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Spatial pattern formation and instabilities in resonators with nonlinear dispersive media
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We discuss instabilities of the fundamental single-transverse-mode solution and the formation of new

transverse spatial patterns in optical systems, containing nonlinearly absorbing two-level media using

two transverse cavity geometries {rectangular and cylindrical). Under the appropriate approximations,

these two models can be described by the same set of dynamical equations. Though the equations for the

two models differ in their coefficients, their dynamical solutions are comparable. We find hysteresis phe-

nomena associated with transitions in the transverse structure of the intensity which are completely

different from the steady-state bistability and hysteresis found in theories of single-mode operation.

PACS number{s): 42.65.Pc, 42.50.—p, 05.70.Ln

I. INTRODUCTION

There has been remarkable development in both
theoretical and experimental studies of optical instabili-
ties during the past two decades [1—9]. Most studies
have examined the temporal behavior —pulsations or os-
cillations of the output can appear spontaneously in
many optical systems with constant control parameters.
More recently, attention has turned to the spontaneous
formation of spatial patterns in both absorbing (bistabili-
ty} and amplifying (laser) nonlinear optical systems
[10—35]. Consideration of changing transverse patterns
is an unavoidable consequence of studying optical insta-
bilities because the optical field naturally has a transverse
variation in any physical system. However, the introduc-
tion of transverse spatial coordinates causes mathemati-
cal difficulties that, until recently, discouraged extensive
work in this area.

Analytical results have been reported for models of
cavities with rectangular boundary conditions for both
passive optical systems and laser [12,14]. It has been
proved, in the study of these models, the new stationary
spatial patterns arise by what is called a soft-mode insta-
bility, characterized by the vanishing of a real eigenvalue
on the instability boundary. For example, studies of a
bistable ring resonator (with a nonlinear two-level ab-
sorber) have found that complicated two-dimensional,
transverse spatiotemporal patterns may be formed with
an input pump beam of either a plane wave or a Gaussian
transverse spatial profile [16,24]. Laser systems with cy-
lindrical geometry have also been analyzed theoretically
and studied experimentally [17(b),20,23,25,34,35].

These systems undergo not only changes in stationary
patterns but also transitions to time-dependent solutions.
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In bifurcation theory, oscillatory instabilities are some-
times termed hard-mode instabilities (Hopf bifurcations)
and are characterized by the vanishing on the instability
boundary of the real part of a pair of complex-conjugate
eigenvalues of the linear stability analysis.

Although soft-mode instabilities and dissipative struc-
tures have been extensively investigated in chemical sys-
tems, these features have some unique properties when

they appear in optical systems. First, one of the primary
factors in the formation of spatial patterns in optical sys-
tems is diffraction of the electromagnetic field, instead of
diffusion as in the chemical systems. In the simplest
mathematical models for nonlinear optical systems, a
purely imaginary coefficient multiplies the "diffusion
term" (transverse Laplacian}. Second, optical systems
generally include a cavity which provides boundary con-
ditions for the electromagnetic field. Often the field can
be written in terms of a specific set of discrete modes.
From this point of view, the formation of the spatial pat-
terns is a result of mode-mode interaction and competi-
tion. Furthermore, each electromagnetic field mode has
a specific operating frequency, and the different trans-
verse modes generally have different frequencies. Howev-
er, when several transverse patterns are coupled or coex-
ist in a nonlinear dynanucal system, they can coopera-
tively choose a common operating frequency. In auto-
nomous laser systems this phenomenon has been called
"cooperative frequency locking. " For systems with an
externally applied field this is known as "injection lock-
ing, " while in optical bistability it is more easily under-
stood that the excited transverse modal patterns operate
at the frequency of the input field since the media are ab-
sorbing and do not autonomously generate fields except
when driven into highly nonlinear regimes (see, however,
Sec. VI).

There are also two types of bifurcation behavior: su-
percritical and subcritica1. For soft-mode instabilities, it
is easier to distinguish these two types of bifurcations by
the geometrical structure of the plots of the modal ampli-
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tudes of the stable stationary solutions versus the bifurca-
tion parameter. For supercritical bifurcations the curves
are continuous but their slopes change abruptly (the slope
for each amplitude is discontinuous at the bifurcation
point). For subcritical bifurcations the plots are discon-
tinuous and hysteresis occurs. Both supercritical and
subcritical bifurcations involving soft-mode instabilities
have been observed in nonlinear optical systems, and they
also appear in our present work.

In addition, a pseudobifurcation, which we term a
"soft bifurcation, "may also occur. In this case, the plots
of the amplitudes of the stationary solutions and their
slopes are both continuous but there is a rapid change of
slope over a small range of the bifurcation parameter.
Then the plot of the results looks like those from a super-
critical bifurcation, but on close inspection we can see
that these are not from a true bifurcation, because the
slope of the curve is still continuous.

In this work we concentrate on passive optical systems
with resonators containing nonlinear dispersive media,
such as may be used for studies of optical bistability. We
model two types of cavity configurations and place the
models in a comparable analytic form. Under the ap-
propriate approximations these two models can be de-
scribed by the same set of dynamical equations, though
with different coefficients. This is because the same phys-
ical processes govern their behavior. Our numerical re-
sults indicate that, when diffraction of the optical field is
included, the single-transverse-mode solution that
matches the input field profile can be unstable, and inho-
mogeneous spatial patterns are formed spontaneously at
the appropriate level of input intensity. The high
transmission branch of the bistable steady-state curve
predicted by the single-transverse-mode theory remains
stable only in very special situations.

In Sec. II we describe the models. The derivation of
the equations for the modal amplitudes is given in Sec.
III. In Sec. IV we briefly review the single-transverse-
mode steady-state solutions and their linear stability
analysis. Numerical results are presented in Sec. V.

II. DESCRIPTION OF THE MODELS

We consider two diferent transverse geometries for
ring cavities, rectangular (or Cartesian) [model 1] and cy-
lindrical [model 2]. Model 1 is, in general, designed for
the convenience of theoretical investigations, whereas
model 2 is closer to most experimental configurations.
The cavity configurations of the two models are shown in
Fig. 1.

A. Cavity configurations

Model 1 consists of a ring cavity of length L with
plane mirrors [see Fig. 1(a)]. We assume that the intensi-
ty transmission coefficient T of mirrors 1 and 4 is much
less than unity, and that mirrors 2 and 3 have 100%
reflectivity. The longitudinal coordinate z is measured
along the ring; the position of mirror 1 is given by the
coordinate z =0 at the beginning of the ring and z =L at
the end. The lateral mirrors lie in planes normal to the x
axis with a separation distance b and a reflectivity close
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FIG. 1. Schematic representations of the ring cavities. (a)
Model 1: Cartesian geometry; (b) model 2: cylindrical
geometry, where 1' and 3' indicate the positions after reflection
from the mirrors.

to unity. For simplicity, we assume that the y direction is
open, and that for TE polarization the transverse field is
independent of the y coordinate [12,22(a)]. The extent of
the wave in the y direction is not infinite but it is much
larger than b.

Model 2 consists of a ring cavity of length X with two
plane mirrors and two spherical mirrors, both with radius
of curvature Ro, separated by a distance L. We assume
that the transmission coefficient T of the two spherical
mirrors is much less than unity and that the two plane
mirrors have 100% reflectivity. Position 0 in Fig. 1(b) is
the origin of the longitudinal coordinate z and position 2
is the center of symmetry along the longitudinal direc-
tion. We assume that the beam is nearly normally in-
cident on the mirrors [the acute angles in Fig. 1(b) are as-
sumed to be very small] and introduce the paraxial ap-
proximation [36].

B. Medium

C. Expansion in transverse modes

For model 1, if we assume nearly perfectly reflecting
boundary conditions at the side mirrors, the transverse
distribution of the optica1 field can be expanded in terms

For both models the nonlinear medium (one which is
linearly absorbing for weak fields) has a length L„and
volume V. We assume it is a collection of homogeneously
broadened two-level atoms with a transition frequency
co, . The atomic polarization and population relaxation
rates are denoted by yj and y~~, respectively. For model
1, we assume the medium fills the whole cavity (i.e.,
L„=X),but for model 2 we use the thin medium ap-
proximation for convenience.
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of the mode functions

gp(x)=1,

g„(x)=2' cos(nn.x), n =1,2, . . . ,

where x has been normalized to the distance b, so that
0&& &1.

For simplicity we assume cylindrical symmetry for
solutions to model 2, and the resulting cavity modes are
the Gauss-Laguerre functions [36,37,30]

A„(p,ri) = 2 2p
z exp —, +i —(2n+1) tan

v (ri) v'(ri) u(ri) 90
(2a)

where

v(g)= . ih 1+
gp

and

'2 ' 1/2

(2b)

P =yi[DF P(1+—ib, )],

D = —y [ '(PF +—FP )+D —1],

(6b)

(6c)

and

ri =z /L— (3a)

u (il) = (riz+—rip2) .1
(2c)

'9

L„(x)is the Laguerre polynominal of order n and ih is
the Fresnel number (gawp/AL), where wp is the beam
waist. Hence the Rayleigh range corresponds to ripL.
The normalized cylindrical coordinates are

where F(x,y, z, t) and P(x,y, z, t) are the envelopes of
the field and the atomic polarization, respectively, within
the rotating frame of the input field. D(x,y, z, t) is the
difference between the population of the lower level and
the population of the upper level per atom. These func-
tions vary slowly with respect to z and t on the scale of a
wavelength or an optical period, respectively. V, is the
transverse Laplacian and a is the unsaturated absorption
coefficient of the field on resonance,

p=(kp/2L )'~ r,
with

(3b)
2mlJ, kpNa=

fiy~V
(7)

kp =cop/c (4)

where r is the radial coordinate, mp is the frequency of the
input field, and c is the speed of light.

III. DERIVATION OF THE FIELD EQUATIONS

The reader who is not interested in the details of the
derivation can skip this section and go directly to the be-
ginning of Sec. IV, where a summary of the main steps is
provided.

For an atomic system of homogeneously broadened
two-level atoms, under the assumptions of a slowly vary-
ing envelope, and with the dipole and rotating-wave ap-
proximations, the Maxwell-Block equations describing
the dynamics of the system are [22(a)]

D. Input field

For model 1 we take the input to be a homogeneous
plane wave of frequency cop, matched to the fundamental
mode n =0. For model 2 the input field is taken to have
a Gaussian transverse profile and frequency cop. The lens
of Fig. 1(b) assures that the Gaussian input beam is
matched to the fundamental mode inside the cavity

E;„(P,il)- Ap(P, il) .

where p is the dipole moment of the atomic transition, N
is the total number of atoms, and V is the volume of the
medium. The atomic detuning parameter b, is defined as

N~ Np

Vl

The Maxwell-Bloch equations are independent of the cav-
ity configuration. When we select the particular cavity
configuration, with its boundary and modal expansion,
the corresponding equations for the modal amplitudes are
obtained. In order to compare the two models, we use
the same symbols for corresponding parameters and vari-
ables of both models.

A. Field equations for model 1

1. Modal equation for the longitudinal mode m =0 I22(a)J
We define the normalized plane-wave input-field ampli-

tude Yby

=(yiyiiT)' —,
'

[ Y exp( —
itppt )+c.c.],

where E;„is the amplitude of the input field. The bound-
ary condition of the ring cavity of model 1 is

1 ~ F+ BF + 1 BF
2ik ' Bz c Bt

(6a)
F(x,y, O, t )=TY+R exp( i5p)F(x,y,X,t ), —.(10)

where the re6ectivity coe%cient is given by
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R=1—T .

The cavity detuning parameter 50 is given by

(1v~ co0)T
5O =—

(11) where

and
12

(17b)

where co, is the frequency of the longitudinal cavity mode
nearest to coo and ~ is the cavity linewidth defined as

(13)

As described in Ref. [22(a}],we introduce the uniform
field limit (in the longitudinal direction) and the single-
longitudinal-mode approximation. The uniform field lim-
it is defined by

aL& «1, T «1, and l50l «1,

1

4n.TP ' (17c)

n=1 ~c
(17d)

with 7 being the Fresnel number, 9'=b /M. We as-
sume that 7 is large so that the parameter a is of order
unity. The parameter a characterizes the frequency spac-
ing between the first transverse mode and the fundamen-
tal longitudinal cavity mode by [22(a)]

with (14)
9. Partial differential equation of motion for model l

d2f (0)
+l

2koy
(15a)

aL, ~ 50
C =— and 6l —= arbitrary .

2T T

If ~, is also the resonant frequency of the longitudinal
mode closest to co, and the longitudinal mode spacing
2mc /X is much larger than the atomic linewidth yi, only
the resonant longitudinal mode rn =0 (in the frame of the
input field) can be excited.

The modal amplitude equations for the longitudinal
mode m =0 is [22(a)]

(0)
=)~[ i8f' ' (f—' ' Y)——2Cp' —']

at

The cubic approximation for the nonlinearity in Eq.
(17a) holds under the condition 1+iI), »

lf ' )
l . We con-

sider a more restrictive condition which gives greater
range for the intensity [38]:

iiI), i»1, 2C/lhl»1, 2C/iI), '«1, 6)—(2C/b)-1.
(17e)

The cubic approximation consists of retaining only the
first two terms of the binomial expansion of the denomi-
nator in Eq. (17a), and in neglecting 1 with respect to i i(

and b, . One then obtains the equation [12]

d E
, =E —(1+irlB)E+i21ElEl +ia, (18a)

where

and

(0)
=y [f d ' (1+tb, )p( ']- '

Bt

ad(0)
y [

1 (f(0)p(0)» +f(0)»p(0))+d(0) 1 ]

(15b)

(15c)

E(x, t') =

E—

' 1/2

f(0)(x

1/2
2C

(18b)

(18c)

where f' '(x, t), p' '(x, t), and d' '(x, t) are the field am-
plitude, the atomic polarization, and the population
difFerence of the longitudinal mode m =0, respectively.

2. Adiabatic elimination of the atomic variables

and

2Cge=8—

~= —~l~l (~=+1) .

(18d)

(18e)

On the assumption that

(16)

The parameter g carries the sign of the detuning A. For
g=1 the medium is self-focusing, and for g= —1 it is
self-defocusing.

we can adiabatically eliminate the atomic variables p' '

and d( ' from Eq. (15}and obtain the field equation
r

4. Modal equations for model l

g g(0) —Y f(0)
at'

2C
1+15,2+ lf (0)

l

2

For the cavity configuration of model 1, the field am-

plitude E can be expanded in orthogonal transverse
modes,

2CE
1+6, +f' ' E(x, t') = g E„(t'}g„(x) .

n=0
(19}

d2f (0)
+ia

dx
(17a) By substituting Eq. (19) into Eq. (18a), the modal equa-

tions are
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, =Et5„0 (1—+iA„)E„+iF/g I „k/~EkE/E~,
k, l, m

(20)

the assumption that they maintain the cylindrical symme-
try of the cavity and input field.

1. Modal expansion

where 5„0is the Kronecker delta,

0, nAO
5nO= 1, n=0,
A„=ye+am. n

(21a)

(21b)
F(p, rt, r) = g A„(p,rt)f„(r/,r), (23)

We proceed in a manner different than in our analysis
of model 1. First, the field envelope F(p, g, r) is expanded
in transverse modes,

and
1

r„k/ = g„(x)g/, (x )g/(x )g (x )dx .
0

(21c) aa„=—7, A„4 / n (24)

where the Gauss-Laguerre functions A„(p,rt) [see Eq.
(2}]are the solutions of the differential equation

+— =—'iV F—LP
8'/7 v 87

(22a)

B. Field equations for model 2

Using the normalized variables of Eqs. (3} and r=y/t,
Eqs. (6) become [36]

and obey the orthonormality relation

Pp~n P&1 ~n' P& l n n' ' (25)

We substitute Eq. (23}into Eq. (22a) for the field equation
and use the atomic equations. The new field equations
for the modal amplitudes f„(rt,r }are

and

P =DF P(1+i b—, ),

BD
y[ '(PF'—+FP—*)+D —1],2

(22b)

(22c)

df. 1 df. =—aL p PA„*p, g P p, g, ~
Br/ v Br

2. Boundary conditions

(26)

where

CV=

and

(22d)

(22e)

For the ring cavity of model 2 with an input field, the
appropriate boundary conditions for the mode ampli-
tudes f„(rt,r) are (see Appendix A)

1f„—,r = TY5„—O

1+exp( i 5„}Rf„—,r y/——
5' 1 ap2 — + (22f)

dp P dp

The slowing varying amplitudes F(p, rt, r), P(p, r/, r), and
D(p, ri, r) are independent of the angular coordinate by

l

(27)

The normalized input amplitude F is defined by the input
field E;„(t), which is assumed to be matched to the funda-
mental mode n =0,

y, E;„(t)
=(yzyiT) —YAO p, —— exp ~ i ko —— coot +c—.c.(~~ 1 1 . L

(2&)

and the parameter 5„is

(tu„—too)X
5 =

n (29)

$„=2(2n+ 1) tan
—1', +t..— ~, '

2U0 2V2

where co„is the frequency of the nth transverse mode,

tun tuc +0n (30)

In Eq. (30}, 2g„is the phase shift of the nth transverse
mode after a round trip,

(31)

where uo =go and u2 are the Rayleigh range (normalized
to L ) at the positions 0 and 2, respectively [see Fig. 1(b)],
and/:—L/X [30,37).

In order to obtain simple modal equations, we perform
the following transformations to arrive at periodic
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boundary conditions. First, let

r'=r+y, (g+ ,')—

f„'(rt,r') =f„—(ri, ~),
F'(p, g, r') =F—(p, rt, r),
P'(p, rl, r') =P(p—, rt, r),
D'(p, g, r') =D(p—, rt, r) .

Then the modal equations become

D —y [ ,'(—P'F'*+F'P'*)+D'—1],
(32a)

and the boundary conditions Eq. (27) are

(32b)

(32c)

(32d)

(32e)

which obey periodic boundary conditions

f„'(——,', r') = TY5„O+exp( i—5„)Rf„'(,', r'—) .

Then, we define the new modal amplitudes f„(g,r'),
f„'(rt,r') =

[f—„(q,r') —TY5„o(g+—,
'

) ]

X exp[ —(lnR i 5—„)(tr+ —,
' )],

(33c)

(34)

(35)

df.' yi& @"'n+, = aL f—dppA„'(p, ri)P'(p, ri, r'),
3'g C 87 0

(33a) 3. Longitudinal average of the modal amplitudes

(36)

(33b) Using the definitions in Eqs. (35), the field equations
become

Bf„(ri,r') y X df„(rt,r')+, = TY5„o—TY5„0(ri+—,')(lnR i5„—)+(lnR i5„)f—„(rt,r')
a77 C 8'7

—exp[(ri+ —,')(lnR i5„)—]aL f dppA„(p, rt)p'(p, rl, 7') .
0

(37)

Defining the longitudinal averages of the field amplitudes
of the transverse modes

f„(r')—= f '"
drtf„(ri,r'),

and using the periodic boundary conditions of Eqs. (36),
we integrate Eqs. (37) with respect to rt over the range
( —

—,', —,
'

) with the results

= TY5„0——,
' TY5„o(lnR i5„)—

where

cTK-
7l

(42b)

value of the longitudinal modal index m (see Sec. III 8 4 b
below). The field modal amplitude equations (39) become

8f„(r') 5„= Y5„O— 1+i f„(r') 2CI„(7'), (42—a)

+ (lnR i 5„)f—„(r') aL
„

I„(r'),—
where the integrals I„(r')are

i/'2I„(r'): f d ri e—xp[(lnR i 5„)(ri+——,
'

) ]
LA 1/2

X f dppA„'(p, rt)P'(p, ri, r') .
0

(39)

(40)

f„(rt,r')= g f„' '(r')exp(i2mmri) . (43)

In the approximation Eq. (41) of a single longitudinal
mode, all the modal amplitudes with mAO can be

neglected, so that

b. Single-longitudinal-mode approximation. By the
periodic boundary conditions Eqs. (36), f„(ri,r') can be
expanded in the form

f„(g,r')= f„"'(') =rf„(~'). (44)

4. Some approximations

a. Uniform field limit We use .the uniform field limit
as described by Eq. (14) and introduce the assumption
that the frequency diC'erence between the relevant non-
resonant transverse modes and the input frequency co0 is
much smaller than the free spectral range, precisely [39]

c. Adiabatic elimination of the atomic variables, cubic
approximation, and thin-medium approximation. Under
these approximations the integrals become (see Appendix
B)

CO„C005„= -O(T) &(1, n ~1 .c/L (41) +, & I'.kl f~"'(&')fI"'(&')f-"'*(r'»
g0~ k, l, m

This hypothesis requires that the Fresnel number g0 is on
the order of (1/T). Condition (41) implies that the dy-
namics of the system is governed by modes with a single where (p= p/g )o

(45)



49 SPATIAL PA'I I'ERN FORMATION AND INSTABILITIES IN. . . 2055

I k(
= ppA„p Akp Alps p0

(46a) p=p/iso~ . As a matter of fact, if one inserts Eq. (50b)
into Eq. (50a) and takes into account the identity

and

A„(p)=2L„(2p ) exp( —p ) .

5. Final modal equations

( —,(V', —
p +1)A„(p)= —2n A„(p),

(46b)
the orthonormality relation

I dp p A„(P)A„.(p)=5„„.,
0

(51a)

(51b)

By Eqs. (29)—(31), the mode detuning parameter be-
comes

5„(co„o—(oo)X (to„—co„=oK+
T cT cT

5(i 2ngo=—+
T T

=8+an, (47a)

where 8 is given by Eq. (14) and

2$o ((o„ i
—co„o)a=

T K
(47b)

E =
n

1/2

f(0) (48b)

1/2

(48c)

and define the detuning parameter ge as in Eq. (18d).
Then the final modal equations of the field have the same
form as for model 1, i.e., Eq. (20), with the exceptions
that the coefficients of the linear term are now

A„=ye+an, (49)

and the coefficients of the cubic terms, I „k&,are given
by Eqs. (46) instead of Eq. (21c).

6. Partial differential equation of motion for model 2

It is possible to construct in an equivalent manner the
field equation of motion in the form of a partial
differential equation using the modal equations, Eqs. (20),
(46},and (49) (see [30])

BE(p, t') :EIA o(p) ( 1 + l'FJB)E(p t )at'

+i riE(P, t')IE(p, t')I

+i ( ,'V, p+1)E(p,—t')—, — (Soa)

The parameter a characterizes the frequency spacing be-
tween the transverse modes.

Now we renormalize the variables using

(48a)

and definitions (46a) and (49), one obtains Eqs. (20).
We observe finally that Eqs. (18a), (20), and (50a) can

be used to model nonlinear phenomena in a Fabry-Perot
cavity instead of a ring cavity, provided that one intro-
duces the following changes: (a) The parameters a and C
are defined as

cT al. ~C—

where I. is the distance between the two spherical mir-
rors, and the parameter a denotes the frequency spacing
between adjacent transverse modes, normalized to m. ~ in
model 1 and to z in model 2 [see Eq. (17d) and (47b)]; and
(b) the right-hand sides of E s. (18b), (18c), (48b), and
(48c) must be multiplied by 3 [see Ref. [22(a)], Sec. IV,
and introduce the cubic approximation].

IV. SINGLE- TRANSVERSE MODE
STATIONARY SOLUTIONS
AND THEIR STABILITIES

Because the derivatives carried out in the previous sec-
tions are lengthy and cumbersome, let us now summarize
them. We started from the Maxwell-Bloch equations (6)
and assumed the limits of small absorption, a high-finesse
cavity, and quasiresonance of the input field with one lon-
gitudinal. mode of the cavity and with its higher-order
transverse modes [see Eqs. (14}and (41)]; these conditions
allowed us to eliminate the longitudinal variable from the
model. We then performed the adiabatic elimination of
the atomic variables on the basis of condition (16} and
finally, assuming a large atomic detuning [Eqs. (17e}],we
performed the cubic approximation. In this way we ar-
rived at a relatively simple partial difFerential equation
for the field envelope [Eq. (18e) for the Cartesian case
and Eq. (50a) for the cylindrical case] or, equivalently, to
a set of ordinary differential equations for the modal am-
plitudes [Eq. (20) with Eq. (21b) in the Cartesian case,
and with Eq. (49) in the cylindrical case].

When difFraction of the beam is introduced in the mod-
els, one of the most important issues is the stability of the
fundamental stationary solution which matches the input
field. For model 1, analytical results have been presented
previously [12,15]. The input field is transversely homo-
geneous and Eqs. (18) and (20) admit an exactly homo-
geneous stationary solution, in which E(x,t'}:Ez=Eo, —
and all the other amplitudes E„with nAO vanish. This
steady-state equation is [40]

where IE I'=IE I'[1+(IE I' —e}'] . (52}

E(p, t')= QE„(t')A„(p) (50b)

and V, is defined by Eq. (22f} with p replaced by

Note that E0 corresponds to excitation of only the funda-
mental mode of the rectangular cavity. The plot of the
steady-state solution IEs I

vs IEt I
has a characteristic S
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shape and becomes multivalued when 8 )3. The homo-
geneous solution Ez is unstable with respect to perturba-
tion of the amplitude of the nth mode, provided the fol-
lowing condition is satisfied [12]:

IE I'(+), (53a)

where

IEs I
(+)= ,'[8—+r)a(n)]+,'V—[8+pa(n)] 3— (53b)

and

a(n }—:am. n (53c)

E,=E,[1+i'(8—r IE, I')] . (54a)

For n =0, condition (53a) defines the negatively sloped
portion of the steady-state curve Eq. (52), which exists for
8 & v'3 [40]. For n &0, condition (53a) defines the part
of the steady-state curve which is unstable under pertur-
bation with the spatial configuration of mode n. This
part exists provided that 8+ r)a(n ) & &3. Note from Eq.
(53b) that the instability condition for mode n coincides
with the condition of negative slope, provided 8 is re-
placed by 8+r)a(n } [see Ref. [22(a}].

The instability for modal amplitudes with n )0 leads
usually to the appearance of inhomogeneous stationary
solutions, as we will see in the following section. This
phenomenon corresponds to the simultaneous breaking of
the translational symmetry in space and of the parity
symmetry under the transformation x ~(1—x )

(remember that 0&x & 1). As a matter of fact, two inho-
mogeneous stationary solutions appear simultaneously,
and one is obtained from the other by the parity transfor-
mation [12,22(b}]. Therefore the two solutions have the
same modal intensities IE„I. When only even modes
contribute to the spatial configuration, the two solutions
coincide; when odd modes also contribute, the two solu-
tions are different and there is a trivial kind of bistability
between them, which may be washed out in the presence
of noise [41].

For model 2 there is no homogeneous solution satisfy-
ing Eq. (50), since a homogeneous solution cannot match
the mirror curvature. However, there is a lowest-order
mode and so it makes sense to compare the phenomena
for the two models with respect to the amplitude of an in-

put field which is mode matched to the fundamental cavi-
ty mode, as assumed in Eq. (50}. Although Eqs. (20) for
model 2 [i.e., Eqs. (46) and (49)] admit an exact single-
mode stationary solution in which all the modal ampli-
tudes E„with nXO vanish exactly, this solution is unfor-
tunately always unstable since even the slightest non-
linearity distorts the transverse pattern from that of the
fundamental mode. This feature arises from the cou-
plings of the mode amplitudes introduced by the
coefficients I „k& in Eq. (46). However, for small values
of the input intensity there is a stable solution which is
predominantly the fundamental mode with only small
nonzero amplitudes for higher-order modes (Sec. VB}.
Some characteristics of the stable solution can be ob-
served from the analytic form of the unstable (but ap-
proximately similar) fundamental mode solution given by

Taking into account that I O000=2 and replacing Eo by
E~, one has the steady-state equation

IE I'=IE I'[1+(2IE I' —8)'] . (54b)

The curve of steady-state solutions IEsI vs IEzI is mul-

tivalued when 8 )3. Note that in terms of the variable

Es =v'2', Eq. (54b) becomes identical to Eq. (52).
Linear stability analysis of this solution or of the simi-

lar stable solution is hard to complete analytically be-
cause of the approximate nature of Eq. (54b), and because
of the couplings introduced by the coefficients (46). In-
stead of the simplicity of the orthogonality relation for
I „&& in the Cartesian model, we have mode mixing even
when Eq. (20) is linearized around Eq. (54a). Hence the
linearized equations are not diagonalized.

V. NUMERICAL RESULTS

A. Model 1

We integrate the modal equations, Eqs. (20), until the
system reaches a stationary state, and then we adiabati-
cally change the amplitude of the input field. To reduce
the integration time necessary to obtain these diagrams,
usually we included in our calculations only the first
three modes, n =0, 1,2. As we show in the following by
two examples (Figs. 3 and 11), the overall picture as sum-
marized in Sec. VI is not affected by this restriction and,
for a certain range of values of the input intensity IEz I,
even the quantitative description provided by the three-
mode model is basically correct.

For model 1, we solve Eqs. (20) together with Eqs.
(21b) and (21c). Figure 2 shows the mode intensities

I E„I
as functions of the homogeneous steady-state inten-

sity IEzI, for the parameters g=1, am =1.0, and
6=1.0. The infinite set of modal equations is truncated
to the first three modes. Because, in this case, the curve
of the homogeneous steady-state solutions, IEz I

vs IEzI,
is single valued, we choose IEzI as the abscissa, instead
of IEzI . Figure 2 indicates that all the bifurcations to
nonhomogeneous transverse spatial patterns are super-
critical, in accord with the analysis of Ref. [12], which
predicts a supercritical bifurcation for e & —", =1.4. In
the range 1.0& IEs I

&1.67 the homogeneous solution is

unstable with respect to perturbations of the mode n =1.
A small stable "island, " where the homogeneous steady-'

state solution recovers stability, appears in the range
1.67 & IEv I

& 1.77, as shown in Fig. 2(b}. For
IEzI & 1.77, the homogeneous solution is unstable again,
but with respect to perturbations of the mode n =2; the
second mode grows while the amplitude of the first mode
remains zero. The values of the bifurcation points coin-
cide exactly with the predictions of the linear stability
analysis. The existence of the stable island is because the
instability ranges with respect to perturbations of the
modes n =1 and n =2 [given by Eqs. (53)] do not overlap
for the values of the parameters we have selected. At a
larger detuning 8=2.0, the bifurcation behavior is
different and more complicated, as shown in Fig. 3. In
order to illustrate this explicitly, we also plot the unstable



49 SPATIAI. PAL IERN FORMATION AND INSTABILITIES IN. . . 2057

IE„I*

1.5 ta)

IE.I*

1.0

0.5

2 /
/

/
/
I
I
I
I

\

I
I

IE@*

0
0 l)a 3 Its 4

E

IE„I* (b&

1.8

IE
tb)

2

1.7

1

I

I

1.6
I

KO4
2

II It

0
1.6 1.7 ta IE

I

FIG. 2. (a) Stationary-mode intensities as a function of the
homogeneous steady-state output intensity of model 1 for g=1,
an =1.0, and 8=1.0; (b) Magnification of the region around
the stable island. In Figs. 2-13 the integer numbers indicate
the modal index n.

FIG. 3. Mode intensities as a function of the input-field in-

tensity of model 1 for g= 1, a&=1.0, and 8=2.0. The right-
most part of the curves indicates the time-dependent solution.
The dashed line indicates the homogeneous stationary solution.
{a) Solutions for the model truncated to the first three modes;
transition points: I~& =2.01, I~& =1.67, It&=3.63, I~&=2.54.
(b) Solutions for the model truncated to the first eight modes;
transition points: I))=2.01, Ig& =1.63, I)2 =3.33, Ig, =2.49.

region according to Eqs. (53) in Fig. 4, in which the shad-
ed part indicates the unstable region corresponding to the
negatively sloped of the curve of the steady-state solution
of )Ez( as a function of ~IEI( governed by Eq. (52). As
we adiabatically increase the input field, the first critical
point is ~EI ~

=2.0 (i.e., IEzI =1.0), which corresponds
to the right turning point of the homogeneous steady-
state curve. Here the homogeneous steady-state solution
of the lower branch becomes unstable with respect to per-
turbations of the mode n =0, and the system would jump
to the upper branch of the homogeneous steady-state
solutions if there were no perturbations of the inhomo-
geneous modes. But the homogeneous steady-state solu-
tion on the upper branch (which corresponds to the value
~Es~ =2.0) is unstable against perturbations of mode
n =1, as indicated in Fig. 4; hence the system approaches
an inhomogeneous stationary solution.

Figure 3 sho~s two bistability regions: the Srst corre-
sponds to a bistability between the lower branch of
homogeneous solutions and an inhomogeneous pattern;
the second corresponds to bistability between a pattern
which is symmetric with respect to the parity transforma-
tion x ~(1—x ) and an asymmetric pattern. For large in-
put field intensities ~IEI ~

)5.0, time-dependent solutions

(spatiotemporal structures) occur. Figure 3(b) shows the
solution if one includes eight modes in the description.
There is no significant difFerence for the first bistability
region, but in the second region the time-dependent solu-
tion appears at a much smaller input-field intensity than
in Fig. 3(a).

FIG. 4. Unstable domain in the plane of variables
a(n)=ann and IEzI for the same parameters as Fig. 3. The
shaded part indicates the unstable region corresponding to the
negative slope of the curve IEz I

—
I El I

.
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8. Model 2
E„ (a)

For model 2, when the input field is small enough we
find the solution which is approximately the single-
fundamental-mode solution (54b). The higher modes are
nonzero but negligible. Figure 5 shows the mode intensi-
ties as a function of )Es), , which is related to the input
field by Eq. (54b), from the parameters q = 1, a = 1.0, and
8=1.0. Although there are points near ~Es ~

=0.2 and

~Es) =1.3 where the curves rapidly change slopes, there
are no bifurcations in a rigorous sense, as one sees by
checking the value of the determinant of the characteris-
tic matrix of the linear stability analysis at the "bifurca-
tionlike" point. (The determinant appears to have a
minimum but does not vanish. ) The minimum of the
determinant of the characteristic matrix indicates a kind
of "soft-bifurcation" behavior. The feature of the first
soft bifurcation is that the amplitudes of modes n &0
grow noticeably; this feature is comparable to that ob-
served for model 1 (see Fig. 2); the feature of the second
soft bifurcation is that the intensity of mode n =1 de-
creases.

As the detuning is increased, the soft-bifurcation
feature becomes pronounced until the intensity curves
break and become discontinuous; at this point true sub-
critical bifurcations occur. The first true bifurcation
arises for 8=1.5 and the second for 8=1.6, as shown in
Figs. 6 and 7, respectively. Where the intensity curves
become discontinuous, hysteresis appears, as shown in
Fig. 6(b), which is a magnification of the region around
the first bifurcation of Fig. 6(a). Figure 6(c) shows the
magnified region around the second bifurcation, which is
still soft but near to becoming a true bifurcation.

As the detuning is increased further, the hysteresis re-
gions are enlarged. Figures 8 and 9 illustrate the steady-
state intensities of the modes as functions of the input
field ~EI ~

for 8=2.0 and 4.0, respectively. Figure 10
shows the transverse intensity profiles at the upwards
transition points for 8=4.0, where Fig. 10(a) is for the
transition point I~& =4.00025 of the first loop and Fig.
10(b) is for I&& =24.932 of the second loop. In Fig. 10(a)
the narrowing of the region of high intensity indicates the

/0

(Enl &b) {c)

I

I

I

I

0.04

I

p.f06
i
E

FIG. 6. Mode intensities as a function of )Es)~ for model 2,
truncated to the first three modes. The parameters are g=1,
a =1.0, and 8=1.5. (b) and (c) are the magnifications around
the transition areas of (a).

appearance of the Gauss-Laguerre modes di8'erent from
the fundamental.

With the same parameters as in Fig. 8, we integrate the
modal equations of model 2 with six modes and the nu-
merical results are shown in Fig. 11(a). Comparing Figs.
8 and 11(a), there are no major qualitative differences, but
the bifurcations occur at smaller values of the input field
in Fig. 11(a).

E.

FIG. 5. Mode intensities as a function of )Es)~ for model 2,
truncated to the first three modes. The parameters are q=1,
a =1.0, and 6=1.0.

FIG. 7. Mode intensities as a function of )Es) for model 2,
truncated to the first three modes. The parameters are g=1,
a =1.0, and 8=1.6.
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(b)

0.5

5 16

FIG. 8. Mode intensities as a function of input-field intensity
for model 2, truncated to the first three modes. The parameters
are g=1, a=1.0, and 8=2.0. The dashed line indicates the
curve described by Eq. (54b).

Unlike Fig. 3(b) of model 1, where eight operating
modes were used, in Fig. 11(a) the amplitudes of the
higher-order modes are not negligible. This may create
worries about the convergence of the solution when the
number of modes is increased. In order to account for
the possibility of higher losses for the higher-order modes
in the cavity, such as may occur due to the presence of
apertures and finite transverse extent of other intracavity
elements and of the mirrors themselves, we introduce an
additional damping term Pn 4 (compare with Ref. [20]) in
the modal equations, which take the form

1

t(~)
I(o)

0.5

(a)

=Et5„c—(1+Pn +iA„}E„dt'

+t Si y I k/ EkEjE
k, l, m

(55)

FIG. 10. Transverse intensity profiles at the transition points
(a) It& =4.0025 and (b) It2 =24.932 of Fig. 9, where B and A in-

dicate the profiles just before and after the transitions, respec-
tively, when the input intensity is increased.

where P is the damping coefficient. These additional
losses for the higher-order modes also have the computa-
tional advantage of improving the convergence of the
modal expansion, justifying the more rapid truncation of
the infinite series to a finite number of modal amplitudes.

Figures 11(b) and 11(c) show the results of integrating
Eqs. (55) for P=0.005 and 0.05, respectively. In Fig.
11(c) the intensities of the higher-order modes are obvi-
ously diminished. However, the decrease of the ampli-

lEnl
*

3—

2—
E

0
4 I~~ Iti
~ S

FIG. 9. Mode intensities as a function of input-field intensity
for model 2, truncated to the first three modes. The parameters
are g=l, a=1.0, and 6=4.0. The transition points are
I~~ =4.0025, I~& =1.2506, I~2 =24.932, I~2 =11.625. The
dashed line is the curve of the steady-state solution described by
Eq. (54b).

tudes of the higher-order modes can reduce the width of
the bistable regions, and can even eliminate a bifurcation,
as shown in Figs. 11(b) and 11(c).

C. Self-defocusing cases (g = —1)

For the self-defocusing case with model 1, as indicated
in Ref. [12], the instability of the transverse homogeneous
solution can arise only for 8)2. With the parameters
8=4.0, ri= —1, and ae =1.0, the numerical results in-
dicate that there are no stable stationary inhomogeneous
solutions, as shown in Fig. 12. As a matter of fact, ac-
cording to Eq. (53},only perturbations of the Srst trans-
verse mode can provoke the instability of the homogene-
ous solution. The unstable range, l. 1835(

l Ez l

2

&2.8165, is mostly in the region of the negative slope of
the steady-state curve, and partly in the lower branch of
the homogeneous solution. On the other hand, the upper
branch of the homogeneous solution remains stable.
Therefore, under perturbations of the Grst mode, the in-
stability of the lower branch occurs before reaching the
turning point, and the system jumps up to the stable
upper branch. In other words, the inhomogeneous mode
plays the role of a trigger for switching, but there are no
stable inhomogeneous patterns which it can create. This
effect may go unnoticed in experiments, since patterns
during switching transients are rarely studied.
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linear part of the atomic dispersion [see Eq. (18d)]. The
third-order terms describe nonlinear dispersion and the
coefficients reflect the spatial couplings and interactions
between transverse modes.

For small input-field intensities the homogeneous
stationary solution (or the approximately single-
fundamental-mode solution for model 2) is stable. As the
amplitude of the input field is increased, there are insta-
bilities with the spontaneous formation of more complex
stationary spatial patterns in both models. In this case,
all the transverse modes do not arise with their frequen-
cies of resonance in the linearized cavity, but rather they
appear with the input frequency as their common operat-
ing frequency; this phenomenon is analogous to the
cooperative frequency locking in a laser [14] and to the
injection locking in a laser with injected signal. In the
case of a Cartesian cavity configuration (model 1), the on-
set of an inhomogeneous state corresponds to the spon-
taneous breaking of the translational symmetry in space
(Turing instability [42]) and of the parity symmetry.

In both models, there are basically two transition re-
gions: one characterized by the emergence of modes
different from the fundamental; the other characterized,
in most cases, by the disappearance (or by a decrease, at
least in an interval of input intensity) of the first mode in
favor of higher-order modes and/or of the fundamental
mode. For large enough detuning subcritical bifurcations
occur in both models, and the hysteresis regions are en-
larged with increasing detuning.

Between the two models, an apparent difference is the
nature of their bifurcations. For model 1, the bifurca-
tions are supercritical for small detuning, and then be-
corne subcritical as the detuning is increased. For model
2, soft bifurcations, which look like supercritical bifurca-
tions, occur for small detunings, but are transformed into
subcritical bifurcations for large enough detuning.

In conclusion, the increase of the detuning parameter
leads to the appearance of bistability, as predicted by the
single-mode theory, which includes only the fundamental
mode. In our more complete theory, however, the hys-
teresis cycles which appear are essentially multimode,
and their shape is completely different from that
prescribed by the single-mode steady-state curve. Hys-
teresis phenomena of this kind have been recently ob-
served in a sodium cell [43]; they cannot be adequately
described, however, by our simple model, because atomic
diffusion plays a relevant role in that case.

In our cubic model, phenomena of spontaneous oscilla-
tions appear only in the Cartesian case (Fig. 3). The qual-
itative difFerences are (i) that the frequencies of modes in
the Cartesian model are unequally spaced while in the cy-
lindrical model they are equally spaced; and (ii) that
I „&&

's for the Cartesian model are different from zero
only for a few values of the indices, while for the cylindri-
cal case I „&&

's are widely distributed and dependent on
a11 the indices. Hence the modes are more strongly cou-
pled in the cylindrical case, while some modes can
operate relatively independently of each other in the
Cartesian model. This feature might be linked to the fact
that in the cylindrical case the system approaches a state
in which all the modes are locked to the input-field fre-

quency. Another important element in this connection is
that in this model the frequency spacing ~a between adja-
cent transverse modes is on the order of the cavity
linewidth a", it is well known, in fact, that this condition is
characteristic of cooperative frequency locking in lasers
[14]. If the atomic dynamics had not been adiabatically
eliminated, the onset of spontaneous oscillations in the
output intensity would become easier when aa is on the
order of the atomic linewidth y~ for ~&&yz, because in
this case the large intermode spacing would prevent the
locking of the modes to the frequency of the input field

(i.e., the modes n & 0 would arise with their own frequen-
cies through a kind of nonlinear parametric gain). How-
ever, in these approximate models we have not retained
any difference in nonlinear dispersion that results from
the different detunings of the modes from the center of
the atomic line.

In all the numerical calculations illustrated in Sec. V,
we selected a6= 1 (Cartesian case) and a = 1 (cylindrical
case), but we expect that they do not depend on this
choice in any substantial way. Our results show a strong
asymmetry between the self-focusing case g=1 and the
self-defocusing case g= —1. In the case of a cylindrical
cavity with spherical mirrors, the symmetry can be re-
stored by changing the sign of the parameter a; this cor-
responds to changing from a quasiplanar cavity (a &0) to
a quasiconcentric cavity (a (0) [30]. In the case of the
Cartesian cavity, instead, there is no apparent sense in
taking a &0.

We observe finally that the behaviors predicted by our
theory may undergo some change if the system is allowed
to spontaneously break the cylindrical symmetry. The
analysis of model 2 with inclusion of the cylindrically
asymmetric modes will be the subject of future work.

ACKNOWLEDGMENTS

We are grateful to Lorenzo Narducci for several stirnu-
lating discussions. This research was carried out in the
framework of the ESPRIT Basic Research Action 3260
"Transverse Optical Patterns" (TOPP).

APPENDIX A

The electric field E inside the cavity obeys the follow-
ing boundary condition [see Fig. 1(b)]:

E(p, ,', t)=v'TE;„+P—, —,E p, ,',t—(Al)

+c.c.], (A2)

and Eq. (28) we obtain the boundary condition for the en-
velope F

where the operator P, 3 takes care of the refiections of
the radiation beam by the two spherical mirrors of the
cavity, and of the propagation from mirror 1 to mirror 3
[Fig. 1(b)]. By taking into account the relation

[F(p,g, t ) exp [i (kDL g coat )]-@, E(p, g, t ) ('Yx.)')))
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L —L
F(p, —

—,', t)=TYA0(p, —
—,') +exp icoo—P] 3F p, ,',—t—

C C

Hence if we introduce the expansion (23), Eq. (A3} becomes
T ]'

1 1 1 1 X L — 1gf„——,t A„p,—— =TYAo p, ——+exp ]coo —gf„,t —— P] 3 A„p,—
E

(A4}

The modal functions A„satisfy the field equation for an

empty cavity without input field and with ideal mirrors
(i.e., R =1). In this case the electric field obeys the
boundary condition

l

function A„(p,rt) obeys Eq. (24). By inserting Eq. (A7)
into Eq. (AS) and taking Eq. (A6) into account, we obtain

r

P],A„(p,—,
'

) =R exp i co—„—A„(p,——,
'

) . (AS)
C

with

E(P —,', t ) =P],E P (AS) Finally, by combining Eqs. (A4) and (AS), and taking the
orthonormality relation (2S) into account, we obtain at
the boundary conditions for the modal amplitudes f„

r

P]~3 R P]~3' ~

If one sets

(A6) f„—, t = T—Y5„0
1

it, E(p, 7},t ) ('Y].'Y~~)
1/2

{A„(p,rt) exp[i(k„Li)—co„t)]
+exp( i5„—)Rf„,t——1

(A9)
+c.c.], (A7)

where co„is the frequency of mode n and k„=co„lc,the
where 5„is defined by Eq. (29). Equation (A9) coincides
with Eq. (27) if one takes into account that r =y] t

APPENDIX B

Under the adiabatic and the cubic approximations, the atomic polarization inside the medium is

(Bl)

and outside the medium

P'=0 .

In the last step of Eq. (B1) we assume
~
6

~
&&1. The integral in Eq. (40) becomes

I„(r')=I„"'(r')+I„(r—'),
where

l L LA /2L
I„'"(r')=— ' f 1rt exp[(lnR i5„)(t—+r—,' )]f dp p A„*(p,rt)F'(p, rt, r')

(B3)

(84)

and

LA /2L
I„''(~'):— f dg exp[(lnR i5„)(}+—7—,')]f dppA„'(p, rt)F'(p, g, r'}~F'(p, rt, r')~ (BS)

Using Eqs. (23), (32b), and (25), the linear part of the integral is

L /2L
I„'"(')=rf de exp[(lnR i5„)(g+——,')]f„'(rt,r') .

Using Eqs. (3S), (44), and the uniform field limit T« 1, we obtain

—iL L„/2L
I„'"(r')= f drt[f„(rt,r'}—TY5„0(q+—,')]

A

(B6)
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By following the same method, the nonlinear part of the integral is

L~ /2L
I„'3'(r')= ' f dr/exp[(lnR —i5„)(g+—,

' )]f dpp A„"(p,ri)—L~ /2L

X y A/, (pirl) A/(p, ri) Am(p, rl)f/', (ri, r')f '1 (ri r')fm'(ri r')
klm

f dri exp[ —2(ri+ —,
'

) lnR i(—rl+ —,
' )(5„—fik —5/+5 )][fk(g,r') —TYok o(rl+ —,

' )]

X [f/(ri, r') —TY5/o(ri+ —,
' )][f~(ri,r') TY—5~ o(ri+ —,

' )]

X f dppA„'(p, q)Ak(p, q)A/(p, rl)A'(p, ri) .
0

By using the uniform field limit (14), Eq. (41), and Eq. (44), we have

L~ /2L
I„''(r')=

3 g fk '(r')f/' '(r')f~ "(r') drl dppA„'(p, rl)Ak(p, rl)A/(p, ri)A~(p, ri) . (B7)

For simplicity we assume the medium is thin enough so that the mode function A„(p,ri) can be replaced by A„(p,0)
(i.e., the length Lz is much smaller than the Rayleigh range); thus

I„(r')=
3 g fk (r')f/ (r')f ' (r') f dp PA„(P,O) Ak(P, O) A/(P, O) A (p, O), (B8)

where A„(p,0) is the real function

2 2pA„(p,O) = L„exp
vo vo vo

Under the transformation P=p/vo, Eq. (B8) becomes

I„'"(r')=, g fk '(r')f/ '(r')f' '"(r') f dPP A„'(P)Ak(p)A/P()A'(P),
90 klm

where

2'go= VO

A„(p)=2L„(2p) exp( —p ) .

(B9)

(B10)

(B1 1)
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