case the amount of squeezing S, (g) =sech g= 1 —

r) with
i)=tanh g being the efficiency of mean field energy con-
version from the fundamental field to the harmonic field
[Eqs. (20)]. The situation here is different from a para-
metric amplifier with a constant undepleted pump be-
cause the strength of the pump field is a function of g
[~cz~ =(No/2) tanh g], which results in the cosh(- and
sech(-dependent gains for field b

type-II process is decomposed into two type-I processes.
The two processes are coupled indirectly through the
harmonic field. If we only allow the coherent beam input
to one of the fundamental fields, say field a, then the
equations for the propagation of this field and the har-
monic field are exactly the same as Eqs. (12) and Eqs. (16)
and (17) under the linearization approximation. On the
other hand, for the other orthogonally polarized funda-
mental field b, it behaves like the subharmonic field in
parametric amplification process with the harmonic field
as the pump field. Actually, for the quantum fluctuations
b,b of field b, the equations are the same as Eqs. (17) ex-
cept that the coherent component c

&
of the fundamental

field is zero for field b and c2 is given in Eq. (20). The
quadrature-phase amplitudes x &,y, of the field b can be
proved to satisfy the following equations for (5« 1:

dx ) =x, tanhg,
(40)

= —y, tanhg,

0,0 B. Quantum correlations in harmonic generation

{b) From Eqs. (36), we find that f~„ f i, f"„and hz go to
zero for large g with f, ,f ~

-e C, f i -ge C, and

hz —e c, whereas f2 and h2 go to infinity for large g
with f~z-e& and hz-g. Therefore, for large g, Eqs. (34)
can be approximated as

S,'', ~g, e~
x, (g)= f",(g)x, (0)+f~(g)x, (0),

x~(g) =h;(g)x, (0),

y i (g) =f;(g)yp(0),

y2(g) = h i (g)y &
(0)+h &(g)y2(0)

(42, )

FIG. l. (a) Intensity noise and (b) phase noise of the harmon-
ic and fundamental fields for Q =0 as they propagate along the
nonlinear medium. g—:z /zp is the normalized distance.

for e ~«1. So x2(g) of the output fundamental field is
perfectly correlated with xi(0) of the input harmonic
field while y, (g) of the output harmonic field is perfectly
correlated with yz(0) of the input harmonic field while
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yi(g) of the output harmonic field is perfectly correlated
with yz(0) of the input fundamental fields. This can be
seen in the correlation functions C defined as

I &x,(g)x, (0) ) I

C ..t„;.(g)=—
V'& [,(g)]') & [ (0)]')

lh "(g)
I

+Ih" I'+ Ih" I'

I &y, (g)y, (0) ) I

C .„, ;„(g)—=

Q& [y,(0)]') & [y, (g)]')

If;(g)l
v'If' I'+ If' I'

(43)

Because of the relations in Eqs. (32), we have
C .„, ;„(g)=C,„, ;„(g). In Fig. 2(a), we plot C,„, ;„(g),

C,„, ;„(g } as a function of g and find that C = 1 for g )2.

On the other hand, because f", If z =h~z/h~& -g~ pp for
large g, there are also good correlations between the in-

put and output of the amplitudes x&,yz. In Fig. 2(b), we
plot the correlation function C,„, ;„(g)=C,„, ;„(g) as a

function of g and find that they approach 1 for a larger g.
Because of the correlations discussed above, there also
exist good correlations in the output between the ampli-
tudes x, (g),xz(g) as well as between yi(g), yz(g). In
Fig. 2(c), we plot the correlation functions
C,„, ,„,(g)=C,„, ,„,(g) as a function of g and find that

X1 X2 J'2

they approach the value of l for perfect correlation for
large g.

The correlations between the input and output as well
as between the outputs of the fundamental and harmonic
fields suggest the possible implementation of this process
for QND measurement under the criteria given by Hol-
land et al. [18] (HCWL criteria). Consider the ampli-
tudes x, and y2. The probes for the two quantities are x2
and y„respectively. The first two HCWL criteria for
QND measurement, i.e., the criteria on the measurement
and the degradation of the signal field are satisfied by
both x, and y2 because the correlation functions

j C .„, ;„(g),C .„, ;„(g)j and [ C .„, ;„(g),C .„, ;„(g)]
—1

as g~ pp. As for the third criterion on the state prepara-
tion, we find the conditional variances

V(x', "'Ixz"')= V[x, (g)][1—C .„, .„,}~0

(a)

1.0

0.8

or

(0 06

Cyoutyin (Q
0.4

0.2

0.0

(b)

1.0

0.8

or

0.S

Cy outy in (Q
0.4

y2 y2

0.2

0.0

(c)

1.0

0.8 .

C„out out(Q 06 .

OI'

Cy outy out (Q
0.4 .

y2

0.2 '

0.0

the noise-free attenuator, because of the good correla-
tion as expressed in the correlation functions
[C .„, ;„(g),C .„, ;„(g)] ( —1 as g~ pp ), the process is

simply a realization of optical tap or quantum beam
splitter for yz [19,20], where input quantum signal is split
without change of signal-to-noise ratio. Actually, the in-
put signal is greatly amplified because fz

—e~ and h z
—g

for large g.

as g~ pp, (44a)

V(yz"'Iy', "')=V[yz(g)][1 —C .„, .„, ] ~2

as g~pp . (44b)

Therefore xi is a QND quantity by the HCWL criteria
although it is attenuated heavily ( —ge ~} in the process.
As for the quantity yz, if we attenuate yz(g) by the
amount of I/h~z(g) in such a way that is noise-free, i.e.,
yz=yz(g)/hz(g), then V(yz"'ly;"')~0 for large g and
therefore yz is also a QND quantity. Even without

FIG. 2. (a) Correlations between intensity fluctuations of the
output of the harmonic field [x2(g)] and the input of the funda-
mental field [x,(0)] or between phase fluctuations of the output
of the fundamental field [y, (g)] and the input of the harmonic
field [y2(0)]. (b) Correlations between intensity fluctuations of
the output and the input of the fundamental field [x,(g) aud
x, (0)] or between phase fluctuations of output and the input of
the harmonic field [y2(g) and y2(0)]. (c) Correlations between
intensity fluctuations of the outputs of the fundamental and har-
monic fields [x&(g) and xz(g)] or between phase fluctuations of
the outputs of the fundamental and harmonic fields [y, (g) and
V2(0)] g=~l~p.
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C. E8'ect of large frequency offset (5%0)

(a)

0.81

0,80 (=0.5

S, (g, Q) 0.79

0.78-

When 5%0, there are no analytical solutions available
for Eqs. (33). However, we can integrate them by numer-
ical method. Ir. Figs. 3(a) and 3(b), we plot the spectrum
S, (g, Q) of squeezing calculated froin Eqs. (38) for the
fundamental field as a function of 5( ~ 0) with the dis-
tance g fixed at two values of (0.5,2). Both the spectra de-
crease as 6 increases and eventually reach the value of
sech g (dashed lines in Fig. 3) for large 5. This result is
somewhat counter intuitive because in most schemes for
the generation of squeezed states, the amount of squeez-
ing decreases for large offset frequency 0 (=co—coo or

2coo)—Usua. lly, squeezing is best for either A=O or
nearby and will diminish as 0 gets large. This is because
the coupling between the amplitudes a (II ) and a (

—0 ) is
responsible for the squeezing effect and decreases for
large Q. To understand the counterintuitive effect for the
case here, let us go back to Eqs. (24) and (25). Notice the
fact that the terins with the e'~ factor in Eqs. (24) and
(25) will have a 1/5 dependence for large 5 after the in-
tegration and can be neglected for large 6. Without the
e'~ terms, Eqs. (24a), (24b), (25a), and (25b) are indepen-
dent of each other, which means that there is no coupling
between the fundamental and harmonic fields as is the
case for small 5. It is not surprising for S) ((,Q) to ap-
proach sech g in large 5 if we notice that Eqs. (24a) and
(25b) without the e'~ terms are similar to Eqs. (40) with

solution in Eqs. (41) which are for a parametric amplifier
pumped by the generated harmonic field. This indicates
that as 6 increases, the coupling between the quantum
fluctuations of the harmonic and fundamental fields be-
comes weak and the fundamental field will act as in a
parametric amplifier. Therefore the coupling between the
harmonic and fundamental fields introduces extra noise
to the fundamental output from the harmonic input so
that the noise reduction in fundamental output field is
better when the two fields are decoupled.

On the other hand, as shown in Fig. 4 where we plot
the spectrum Sz($, 0) as a function of 5 for two values of
g (=2, 5), the effect of squeezing for the harmonic field
diminishes as 5 becomes large, and eventually Sz((,Q)
reaches the vacuum noise level of 1 for large 6. Therefore
the squeezing in the harmonic field can be understood as
coupling between the harmonic and fundamental field
and will decrease as the coupling between the fundamen-
tal and harmonic fields becomes weak for large 5.

Recall that the coupling between the quantum fluctua-
tions of the harmonic and fundamental fields is responsi-
ble for the correlation shown in Fig. 2. Therefore, as 6
becomes large, we should expect a degradation in these
correlations. Indeed, as shown in Fig. 5, where we plot
C .„, ;„,C .„, .„, as a function of 5 for fixed (=2, the

correlation functions decrease as 5 increases. On the oth-
er hand, C .„, ;„ increases with increasing 5 and becomes

1 for some values of 5 as shown in Fig. 6. This is because
the fundamental field acts as in a degenerate parametric
amplifier for large 5 and there exists perfect correlation
between input and output in degenerate parametric
amplifier as seen in Eqs. (41).

We may estimate the bandwidth for the squeezing of
the harmonic field and the correlations between the two
fields from the definition of 5 ( =b,nQzo/c). Usually in
harmonic generation, the power is strong enough to ob-
tain significant conversion efficiency for a crystal of 10
mm length, so we can set the characteristic
z&&=—1/+2K No=10 mm. By definition,

O.77
10 20 30 40

Bn2
An =—coo 2

Bco

"dn,

Bco

ere 1 Bn2

coo 2 Bk

Bn&

0.25 and for the harmonic generation at 860 nm with KNb03

0.20

0.15

0.10

g= 2.0
1.0

0.9

0.05

0.00
10

0.7

0.6

FIG. 3. Spectra of squeezing for intensity fluctuations of the
fundamental field for 0 around 0,=c /z0hn but
((Qz ——(c/zohn, )' at propagation distances (a) /=0. 5, (b)
(=2.0. 5—:0/f2, is the dimensionless frequency normalized to
01.

0.5 10

FIG. 4. Spectra of squeezing for intensity fluctuations of the
harmonic field at propagation distances /= 2 and 5. 5—:0/t2, is
the dimensionless frequency normalized to 01.
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for Q- Qz/g', Eq. (22a) changes to

0.8
C„ t„' (D)z2 z)

0.6 .
g= 2.0

2b8 (Q)= —e '5& ( —Q)e '~ tanhg (45)

out out(&)zt z2 04

0.2 .

0.0
10

where o.—=Q/Q2 is the normalized frequency to an-
other characteristic frequency Qz =—(c /2hn ]z]])'
=coo[4m( B—n ]/BA)z]]] '/. Usually, Qz»Q]. For the
quadrature-phase amplitudes defined in Eqs. (23), we
have

FIG. 5. Correlation functions between intensity fluctuations
of the output of the harmonic field and the input of the funda-
mental fields (dashed curve) and between the intensity fluctua-
tions of the outputs of the fundamental and harmonic fields
(solid curve) as a function of normalized frequency 5:—Q/Q1 at
the distance (=2.

8x i
1 1

= —(x cosgcr —y singo ) tanhg,

=(y, cosg]T +x, sin(a ) tanhg .

(46)

crystal, we have Bn2/t)A, = —1.4 ]ttm
' and Bn] /M,

= —0. 14 pm '. Thus

5"]/ 2IC No

2'
t)n2 Bn]

2 BA, BA,
=3.7X10 '5.

With 5=1 as the characteristic frequency, Q=Qi
=3.7X10 coo=81 6Hz at 860 nm. This is the band-
width for the correlations between the harmonic and fun-
damental fields as well as the bandwidth for the intensity
squeezing in harmonic field.

For the squeezing in the fundamental field, we find that
from numerical solutions of Eqs. (24), the amount of
squeezing approaches sech g for large 5 [Figs. 3(a) and
3(b)] and no frequency limit on squeezing. This is be-

l CTcause we made the approximation e '~ = 1 in obtaining
Eqs. (24). To estimate the bandwidth of squeeziny for the
fundamental field, we need to keep the e '~ in Eq.

l CT(22a). However, when the e '~ term becomes
significant, 5 will be very large because 5 comes from first
order in the expansion. Thus we can neglect the first
term on the right-hand side of Eq. (22a) because it has
1/5 dependence for large 5 after integration. Therefore,

x] (g) =g„(g,& )x ] (0)+g (g, & )y] (0),

y](g) =k, (g, o )x](0)+k~(g, cr )y](0),
(47)

with g„(0)=1, g (0)=0 k„(0)=0, k (0)=1.By solving
the coefficients g, k numerically, we can calculate the
spectrum of squeezing S]((,Q)
(=[g„(g,o )]z+[g (g, o )] ). In Fig. 7, we plot S]((,Q)
as a function of o for fixed (=2. As o increases,
S]((,Q) arises from nearly zero (sech g) to above 1 and
oscillates around 1, and eventually converges for large cr

to the level of 1 for the vacuum fluctuation. Therefore
from Fig. 7 we find that the bandwidth for squeezing for
the fundamental field is such that o -0.5, which corre-
sponds to Q=O. SQ2=16 THz and 5=200 with the ratio
Q2/Q]=400»1 for the data given earlier on KNb03
crystal. This bandwidth is much wider than the one cal-
culated earlier for the correlations and the harmonic
field. The spectrum of squeezing S](g,Q) for the funda-
mental field at (=2.0 is a combination of Fig. 3(b) for
Q-Qi &&Q2 and Fig. 7 for Q-Q2.

It is easy to check that (d /dg) [x,(g, Q),y, (g, Q') ]
=0, thus [x,((,Q),y, ((,Q')]=[x, (O, Q),y](0,Q')]
=i5(Q+Q') for any g. As in Eqs. (24) and (25), the
solutions to Eq. (46) have the form

1.0

0.9( out ]n (+)Zi Z]

7'

or 0.8

Q out in (+)
V2 V2 0.7 S, ((, D) 4.

0.6

0.5
10

FIG. 6. Correlation functions between intensity fluctuations
of the output and the input of the fundamental field' or phase
fluctuations of the output and the input of the harmonic field as
a function of normalized frequency 5=Q/Q1 at the distance
=2.

FIG. 7. Spectrum of squeezing S](g, Q) of the intensity fluc-
tuation of the fundamental field for frequency Q around
Q2 =—(c/zpbn, )' »Q, =clzpbn at /=2. o'—=Q/Qi is the di-
mensionless frequency normalized to Q2.
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V. DISCUSSION AND SUMMARY

In this paper, we derived the input-output relations for
the propagation of the quantum fluctuations of the fields
in second-harmonic generation. From these relations, we
obtained the propagation of the spectra of squeezing and
found correlations in the quantum fluctuations of the am-
plitudes between the fundamental and harmonic fields.
The bandwidths of the spectra of squeezing and the
correlations are determined by the phase mismatch in the
frequencies other than the center frequencies coo and 2coo

though the first-order phase mismatch that is linear in
frequency offset 0 will enhance the effect of squeezing for
the fundamental field due to decoupling of the harmonic
and fundamental fields. The bandwidth of squeezing for
the fundamental field is limited by the phase mismatch in
second order of the frequency offset 0 and is much larger
than the bandwidth for correlations and squeezing in har-
monic field.

In the linearization approximation, we assumed strong
fundamental field at frequency ~o as compared to the
quantum fluctuations and the fields at other frequencies.
Therefore the propagation relations in Eqs. (26) with
solutions of Eqs. (37) are valid for any kind of input field,
quantum or classical. Of course, when input at funda-

mental frequency is small, linearization fails. Thus we
should not expect to see the oscillation effect [7] found in
harmonic intensity for small intensity of fundamental in-

put where quantum fluctuations are large enough to
influence the dynamics of the process. On the other
hand, the existence of such effect requires large non-
linearity of the material as expressed by the coupling con-
stant E. For second-harmonic generation in the non-
linear materials available so far, we are safe in making the
linearization approximation.

Although we assumed that the mean input fundamen-
tal field is monochromatic [the 5 function in Eqs. (13) and
(14)], the treatment should be valid for quasimono-
chromatic input fields whose bandwidth is much nar-
rower than Q„f12. On the other hand, it is easy to ex-
tend the treatment to include wide band input fundamen-
tal field. Finally, we should point out that the treatment
given in this paper does not include any dissipative loss
which will generally degrade the effect of squeezing as
well as the quantum correlations.
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