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Chaotic dynamics of semiconductor lasers with phase-conjugate feedback
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This paper considers the chaotic dynamics of semiconductor lasers in the presence of phase-conjugate
feedback (PCF). Bifurcation diagrams are used to explore the chaotic dynamics and show the difference

between the conventional feedback and the PCF. In general, semiconductor lasers display richer chaotic

dynamics in the case of PCF. Period-doubling, quasiperiodic, and intermittency routes to chaos are ob-

served in numerical simulations performed by using realistic parameter values. For weak values of PCF,
the laser can be phase locked to the phase provided by the phase-conjugate mirror, resulting in dramatic

narrowing of the laser linewidth. Higher values of feedback result in periodic output, as the laser relaxa-

tion oscillations become destabilized. At a critical value of feedback, the laser enters the chaotic regime,

resulting in increased low-frequency intensity noise and substantial broadening of the laser line. Finally,

the effect of detuning between the solitary-laser frequency and the frequency of the phase-conjugate-

mirror pump laser is explored.

PACS number(s): 42.55.Px

I. INTRODUCTION

Semiconductor lasers are known to be extremely sensi-
tive to the optical feedback occurring when a portion of
the laser output is fed back into the laser cavity after be-

ing reflected from an external reflecting surface. The
effect of optical feedback on semiconductor lasers has
been extensively studied [1—6]. Quasiperiodic [3], inter-
mittency [4], and period-doubling [5,6] routes to chaos
have been observed depending on the operating condi-
tions. Recently, considerable attention has been paid to
the case in which optical feedback occurs as a result of
reflection from a phase-conjugate mirror (PCM) [7—17].
Such feedback is referred to as phase-conjugate feedback
(PCF) and differs considerably from conventional optical
feedback (COF) since the phase of the returned light is re-
versed during reflection. Although the stability of semi-
conductor lasers in the presence of PCF has been studied
[15—17], the chaotic dynamics of such lasers have not yet
been explored in detail.

In this paper, bifurcation diagrams are used to identify
the chaotic and nonchaotic regions and show the
difference between the PCF and COF. In general, semi-
conductor lasers display richer chaotic dynamics in the
case of PCF. Period-doubling, quasiperiodic, and inter-
mittency routes to chaos are observed in numerical simu-
lations performed by using realistic parameter values.
The noise characteristics in the presence of PCF are stud-
ied by adding the Langevin noise terms representing the
effect of spontaneous emission to the rate equations and
solving them numerically. For weak values of PCF, the
laser can be phase locked to the phase provided by the
PCM, resulting in dramatic narrowing of the laser
linewidth. This narrowing is shown in both the frequen-
cy noise spectrum (FNS) and the laser line shape. As the

PCF is increased, all the spectra show that the relaxation
oscillations, which are shifted by 30% from the solitary-
laser value, become undamped. With further increase in
the PCF, the laser output becomes chaotic at a critical
value of PCF. In the chaotic regime, the intensity noise
at low frequencies (below 100 MHz) is considerably
enhanced and the relaxation-oscillation peak becomes
much broader. In addition, the spectral line shape devel-

ops strong satellite peaks at multiples of the relaxation-
oscillation frequency, which merge together to result in a
broad line shape indicative of coherence collapse. We as-
sume for simplicity that the PCF is provided by a perfect
phase-conjugate mirror (PCM) that responds almost in-

stantaneously. Four-wave mixing inside a fast nonlinear
medium (response time ( 1 ps) pumped by a narrow-
linewidth laser can provide a PCM whose performance
approaches the ideal PCM assumed here. We consider
both degenerate and nearly degenerate four-wave mixing.

The paper is organized as follows. In Sec. II the rate
equations for a semiconductor laser in the presence of
PCF are given and the various parameters are described.
These rate equations are solved numerically in Sec. III,
and the chaotic dynamics are investigated through the
use of bifurcation diagrams. The effect of chaos on the
relative intensity noise (RIN), the frequency noise, and

the spectral line shape is shown in Sec. IV. In Sec. V we-
consider the case of a PCM employing nearly degenerate
four-wave mixing such that a detuning exists between the
PCM pump laser and the semiconductor laser under
study. A summary of the basic results and conclusions
are presented i,n Sec. VI.

II. RATE EQUATIONS WITH PCF

The dynamical behavior of semiconductor lasers is
generally modeled by a set of rate equations by assuming
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that the dipole relaxation time (Tz in the terminology of
two-level systems) is short enough that the gain medium
is able to respond almost instantaneously to the changes
in the optical field. The effect of PCF on the semiconduc-
tor laser depends on the type of PCM and is different for
PCM's based on photorefraction and four-wave mixing.
Here we consider the case of a four-wave-mixing PCM
pumped by a laser whose frequency is close to the operat-
ing frequency of the semiconductor laser. In the presence
of PCF, these equations can be written as (assuming
single-mode operation) [15—17]
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where E(t) is the slowly varying complex amplitude of
the intracavity optical field, h~ =cop —

co~ is the frequency
mismatch between the solitary semiconductor laser and
the laser used to pump the PCM, ~ is the photon life-
time, a is the linewidth enhancement factor, N is the elec-
tron population, N„& is its steady-state value in the ab-
sence of feedback, I is the injection current, q is the mag-
nitude of the electron charge, ~, is the electron lifetime,
and 6 is the net rate of stimulated emission assumed to
vary linearly with the electron population as

G =G~(N No)(1 —eP—) .

In Eq. (3), No is the transparency value of N and the pa-
rameter Gz is related to the derivative of the optical gain
with respect to the carrier density; P is the photon num-
ber, and c. is the nonlinear-gain parameter. The Langevin
noise sources FE(t) and F~(t) represent the noise intro-
duced by spontaneous emission and the shot noise due to
carrier generation and recombination, respectively.

The last term in Eq. (1) is due to PCF and contains
four parameters ~, r, b,co, and PpcM. The feedback rate a
and the round trip time ~ are given by

(1—R~ ) ri, R pcM 2L,„,1/2

K—
7 7

R C
(4)

where g, is the coupling efficiency, R is the laser facet
reflectivity, ~L is the round trip time in the laser cavity,
R PCM is the reAectivity of the PCM, and L,„tis the spac-
ing between the laser and the PCM. The parameter PpcM
accounts for a constant phase shift occurring at the
PCM. The round trip phase shift 2hto(t —w/2) in Eq. (1)
results from the phase-conjugate nature of the feedback
and is nonzero only because of the frequency mismatch;
when hco=O, any accumulated one-way phase shift gets
canceled exactly during the return trip. Note that the
PCM is assumed to respond instantaneously in Eq. (1}. If
the PCM response is slower than the round trip time v., K

would become time dependent. This case can be studied
by adding a third equation that governs the PCM dynam-

ics to the set of Eqs. (1) and (2).
The steady-state solution of Eqs. (1) and (2) has been

investigated [15—17]. The results show that for weak
feedback —the exact value of which depends on the
detuning —the laser frequency locks to that of the PCM
and the phase of the laser is pinned to a value determined
by the phase of the PCM according to

2/+ PpcM+tan '(a') =2m' (5)

2K

(1+eP, )+I+a' (6)

where use was made of Eq. (5). The change in gain,
therefore, depends only on K and various material param-
eters. In the same manner, Eqs. (5) and (6) can be used to
write the frequency shift in the presence of weak PCF as

hco= —,'ab, G —a. sin(2$+PpcM) =
—,'ahG+ =0 .&1+a'

(7)

Therefore, when the laser is in this phase-locking regime,
there is no induced frequency shift for the degenerate (no
detuning) PCM regardless of the feedback phase or the
phase incurred at the PCM. These results stand in stark
contrast with the case of COF, for which phase locking
can only occur for a single value of feedback phase,
namely coor= —tan '(a').

However, in a manner similar to COF—when the PCF
exceeds a critical value —relaxation oscillations become

where P is the (slowly varying) steady-state phase, m is an
integer, and a'=al(1+eP, ) [18], with P, =(Ger, )

representing a saturation photon number. In contrast,
for normal feedback the steady-state phase remains arbi-
trary, as in the case for no feedback. It was previously
predicted from linearized theory [17] that the pinning or
locking of the laser phase would lead to a laser line shape
consisting of a spike at low frequencies (since the long-
time behavior of the phase is locked}, superimposed on a
broader pedestal (since spontaneous emission still causes
the short-time behavior of the phase to wander). This is
confirmed in this paper by simulation of the full non-
linear equations, as shown in Sec. III.

Another difference between PCF and COF in the
weak-feedback regime concerns the dependence on feed-
back phase a)pT. For COF the laser is very sensitive to
the precise value of the feedback phase. The threshold
gain is either increased or decreased, the laser frequency
can be shifted either positively or negatively, and the
laser line is either broadened or narrowed depending on
the exact value of feedback phase. In contrast, for a
single-mode laser with PCF and zero detuning, the feed-
back phase does not enter into the equations, making the
results independent of feedback phase. Specifically, the
change in gain induced by feedback can be written as

2K cos(2$+PpcM)
1+cPs

2Ka

a+1+a'
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undamped and the laser output becomes periodic. With
further increase in the PCF, the laser enters the chaotic
regime. In this paper we explore this chaotic region. To
investigate the chaotic dynamics, we have solved Eqs. (1)
and (2) numerically by using a fourth-order Runge-Kutta
algorithm. The parameter values used correspond to a
typical index-guided Ga-Al-As semiconductor laser likely
to be used in optical recording systems. These values are
listed in Table I and result in a threshold current of 61
mA and a slope efficiency of about 0.5 mW/mA. We ex-
pect qualitatively similar conclusions for comparable
laser parameters. The chaotic dynamics are most sensi-
tive to the external cavity length, the linewidth-
enhancement factor, and the nonlinear-gain parameter;
the dependence on these parameters is investigated
below. Most of the simulations are presented for a
solitary-laser power of 1.6 mW, which is a typical value
used for reading data from an optical disk in optical data
recording systems.

III. BIFURCATION DIAGRAMS

For quantifying the chaotic dynamics occurring in
single-mode lasers, the use of bifurcation diagrams and
Poincare sections is well established [3]. The bifurcation
diagram, in particular, is a powerful tool for investigating
the laser behavior with optical feedback, since the dia-

gram shows at a glance for which strengths of feedback
the laser operates stably, periodically or chaotically. We
begin by showing a series of bifurcation diagrams to point
out the differences between PCF and COF. Figures 1(a)
and 1(b) show bifurcation diagrams for an external cavity
length of L,„,=10 cm and linewidth-enhancement factor
a=3 for the cases of PCF and COF, respectively. For
the case of COF, the feedback phase was chosen to be
zero; different feedback phases do not significantly
change the conclusions drawn here. The feedback phase
for PCF is irrelevant since it gets canceled in the
roundtrip. Also, the phase shift obtained at the PCM,
PpcM, although affecting the phase-locked state [see Eq.
(5)], does not change the bifurcation diagrams. The bi-

furcation diagrams were obtained by generating a time
series for each feedback level and then noting the carrier
number X when the laser power crossed the solitary-laser
value, P„&.A trajectory of at least 160 ns was discarded
to allow for transients to die out. Generally speaking, a
single crossing in the bifurcation diagram implies a
periodic output whereas multiple crossings indicate
period doublings, quasiperiodicity, or chaos. The ran-
dom noise terms have been neglected in making these dia-
grams, so that we may separate the deterministic effects
from stochastic effects. The parameter ~~ is varied over a
wide range (ar =0—5) covering R pcM in the range from
0% to 5%.

A comparison of Figs. 1(a) and 1(b) reveals both the
similarities and the differences between PCF and COF.
In both cases, the steady state (corresponding to the
blank regions without any dots) becomes unstable at a
critical value of ~, and the laser output becomes periodic,
presumably as a result of the undamping of relaxation os-
cillations. However, several differences exist between the
bifurcation diagrams for PCF and COF. First, although
in both cases chaos is interrupted by regions of nonchaot-
ic output, for PCF the output does not become complete-
ly stable (cw) as it does in the COF case. That is, in the
COF diagram [Fig. 1(b}],following the first chaos region,
the laser reverts to a fixed-point solution (no intersection
in the bifurcation diagram} for ~r) 2.2; in the PCF dia-

gram, on the other hand, a chaotic solution is always fol-
lowed by a periodic limit-cycle solution (a single intersec-
tion in the bifurcation diagram). The second obvious
difFerence between the two diagrams is that the chaotic
regions for PCF are qualitatively more complicated than
those for COF. That is, the bifurcation diagram for PCF
is more completely filled than that for COF. Somewhat
surprisingly, the correlation dimensions calculated from
time series show little difference between PCF and COF.
For example, the dimensions were calculated for feed-
back levels corresponding to the middle of the first chaot-
ic attractor in Fig. 1: sr=1. l for PCF [Fig. 1(a)] and
sr=1. 5 for COF [Fig. 1(b)]. The PCF dimension was
2.52, compared to 2.48 for the COF case. Such a trend

TABLE I. Typical parameter values used in numerical simulations for a 780-nm Ga-Al-As semicon-
ductor laser

Parameter

Laser cavity length
Solitary laser roundtrip time
Linewidth enhancement factor
Laser facet reflectivities
Photon lifetime (using internal loss of 65 cm ')

External cavity length
External cavity roundtrip time
Carrier recombination time
Gain coefficient
Transparency carrier number
Nonlinear-gain parameter
Bias current
Average output power
Coupling efficiency
Feedback phase

Symbol

CX

R, ,R2
7 p

L ext

+e

GN

No
C

I~
P,„,
9c

Value

350 pm
9.3 ps
3
0.9,0.12
1.4 ps
10 cm
0.67 ns
2 ns
1.19X 10' s
1.64 X 10
3.57 X 10-'
65.1 mA
1.6 m%
2%
see text
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FIG. 1. Bifurcation diagrams in the cases of (a) PCF and (b)
COP for L,„,=10 cm and a=3. Other parameter values are
shown in Table I. In the absence of feedback (~~=0) the laser
operates stably with 1.6 mW output power.

was found for other ~r values, but the difference is prob-
ably not statistically significant. The program used to
calculate the dimensions was based on standard tech-
niques [20] and the program was tested on the Henon
map, for which the correlation dimension is well known.
The comparison of dimensions is complicated by the fact
that the chaotic attractors occur for different values of ~~
for COF and PCF. In general, when comparing two
chaotic regions of the same type of feedback, the one for
the larger ~~ value will tend to have the larger correlation
dimension.

A third difference which is not apparent from the bi-
furcation diagram involves the frequency of the first
periodic solution. The frequency is best seen by calculat-
ing the intensity-noise spectrum and, for the COF case,
the frequency is very close to the solitary laser
relaxation-oscillation frequency vii (773 MHz for the pa-

rameters in Table I). This provides strong evidence that
the relaxation oscillations have become undamped. How-
ever, in the case of PCF, the intensity-noise spectrum re-
veals that the period of oscillation is 500 MHz, which is
much smaller than v„and is exactly 1/3 of the external
cavity roundtrip frequency 1/r. If this frequency is still
to be interpreted as the relaxation-oscillation frequency,
then it seems to have been pulled away from the solitary-
laser value by almost 30%%uo.

The origin of these differences between the two types of
feedback is related to the methods by which the stable
solutions become unstable. In either case, a standard
small-signal analysis of the laser-rate equations for pho-
ton number, phase, and carrier number leads to eigenval-
ue equations whose solutions determine. the steady-state
stability. In the case of relatively weak feedback, this set
of eigenvalue equations reduces to a cubic polynomial
with three roots (see Refs. [16,17]), a complex-conjugate
pair, and one real root. When no feedback is present, the
real root is zero and the imaginary and real parts of the
complex-conjugate pair represent respectively the fre-
quency and the damping rate of the relaxation oscilla-
tions. When feedback is present, the laser can go unsta-
ble in two ways: (i) when the real part of the complex-
conjugate pair becomes positive (corresponding to un-
damping of relaxation oscillations) and (ii) when the real
root becomes positive. In the case of COF, when the real
root becomes positive it implies an external cavity mode
jump to a stable mode. For PCF in a single-mode laser
and zero detuning, there are no external cavity modes;
once this real root becomes positive, the laser remains un-
stable (i.e., the laser remains in a non-cw state). This is
seen in the bifurcation diagrams for PCF, because there
are no stable regions after the first route to chaos. Also,
the real root becomes positive at lower values of feedback
than for COF. This may partially explain the fact that
the chaotic dynamics tends to be more complex for the
case of PCF. It must be pointed out that only in the
weak-feedback limit (ar«1) ca.n the roots from the ei-
genvalue analysis be found analytically, thereby yielding
an expression for the frequency of relaxation oscillations
in the presence of feedback [1].

The chaotic dynamics is quite sensitive to the external
cavity length L,„,. Figures 2(a) and 2(b) show bifurcation
diagrams under conditions identical to those of Fig. 1, ex-
cept that L,„,has been reduced to 5 cm. In the case of
COF, the laser becomes much less sensitive to the feed-
back since the cw state remains stable over a wide range
of a~ except over narrow windows of chaos seen in Fig.
2(b). In contrast, the cw state is never stable for PCF
once it becomes unstable at a relatively small value of ~~.
The chaotic regions are much wider in the case of PCF
and are interrupted by periodic or quasiperiodic states.
For higher values of feedback, the chaos develops follow-
ing a quasiperiodic route to chaos in both cases. The
differences become less apparent in the long external cav-
ity limit (r) 1/vii). Figures 3(a) and 3(b) show bifurca-
tion diagrams for L,„,=30 cm. Both cases become unsta-
ble at similar feedback levels, although they follow
different routes to chaos. A characteristic of the long
external cavity limit [19] is that once the laser becomes
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chaotic it is unlikely to return to a stable state at higher
feedback levels, in contrast to shorter external cavities
[see Fig. 2(b), for example]. The other apparent
difference for L,„,=30 cm is that for PCF, overlapping
attractors are present in the bifurcation diagram at
higher feedback levels (~r )3). Specifically, beyond
v~=4 both chaotic and quasiperiodic attractors are
simultaneously present in the bifurcation diagram.
Which attractor the laser chooses to follow is very sensi-
tive to initial conditions. Overlapping attractors have
been observed for COF as well [3]. In general, the chaos
occurs over a large range of feedback levels for longer
external cavities for both PCF and COF.

The chaotic dynamics depend on many other laser pa-
rameters. Two parameters which control chaos most are
the linewidth-enhancement factor a and the nonlinear-
gain parameter c. In general, the semiconductor laser is

much more susceptible to chaos for higher values of a
and lower values of c,. The dependence of chaos on c. is
easily understood if we note that the damping rate of re-
laxation oscillations increases linearly with c. Thus, re-
laxation oscillations become undamped at smaller feed-
back levels for lower values of c. The dependence of
chaos on a can be understood by noting that larger
values of a imply larger phase changes associated with
the feedback. Indeed, chaos is found to disappear for
a=0. For a given value of a, the laser becomes more
chaotic in the case of PCF compared with COF. As an
example, Figs. 4(a) and 4(b) compare the bifurcation dia-
grams for PCF and COF when a=1.5 and L,„,=10 cm.
Whereas chaos has almost disappeared in the case of
COF, it dominates the dynamics in the case of PCF. This
difference is attributed to the fact that PCF tends to lock
the laser phase (which changes because of a) and thus can
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FIG. 2. Same as in Fig. 1 except that the external-cavity
length L,„,has been reduced from 10 to 5 cm. The semiconduc-
tor laser is stable over a wide range of ~~ in the case of COF.

FIG. 3. Same as in Fig. 1 except that the external-cavity
length L,„,has been increased to 30 cm. There are fewer
differences between PCF and COF for longer external cavities.
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destabilize the laser even for relatively small values of a.
The bifurcation diagram for PCF and a = l.5, Fig. 4(a),

looks somewhat unusual because chaos apparently begins
without some type of "route" to chaos. The explanation
for this strange appearance is as follows. As ~~ is in-
creased to about a~=1, the laser output is a stable fixed-
point solution; however, as ~~ increases beyond 1, this
fixed-point solution becomes periodic as the relaxation
oscillations become undamped, although the laser takes
longer and longer to settle down to this periodic steady
state. Indeed, for ~~=1.2, the laser takes more than 300
ns to settle down to a periodic solution. The reason this
periodic solution doesn't appear as a point in Fig. 4(a} is
because the amplitude of the periodic solution is too
small to intersect the P=P

~ plane, which is the way the

bifurcation diagram is constructed. In the a=3 case
(Figs. l —3), the amplitude of the periodic state becomes
larger and larger until the solution bifurcates toward
chaos. In contrast, for a=1.5, chaos is reached by the
intermittency route. Figure 5 shows the laser power vs
time for ax= 1.3, demonstrating that the laser exhibits in-
termittent bursts of chaotic output; [note that time scale
in Fig. 5(a) is more than l ps]. Such intermittent bursts
are known to be a source of low-frequency fluctuations in
lasers with COF. Figure 5(b) shows a blown up version
of Fig. 5(a} in order to show the high-frequency oscilla-
tions. Such intermittent bursts were not seen with these
laser parameters for any of the other cases considered in
this paper. Since different types of intermittent behavior
have been identified, the analysis of which type is present
in this case will be the subject of a future paper.

20

C)
C)
O

10
5

4

0

—10

3
LI
O 2

—20

500

Time (ns)

1000 1500

oD
O

20

10

(b)

5

4

(b).

0

—10

3-
L

Q 2

—20
0
950 1000

Time (ns)

1050

FIG. 4. Same as in Fig. 1 except that the linewidth enhance-
ment factor a has been reduced from 3 to 1.5. The chaotic re-
gions becomes sparser for smaller values of a in the cases of
both PCF and COF. For PCF, the laser experiences an inter-
mittency route to chaos (see Fig. 5).

FIG. 5. (a) Long-time trajectory for PCF at ~~= 1.3 showing
that the laser power undergoes intermittent bursts of chaotic
output. (b) Blowup of a small region of (a) showing details of
temporal evolution.
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IV. EFFECT OF PCF ON NOISE SPECTRA
—90

From a practical standpoint, one is often interested in

the effects of optical feedback on the intensity and phase
noise of semiconductor lasers. It is well known [2,17]
that at small feedback levels such that the laser*s steady
state remains stable, both PCF and COF can reduce the
low-frequency intensity and frequency noise, a feature
that can be used for practical applications. However,
when the feedback level increases and destabilizes the
steady state, one expects the laser noise to increase. This
section discusses the effects of periodic and chaotic dy-

namics on the laser noise by considering the relative-
intensity noise (RIN), frequency-noise spectrum (FNS),
and the spectral line shape defined as

e)
St(v)= f (5P(t)5P(t+t'))exp( 2~ivt—')dt',

p2

—100

—110N

CD

120
V)

-130

-140
10 10 ' 10' 10'

SF(v)=2' f (5v(t)5v(t+t'))exp( 2nivt—')dt',

S(v)= f (E"(t+t')E(t))exp( 2mivt')—dt', (10)

where E=v'p exp( —ip), 5P=P Preprese—nts a power
fiuctuation from the average value P, and 5v(t) is the f're-

quency fluctuation. The spontaneous-emission-induced
stochastic fluctuations are included through the Langevin
noise source FE(t) in Eq. (1) and are assumed to be 5
function correlated (in the Markoffian approximation);
I.e.,

(F,(t)F;(t ) & =R„5(t t ), —

where the rate of spontaneous emission R,~= n, ~/r~, and

n, is the population inversion factor. We choose

n, =1.8 in the following simulations. The Langevin

noise source F~(t) in Eq. (2) was ignored as its effect on

the laser noise was found to be negligible [1]. All of the

spectra represent an average over at least five trajectories
of length -300 ns in order to improve numerical accura-

cy; this yields a frequency resolution of about 3 MHz.
The parameter values used are given in Table I; in partic-
ular, L,„,= 10 cm and a =3, as in Fig. 1(a).

Figure 6 compares the RIN spectra (after performing a
five-point running average for smoothing) for mr=0 (no

PCF; short-dashed curve), i~r=0. 6 (periodic dynamics;
long-dashed curve) and sr=i (chaotic dynamics; solid

curve). In the absence of PCF, the solitary laser has a
relatively low RIN ( ——130 dB/Hz) at low frequencies
((100 MHz) and exhibits the well-known peak at the
relaxation-oscillation frequency (at about 800 MHz for
the parameters used in the simulation). When the PCF is

large enough to destabilize the steady state but not large
enough to induce chaos, the periodic dynamics of the
laser manifests through a much stronger relaxation-
oscillation peak in the RIN spectrum, indicating that the
laser output is periodic at the relaxation-oscillation fre-

quency. Note that the relaxation-oscillation frequency is

shifted to 500 MHz from the solitary value, as discussed
above. The second harmonic of this frequency is also ap-

parent in the RIN spectrum. Even the low-frequency
RIN is raised by about 5 dB for this value of feedback.
For ~&=1 the laser output exhibits chaos, as manifested
in the RIN spectrum by two features —the low-frequency
RIN is increased by 10 dB over the solitary-laser value,
and the relaxation-oscillation peak has become very
broad. The RIN increase is well known in the case of
COF [2,6], and is a consequence of the broadband deter-
ministic noise induced by the chaotic dynamics.

The FNS (also smoothed using a five-point running

average), under the conditions identical to those of Fig. 6,
is shown in Fig. 7. In the absence of PCF (short-dashed
curve), the FNS agrees well at all frequencies with the an-

n+10 ~ ~ ~ ~ ~ ~ ~ I I ~ ~ ~ I ~ I

10' .-

N

10

10'

1o'
10 10 ' 1o' 10'

Frequency (GHz)

FIG. 7. Frequency-noise spectra for a~=0 (-- --), 0.5 ( ),

and 1.0 ( ———). For ~~=0.5 the low-frequency part of the
FNS is reduced due to the phase-locking nature of the PCF.
The low-frequency FNS is greatly increased when the laser is in

the chaotic regime (Kv.= 1).

Frequency (GHz)

FIG. 6. RIN spectra for ~~=0 (- - - -), 0.6 (
———), and 1.0

( ) under conditions identical to those of Fig. 1(a). The
low-frequency RIN is enhanced by 10 dB in the chaotic regime.
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alytic expression obtained from linearized theory.
Indeed, when intensity fluctuations can be neglected, the
low-frequency value of the FNS can be shown to equal
the laser linewidth (with our normalization) [1]. For the
parameters used in the simulation, the solitary-laser
linewidth is approximately 40 MHz. Because of the cou-
pling between amplitude and phase in semiconductor
lasers, the FNS shows the relaxation-oscillation peak also
present in the RIN. For a feedback of sr=0. 5 (long-
dashed curve) this peak is enhanced by an order of mag-
nitude and shifted to 500 MHz, as discussed above. The
low-frequency part of the FNS, on the contrary, is re-
duced by about a factor of 5 for this value of feedback.
By examination of Fig. 1(a), we see that ~r=0. 5 should
correspond to the frequency-locked state, and the ap-
parent reduction in laser linewidth is evidence that the
laser phase is also being locked. For ~r= 1 (solid curve)
the laser output is chaotic and the apparent linewidth ap-
proaches the opposite limit; i.e., the low-frequency part
of the FNS is increased by an order of magnitude over
the solitary-laser value. The FNS also shows an in-
creased and broadened relaxation-oscillation peak as well
as enhanced high-frequency noise.

The effects of PCF on the laser linewidth is most natu-
rally examined through the laser line shape, which is
shown in Fig. 8 for four values of feedback. The line
shapes are plotted on identical vertical scales but shifted
vertically for clarity (no running average was performed
for the line shapes}. For ate=0 [no PCF; curve (a)], the
line shape exhibits well-known features of a solitary laser
[1,2], namely a narrow, central, Lorentzian peak, accom-
panied by much weaker sidebands due to relaxation oscil-
lations. For a~=0. 5 [phase-locked state; curve (b)], the

central peak has dramatically narrowed due to the
phase-locking nature of the PCF. This line shape, con-
sisting of a central spike riding on top of a broad pede-
stal, was predicted from linearized theory in Ref. [17].
The weak oscillation at 500 MHz shows up as shifted but
enhanced sidebands. For as=0 6[.periodic state; curve
(c)], the sidebands continue to increase in magnitude and
are nearly as high as the central peak, which is not as
narrow as that of curve (b). This implies that the laser is
undergoing a transition from the phase-locked state to
the periodic state. Finally, curve (d) corresponds to the
chaotic state and we see why such a state is also termed
"coherence collapse. " The line shape is extremely broad-
band since the central and satellite peaks have become so
broad that they merge together. With the notable excep-
tion of the phase-locked, narrow linewidth state, these
qualitative features are similar to those seen in the case of
conventional optical feedback.

V. EFFECT OF PUMP-PROBE DETUNING

In this section we no longer assume that the PCM is
produced by degenerate four-wave mixing but instead al-
low for a frequency mismatch between the laser used to
pump the PCM and the solitary semiconductor laser fre-
quency. This generalization is expected to make the PCF
case even more complex relative to COF. Indeed, with a
detuning present, the PCF case can be considered a com-
bination of feedback (which provides the delay} and injec-
tion locking (which provides the detuning). We begin
with a relatively small value of detuning hro/2m =100
MHz. Figure 9 shows the corresponding bifurcation dia-
gram by using the same parameters as in Fig. 1. A com-
parison of Fig. 9 and Fig. 1(a) reveals minor but impor-
tant differences which arise because of the detuning.
Most importantly, the diagram shows that for small
values of feedback (i~r(0. 14), the laser output is period-
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FIG. 8. Spectral line shapes for ~~=0 [(a); no PCF], 0.5 [(b);
phase-locked state], 0.6 [(c); periodic state] and 1.0 [(d); chaotic
state]. All spectra are plotted on identical vertical scales which
are shifted vertically for clarity. Note the dramatic line narrow-
ing of the phase-locked state (b) and the undamped relaxation
oscillations of the periodic state (c). In the chaotic regime the
multiple sidebands merge to yield a broad spectrum indicative
of coherence collapse.

—10-

—20

FIG. 9. Bifurcation diagram for PCF and 100 MHz detun-
ing. Other parameters same as in Fig. 1. Note the presence of a
periodic output for very small values of ~r [compare with Fig.
1(a)] because of four-wave mixing.
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(a)
I 1.62

ic. This is shown clearly in Fig. 10, which shows the
laser power vs time for four different values of feedback.
For ar(0. 05 [Fig. 10(a)] the laser output consists of
weak periodic oscillations at a frequency of 200 MHz,
which is twice the detuning hen/2m. The origin of these
oscillations lies in the feedback-induced four-wave mixing
and can be understood as follows. Since the frequency of
the feedback light differs from the laser frequency by
2hco, the mutual interference between the two waves
leads to carrier-density modulation at 2hco, which in turn
generates periodic output and the four-wave-mixing side-
bands separated by 2hco. Interestingly, as ~~ increases
above 0.06, the modulation frequency decreases below
200 MHz, as shown in Fig. 10(b)—10(d). Beyond a criti-
cal value of feedback (~r) 0. 13), the periodic state
abruptly yields to a fixed-point solution, and the laser
operates continuously (cw operation). The high-
frequency oscillations seen in (c} and (d} correspond to
the laser's relaxation oscillations. The interpretation of
Fig. 10 is as follows. For weak feedback the laser fre-
quency is close to its solitary-laser value but oscillates at
twice the detuning. However, as feedback increases, the
feedback-induced frequency shift reduces the effective de-
tuning he, and the four-wave-mixing sidebands move
closer. Eventually, the detuning becomes small enough
that it falls inside the injection-locking bandwidth, forc-
ing the laser to injection lock to the pump frequency of
the PCM. This is confirmation of the behavior described
by Tartwijk, van der Linden, and Lenstra [16] who have
examined the stability properties of PCF with nonzero
detuning.

A case for larger detuning of 1 6Hz is shown in Fig.
11. Although the high-feedback portion of the diagram
is similar to Fig. 1(a), the low-feedback region is
significantly different. For this large detuning the laser
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FIG. 11. Bifurcation diagram similar to Fig. 9 but for a large

detuning of 1 GHz. In contrast to Fig. 9, the periodic solution

due to the detuning does not give way to the cw operation be-

fore becoming chaotic.

VI. CONCLUSIONS

power oscillates at twice the detuning (2 6Hz) for
~~&1.2. Beyond this value of feedback, the oscillation
frequency increases to about 2.2 GHz until, by K~=1.4, a
second frequency of 600 MHz appears in the noise spec-
trum and the laser enters directly into the chaotic region,
following a quasiperiodic route to chaos, without ex-
periencing injection locking. This behavior can be under-
stood by noting that the feedback-induced frequency shift
is too small to reduce the effective detuning so that it lies
within the injection-locking bandwidth. This large-
detuning behavior also agrees with the predictions of Ref.
[16].

1.57-
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FIG. 10. Power vs time trajectories in the weak feedback re-

gime of Fig. 9 corresponding to four-wave mixing. Trajectories
(a)—(d) correspond to ~~=0.05, 0.08, 0.11, and 0.13, respective-
ly. The modulation frequency decreases from its initial value of
200 MHz as ~~ increases.

This paper considers the chaotic dynamics of semicon-
ductor lasers in the presence of phase-conjugate feedback
(PCF). By using the single-mode, rate-equation formal-
ism, it is shown that the output of semiconductor lasers
becomes chaotic when the amount of PCF exceeds a criti-
cal value. Bifurcation diagrams are used to explore the
chaotic dynamics and show the difference between the
conventional feedback and the PCF. In general, semicon-
ductor lasers display richer chaotic dynamics in the case
of PCF. Period-doubling, quasiperiodic and intermitten-
cy routes to chaos are observed in numerical simulations
performed by using realistic parameter values. The noise
characteristics in the presence of PCF are studied by add-
ing the Langevin noise terms (representing the effect of
spontaneous emission) to the rate equations and solving
them numerically. For weak values of PCF, the laser can
be phase locked to the phase provided by the PCM, re-
sulting in dramatic narrowing of the laser linewidth. The
line narrowing, unlike the case of COF, is not dependent
on the feedback phase. This narrowing is shown in both
the frequency-noise spectrum (FNS} and the laser line
shape. As the PCF is increased, all the spectra show that
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the relaxation oscillations, which are shifted by 30%%uo

from the solitary-laser value, become undamped. In the
chaotic regime, the intensity noise at low frequencies
(below 100 MHz) is considerably enhanced and the spec-
tral line shape broadens considerably, indicative of coher-
ence collapse. The inclusion of detuning hco between the
solitary-laser frequency and the frequency of the PCM
pump laser shows that the laser exhibits four-wave mix-
ing at low feedback such that the output is periodic at
2hco. For small detuning, the laser can injection lock to
the pump-laser frequency and operate cw before entering

the chaotic regime. For large detuning, injection locking
does not occur, and the laser enters the chaotic state
directly from the periodic state. In both cases the chaotic
dynamics remains largely unaffected by the detuning.

ACKNOWLEDGMENTS

This work is supported by the U.S. Army Research
Office and the New York State Foundation of Science
and Technology. G.R.G. acknowledges the support from
the University Research Committee.

[1]G. P. Agrawal and N. K. Dutta, Semiconductor Lasers,
2nd ed. (Van Nostrand Reinhold, New York, 1993), Chap.
6 and references cited therein.

[2] K. Petermann, Laser Diode Modulation and Noise (Kluwer
Academic, Dordrecht, Netherlands, 1991),Chap. 9.

[3]J. Mork, B. Tromborg, and J. Mark, IEEE J. Quantum
Electron. 28, 93 (1992); A. Ritter and H. Haug, J. Opt.
Soc. Am. B 10, 130 (1993);10, 145 (1993).

[4] J. Sacher, W. Elsasser, and E. O. Gobel, Phys. Rev. Lett.
63, 2224 (1989).

[5] J. Ye, H. Li, and J. G. McInerney, Phys. Rev. A 47, 2249
(1993).

[6] G. R. Gray, A. T. Ryan, G. P. Agrawal, and E. C. Gage,
Opt. Eng. 32, 729 (1993)~

[7] K. Vahala, K. Kyuma, A. Yariv, S. Kwonk, M. Cronin-
Golomb, and K. Y. Lau, Appl. Phys. Lett. 49, 1563 (1986).

[8] M. Cronin-Golomb and A. Yariv, Opt. Lett. 11, 455
(1986); M. Cronin-Golomb, A. Yariv, and I. Ury, Appl.
Phys. Lett. 48, 1240 (1986).

[9] R. R. Stephens, R. C. Lind, and C. R. Giuliano, Appl.
Phys. Lett. 50, 647 (1987); J. O. White, G. C. Valley, and
R. A. Macfarlane, ibid. 50, 880 (1987).

[10]A. M. C. Smout and R. W. Eason, Opt. Lett. 12, 498

(1987);M. D. Ewbank, Opt. Lett. 13, 47 (1988).
[11]M. Segev, S. Weiss, and B. Fischer, Appl. Phys. Lett. 50,

1397 (1987);M. Segev, Y. Ophir, B.Fischer, and G. Eisen-
stein, ibid. 57, 2523 (1990).

[12] M. Ohtsu, I. Koshishi, and Y. Teramachi, Jpn. J. Appl.
Phys. 29, L2060 (1990); N. Cyr, M. Breton, M. Tetu, and
S. Theriault, Opt. Lett. 16, 1298 (1991).

[13]B. H. W. Hendriks, M. A. M. de Jong, and G. Nienhuis,
Opt. Commun. 77, 435 (1990).

[14]Y. Champagne, N. McCarthy, and R. Tremblay, IEEE J.
Quantum Electron. 25, 595 (1989); N. McCarthy and D.
Gay, Opt. Lett. 16, 1006 (1991);N. McCarthy, S. Maihot,
and J. F. Cormier, Opt. Commun. 88, 403 (1992).

[15]G. P. Agrawal and J.T. Klaus, Opt. Lett. 16, 1325 (1991).
[16]G. H. M. van Tartwijk, H. J. C. van der Linden, and D.

Lenstra, Opt. Lett. 17, 1590 (1992).
[17]G. P. Agrawal and G. R. Gray, Phys. Rev. A 46, 5890

(1992).
[18]A. Ritter and H. Haug, J.Opt. Soc. Am. B 10, 130 (1993).
[19]A. T. Ryan, G. P. Agrawal, G. R. Gray, and E. C. Gage,

IEEE J. Quantum Electron (to be published).
[20] P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346

(1983).
















