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We present a list of nonlinear optics equations [the reduced Maxwell-Bloch system with pumping (or
with a damping of a special type), nonlinear Schrodinger-Bloch equations with pumping, etc.] that can
be solved by the inverse-scattering transform with a variable spectral parameter. We obtain the corre-
sponding Lax pairs and equations for the spectral parameter.
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I. INTRODUCTION

Exactly solvable problems occupy a special place in
mathematical and theoretical physics. Crystal clear in
formulation and quite universal in application, they con-
stitute the foundation for progress in theoretical physics.
As a vivid example we can mention the soliton models
applied to nonlinear optics, plasma physics, hydrodynam-
ics, etc. Moreover, on the basis of an exactly solvable
problem one can construct perturbation theory and
evaluate the effect of small additional physical factors.

The development of the inverse-scattering transform
(IST) and the theory of nonlinear optics equations has
been proceeding hand in hand for the past 25 years, each
fruitfully affecting the other. In fact, one of the first "sol-
itonic" papers [1], published in 1967, was devoted to the
integration of the sine-Gordon equation, applied to the
modeling of an electromagnetic-pulse propagation
through (and interaction with) an optical medium con-
taining resonant two-level atoms. Since then, a number
of physically important equations —the Maxwell-Bloch
system (a complex generalization of the sine-Gordon
equation) [2—5], the three-wave resonant interaction sys-
tem [6,7], etc.—were incorporated into the IST, with a
nonlinear Schrodinger equation [8] being so far the most
promising from the view of potential telecommunication
technology.

II. INVERSE SCATTERING WITH A
VARIABLE SPECTRAL PARAMETER

The linear overdetermined system (Lax pair) associated
with a soliton equation contains a spectral parameter A,,
which must be constant according to conventional soliton
methods. It was suggested in [9] that the spectral param-
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eter be regarded as a function (of time, coordinate, and an
additional complex constant, called the "hidden" spectral
parameter) which satisfies an additional, overdetermined
system of nonlinear differential equations. The proposed
method was named IST with a variable spectral parame-
ter (or the method of nonisospectral deformations). This
technique makes it possible to construct many new inte-
grable equations. For each soliton equation which is inte-
grable within the framework of conventional IST one can
produce a whole class of new equations, integrable by IST
with a variable spectral parameter. The elements of this
class were named deformations of the initial soliton equa-
tion [9] (i.e., deformed equations). To derive soliton solu-
tions of the deformations, one can use the "dressing"
technique developed initially for the case of a constant A,

[10]. A procedure for generating the finite-gap solutions
was developed in [26].

It should be noted the method suggested in [9] is a de-
velopment of ideas presented in [12-14]. Furthermore,
the series of soliton equations with variable spectral pa-
rameter were constructed in [15-17].The symmetry ap-
proach was applied to this problem in [18]. The relation-
ship between nonisospectral and isomonodromic defor-
mations, and deformations of Painleve equations, were
studied in [19].

The application of the IST with a variable spectral pa-
rameter is not restricted to the area of classical nonlinear
physics. It was also successfully (and independently) ap-
plied to solve a quantum nonlinear Schrodinger equation
[31].

The most interesting are deformations of the following
Maxwell-Bloch system:

=p

1V~+(pE+pE) /2=0,

p&+i cp =RE,
c„=0,
x =ri, t =ri+g .

The additional real field a=a(g) (which models the fre-
quency shift from the resonance) is trivial because it can
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be eliminated from (1) by rescaling:

E~E exp{ i—f s(g)dg),

p~p exp{ i —f E(g)dg} .

The function c. will become nontrivial in certain deforma-
tions of (1},so we retain it. The Lax pair for (1) is

b„=0, c&+2cc=0,
b&+cb+3cb =0, c„+2bb =0 .

(7)

If b =ho(g) is nonzero, then this function can be
transformed to be a constant, say, 1, by a change of vari-
ables. Thus, the system (7) will become simpler, taking
the form

4(+ U4=0,

4„+V@=0,

where

U=ilui+, uo, V=R/4il, .

1 0
0 —1

ic E
uo ———1 —E —tv.

N p

p
—N

(2)

(3)

c„+2b=0, c&+2cc=0, b&+cb+3c =0 .

It was rigorously proved in [19] that the self-similar
reduction of (8) is without the Painleve property. The
construction of a general solution of (7) and (8) is a prob-
lem which is still not solved. However, there are particu-
lar cases of (8) which can be fully solved.

(a) c =0. If b%0, then the substitution b =e ~; c = —
p&

in (8) leads to the Liouville equation

fg
—2e

(b) If b =O=c =c, then we obtain

E =(1—ibo/2)p,

If we insert (3) into the compatibility condition for Eqs.
(2},namely,

s„= boN /2—,
N&+(pE+pE)/2=0,

(9)

U„—V(+ [ U, V]=0, (4)

and require that (4) be fulfilled identically in A, , then we

get the Maxwell-Bloch system (1). According to [9], the
main idea of the IST with a variable spectral parameter is
as follows [in the limits of example (1)].

Let A, be a function of g, 7) and a "hidden" spectral pa-
rameter z (due to z dependence, functions
s =0,+1, . . . , are linearly independent}. This function is
not completely arbitrary. It must obey a system of equa-
tions that is uniquely fixed by the requirement that Eq. (4)
should be fulfilled identically in z and the corresponding
nonlinear system is a determined one. The resulting
equations for A, are [9]

=p

N&+{pE+pE )/2= 4c, —

p~=NE .

(10)

p~+icp=NE .

Here bo is a real constant. At the moment we cannot say
anything definite about possible physical application of
(9).

The case b=O=b is the most interesting from the
physical point of view. If, further, c =0; cAO, then we

get the Maxwell-Bloch system with pumping:

BA, c=b+-
B7/

(sa)

(5b)

Here the parameter c defines the pumping of an optical
medium. The Lax double pair for (10) consists of the
linear system (2)—(4) for the function 4 plus a pair of
nonlinear equations for the spectral parameter A, :

E„—p = —ibp/2,

N&+ (pE+ pE )/2= cN —4c, —

p&+i c.p
—XE= —cp,

c = —bX/2 —2b .
7l

(6)

Substituting (3) into (4) and taking into account (5a) and
(Sb), we get a class of deformations of the Maxwell-Bloch
system:

A,„=c/k, , A&=0, A{ri,z)=&2cg+z

%e want to point out that calculation of two-point
equal-time temperature correlators for the quantum
Schrodinger equation was reduced in [31] to the solution
of some classical nonlinear equation. The remarkable
fact is that the equation almost coincides with the
Maxwell-Bloch system with pumping: both systems
demand the same linear system, but use different reduc-
tions.

The opposite case —c&0, c =0—leads to the
Maxwell-Bloch system with damping:

First of all, we should analyze the overdetermined system
of equations [(Sa) and (Sb)] for the spectral parameter A, .
Its compatibility condition generates a nonlinear system
[in addition to (6) and independent of it] for the unknown
functions b, b, c, and c:

=p

N&+cN+(pE+pE )/2=0,

p(+cp =NE,
(12)
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with another set of equations for the A, :

A,„=O, k~=cA, , A(g, z)=zexp(cg) . (13)

Formulas (10)—(13) were derived in [9], but only in [11]
was the physical meaning of the constant c in (10) clearly
interpreted, and the general theory of (1) derived.

To describe correctly a physical model associated with
(10), we should first introduce the Maxwell-Bloch system
written in a more convenient form:

BE/Bri= p,
BN, /Bg (pE—+pE)/2=0,
BN /Bg+ (pE+pE ) /2 =0,
Bp/BJ=(N2 N& )E—/2 .

(14)

Here the function E=E(g, rt) is a complex electromag-
netic field envelope; N& and N2 are populations of a lower
and an upper level, respectively; p is a polarization of the
medium.

It is important to emphasize that when formulating the
theory of radiation in such a system, one must take into
account the difference between "passive" media (i.e.,
self-induced transparency) and "active" media (i.e., pulse
amplification and superfluorescence). For active media
the applicability conditions are much more rigid. The
two-level approach may be a good approximation, but in
reality atoms are multilevel. In the course of the process
of population inversion (by pumping), atoms are excited
from the ground state (population N, ) not only to the
upper "working" level (population N2), but also (in fact,
predominantly) to higher-energy nonworking levels.
Then, as a result of atomic transitions (fast nonradiative
ones in particular), atoms fall from higher-energy levels
down to working levels. Finally, one cannot sometimes
ignore various dissipative processes in both passive and in
active media. The simplest way to incorporate these ad-
ditional physical factors into a mathematical model is to
replace the system (14) with a more general one:

+oE=p,
an

Ni
+N& /T& (pE+pE )/2—=a &,

N2
+ N2 /T2+ (pE+pE ) /2 =a ~,

(15)

+p/T=(N2 N, )E/2 . —

Parameters a& and a2 model constant pumping into
lower and upper working levels, respectively. Vfe assume
that the pumping does not change the microscopic polar-
ization p (corresponding to the working atomic transition
1~2). Define T as the relaxation time of polarization,
which is determined, e.g., in gas lasers, by atomic col-
lisions. We note by T, ( T2 ) the time constant for the de-
cay from state 1 (2) to all other states. We neglect the de-
cay from state 2 to state 1. Finally, o. is the conductivity

(at the frequency of the atomic transition 1 —+2). The re-
sults (10}—(13) are the following.

With the exception of two particular cases, system (15)
cannot be incorporated into the IST with a variable spec-
tral parameter [9],namely, when the following occurs.

(1}Pumping is present, a, 2 %0, and there is no damp-
ing:

o =O=T] =Z
2

=Z

A change of variables, N = (N2 N&
—

) /2,
=(a2 —a

&
)/2, transforms Eqs. (15) into (10).

(2) Pumping is absent (a
& z =0},and the damping must

be of a special type (cr =0, T& = T2 =T).
System (12), unlike (10), is a trivial deformation of the

Maxwell-Bloch system —it may be converted to the ordi-
nary Maxwell-Bloch system (1} (s=O) via a change of
variables [9]. But it is nontrivial from a physical point of
view. The constraint T& = T2 =T restricts the applicabili-
ty of the solution (commonly T& z » T), but nevertheless
the system is applicable to metallic vapors.

To construct special solutions for deformations, one
can use the standard "dressing" technique [10]. This was
clearly demonstrated in [12,14,20]. The author of [21]
applied a Darboux transformation to construct solitons
of the Maxwell-Bloch system with pumping. In this sec-
tion we present, as an example, the formulas (omitting
calculations} for the self-induced transparency soliton un-
der the effect of damping (not small) (12):

E(x, t) =413e '" "+'«/cosh(r),

p(x, t) =4Pe '" "[B,+B„]e'«/cosh(r),

N(x, t)=Noe '+4Pe '" "[B,+B„]e "/cosh(r) .
Here,

aN()
q = —2a(1 —e '" ")/2'+ (1—e "),

2c(a +P')
No

2P(1 ev(x t))/c+ —
(1 e

—vx)

2c(a +P )

Formulas (16} are written in the laboratory coordinate
system and are parametrized by three constants: No, a,
and P. In the limit c~0, (16) will transform into the
well-known expression describing undamped soliton. Sol-
iton (16}does not look like any conventional soliton. In
the course of propagation its shape, velocity, and ampli-
tude change due to damping. Moreover, generally, this is
the case for any soliton in any equation with a variable
spectral parameter.

Finally, to analyze the structure of (16) we fix the coor-
dinate system moving with the velocity of light:
x —t =x. In the limit t ~ Do, we get

E=4Pe +'«Icosh(r)-, N=O=p
where

aN()
q = —2a(1 —e "-)le+

2c( +P )

No
r =2P(1 —e "-)Ic+

2c(a +P )
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Formulas (17) describe a soliton of an asymmetric shape,
which moves with the velocity of light in transparent
media. The soliton is alive, despite the damping.
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APPENDIX

uo =
—,
' —E, 0 E2

0 E1 E3

(A4)

Be+/Bri=v+,

BR /Bg+ [u 0,R ]= 4cu, , —
where

(Al)

We present in this appendix a list of nonlinear optics
equations [(A 1), (A3), (A5), (A9), (A1D), (A 1 1),
(A16)—(A18); in addition the systems (1D) and (12)] for
which we managed to find the Lax double pair (with a
variable spectral parameter). We hope the list may be ex-
panded further.

In reality, unless special measures are taken, atomic
transitions are usually degenerate. The authors of [22]
put forward the Maxwell-Bloch system that incorporates
this additional effect and also presented the Lax pair
(with a constant spectral parameter). The system, like
the original Maxwell-Bloch system, can be pumped:

P11 P12 P13

P12 P22 P23

P» P23 P33

Here, as before, a=const and I is a 3 X 3 identity matrix.
The Lax double pair for (A3) is fixed by (2), (3), (11},and
(A4).

In addition to Eqs. (Al} and (A3), one can generate sys-
tems with damping of the type (12) and also deformations
like (9).

In [24] a nonlinear Schrodinger-Bloch system was put
forward (with the Lax pair) which took into account
quadratic nonlinearity of the medium (Kerr type), in ad-
dition to the resonant interaction. We present the non-
linear Schrodinger-Bloch equations with pumping:

1 0 0
u1= 0 —1 0 +aI,

0 0 —1

iE„+E+/2+ IE I'E./4=i p,
N&+ (pE+pE ) /2 = —4c, (A5)

e e+

uo= —,
' —e 0 0

—e+ 0 0

(A2)
which require the Lax double pair (2) and (11) with the
following matrix functions U and V:

U=iku1+uo,

V=R /4i A+Q+A, ,uo+iiL u, ,
(A6)

V+ P El+

BE& /BQ=P12

BE2/B'9=~ P23

BE /Bi)=(1+a }p,

BR/Bg+[u, , R ]= 4cu, . —

(A3}

where a=const, and I is an identity 3X3 matrix. The
quantity cu, in (Al) describes the process of constant
pumping (regarding the physical meaning of all other
variables, see [22]). The Lax double pair for (Al) is
defined by formulas (2), (3), and (11)with matrices uo i,R
fixed by (A2). Note that in this appendix we assume that,
for each Maxwell-Bloch systems, c.=0.

Propagation of ultrafast electromagnetic pulses in opti-
cal media with multilevel resonant atoms is analyzed in
[23]. The authors of [23] presented the Lax pair for the
system, generalizing the Maxwell-Bloch system (1) for the
X-level case (provided certain restrictions on physical pa-
rameters hold true). Here we produce the appropriate
system with pumping in the simplest, N =3 case:

1

u1 —
0

p

o E
u =—'

2 —E 0

Q =1/4i
EI /2 E(—
E, —IE I'/2—

i4, + U4=0,
iN + V+=0,

=c/k, k, =0,
U=ku1+uo,

V=xu, +v, —R/X .

Here u, and U1 are real diagonal N XN matrices:

u1 =diagb, -,
U, =diaga, -,

(A8}

In [25] Zabolotskii generalized the nonlinear
Schrodinger-Bloch system for the case of multilevel opti-
cal media. We construct the Zabolotskii system with

pumping, and the Lax double pair:
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a 1 & a 2 ». . . el&, u „=[u 1,Q ], vp = [U1 Q ]. The matrix
function Q =

w;1 /Qcl; —a. is anti-Hermitian; the density
matrix R =p, . The compatibility condition for (A7}
[taking into account (A8)] reads as follows:

n&+v 0 =0,
Qg+cov =0, (A14)

(a, +U;8 )W;. = iKCX;. Wkwk, +ig;lp;, , l(J
R, —i[up, R]=—4cu, .

Here

g,"= (b,—b—)/Qa, —ai,
v,i

= (b,—bl ) /—(a, —a, ),
and a;~k is an antisymmetric tensor,

aib3 —a3b, +a3b2 —a2b3 +a2bi —a, b2K—
a, —az a, —a3 a2 —a3

(A9)

(A 10)
vt —cou =nb',

(( cov » —I f( co )cov ( 7J, g, co )d co .
0

The system (A14) is called the "reduced" Maxwell-Bloch
system.

Between "ordinary" (1) and reduced (A14) Maxwell-
Bloch systems, there are not one, but two links. The first
link is apparent: if one introduces a complex field en-
velope approximation into the reduced system, then one
gets the ordinary system. The second link [27] is not as
apparent, but is much more straightforward. The change
of variables

Finally, we rewrite system (A9) for the simplest nontrivial
case X =3: 2s =co, E = i 6"—, p=u iv—, N=n,

(A15)

(C},+V1C), )$1—l K/2/3+ lg 12P12,

(C)l + U2 C}x )f2 —l Kltll |(3+lg23P23

(a, +U3a„)y3= yltj'2+ g13P13

p&+2isp =NE,

(p& =f g(s)p(g, ri, s)ds,

I g(s)ds=l .

(Al 1)

Here the function g(s) models the shape of the spectral
line and s is a frequency shift from resonance. The Lax
double pair for Eqs. (All) is just like (2) and (3) with the
matrix function V:

V= J dsg(s)R/4i(s —
A, ) (A12)

and the spectral parameter obeying the equations

where f, =w, 2, $2=W23, $3=w» and v, =U,2, v2=v23,
U3=U&3 ~

Note that one can "pump" (but not "damp"} the
Maxwell-Bloch system in the presence of an inhomogene-
ous broadening effect:

E„=(p&,
N&+(pE+P E)/2= —4c,

@„=a((cov»,
n&+UC= —4c,

(A16)

u&+cov =0,
v( —cou =nb,

and damped [for the resonant case, f=5(co cop)]. Via-
the change of variables (A15) the double pair (2—3, A12,
A13) yields the Lax representation for the reduced
Maxwell-Bloch system with pumping.

Finally, we derive deformations of equations [28—30]
that describe both stimulated Raman scattering and reso-
nant two-photon absorption and emission. There are two
different nontrivial deformations: type I,

"d&r3 =i (sr sr )/2 c—r3, —

a,r =isr3+igs3r —cr,

Bq3 =i(rs rs )/2+eclr3/4, —

c)q =igr3s+i ers3+cT(if —g /2)er /2,
c=a/4,

(A17)

g =™[f(co } f ( —co) I—

transforms the ordinary system into the reduced one.
The reduced system can also be pumped:

A.„=I ds g(s)c/( —s+A, ), A,&=0 . (A13) and type II,

Here, c may be an arbitrary function of the two variables
l) and s (but not of time g').

In a11 the above-mentioned nonlinear equations, we
work with a complex electromagnetic-pulse envelope E.
It was discovered in [27] that we can remove this restric-
tion when dealing with a resonant interaction. We can
work with the original electric field 8 and still retain the
integrability of the model equations:

c= if a
E(if+g/2) g/2 4—

d&r 3
=i (sr sr ) /2+ 4cs 3, —

c)&r =isr3+igs3r —8c(if+g /2)s,

ciy3 =i (rs —rs )/2 —as3,

c)q =igr3s+i ers3 —as,
(A18)
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U=izu, +up,
Ui

k+g /2

l$3 0 s
up

— if
es 0

(if g /—2)er

6'S ls 3

i@—r3/2
]

(if+g/2)r
lg13 E'r

ter3/2

Vp— 1

r lgl'3

For both (A17) and (A18), f =(e g—) /4. We should as-
sume @=1 for stimulated Raman scattering and e= —1

for two-photon processes; a and a are arbitrary real con-
stants.

Equations (A17) and (A18) demand the following ma-
trix functions U, V in the Lax pair (2):

The spectral parameter A, is a solution of the system

A.„=a k —2gc +
A, +g/2

in the case of (A18) and of the system

A,„=0,

for the (A17) case.

(A19)

(A20)
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