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Formation and evolution of roll patterns in optical parametric oscillators
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We study pattern formation in a degenerate optical parametric oscillator (OPO) by including

diffractive effects due to the propagation in the optical cavity. The solution of zero amplitude for the

OPO signal is found to be unstable to periodically modulated perturbations whenever the detuning pa-
rameter of the signal field is negative. A comparison between analytical solutions and numerical sirnula-

tions for the roll structure shows excellent agreement for a wide range of input amplitudes. The thresh-

old for the appearance of rolls is lower than the usual OPO threshold obtained in the plane-wave limit,

especially for large detunings. When the input power is increased, roll patterns lose stability, leading to
filamentation and optical turbulence.

PACS number(s): 42.65.—k, 47.20.Ky, 05.45.+b

Optical parametric oscillators (OPO's) in Fabry-Perot
cavities have been extensively studied both theoretically
and experimentally. For example, the parametric down-
conversion allows one to tune input lasers for broad
ranges of frequencies (see Ref. [1]and references therein).
OPO's have also been shown to produce high level of
squeezing [2], which has been recently related to the ap-
pearance of transverse structures [3], the subject of this
paper.

Pattern formation in nonlinear optics is a rapidly grow-
ing subject. Seminal works about optically bistable sys-
tems [4], lasers [5] and Kerr slices [6] paved the way for
observation and interpretation of transverse patterns dy-
namics in a broad range of active [7] and passive [8] de-
vices. Here we focus on a different kind of nonlinearity
leading to parametric down-conversion, coupled with
diffraction during propagation in an optical cavity. Ear-
lier studies of pattern formation during three-wave non-
linear mixing have already shown the existence of optical
defects [9] originally introduced in the context of laser
dynamics [10]. Our main result concerns modulational
instabilities which lower the plane-wave threshold for the
operation of the OPO. Rolls structures are found both
analytically and numerically and are shown to be stable
for a wide range of the parameter space. Their formation
is associated with an asymmetry between the two sides of
the resonance as rolls appear only for frequency of the
signal mode smaller than half input laser frequency (nega-
tive detunings). Here we focus on the spatiotemporal dy-
namics of roll structures leaving the case of positive de-
tunings to future analysis. By increasing the pump inten-
sity, rolls first bend at sharp angles (zigzag mechanism)
and later lose stability, leading to the formation of dislo-
cations. Moreover, the system tries to recover both the
translational and the cylindrical symmetries previously
broken by the formation of rolls, via filamentation and
optical turbulence.

We generalize a model for a degenerate OPO in a

cTO cT&
VO + ~ Vl (3)

where To and T~ are the transmittivities of the mirrors at
the pump and signal frequencies, A is the round-trip cavi-

ty length, and

/2
(4)

VO

are the detuning parameters for the pump and signal

Fabry-Perot cavity introduced by Drummond, McNeil,
and Walls [11] to include diffractive effects during free
propagation. We consider an optical cavity with plane
mirrors, containing a nonlinear g' ' rnediurn which con-
verts a field of frequency coL into a field of frequency
cot /2, and vice versa. Two longitudinal modes of the
cavity, with frequency mo and co&, are close to resonance
with the field frequencies coL and coL /2, respectively. A
coherent continuous wave field of frequency coL is inject-
ed into the laser cavity.

We assume the validity of the paraxial approximation,
the mean-field limit, and the single longitudinal mode ap-
proximation for the two fields. By following a procedure
substantially identical to that of Ref. [5] but for plane in-

stead of spherical mirrors, we derive the following set of
dynamical equations:

t) Ap=1 p[ (1+ihip)Ap+E A
&

+t'QpV' Ap] (1)

t), A, =y)[ —(1+id))A)+At Ap+ia, V A, ], (2)

where Ap(x, y, t) and A, (x,y, t) are the normalized slowly

varying envelopes for the pump and signal fields, respec-
tively; x and y denote the Cartesian coordinates of the
plane orthogonal to the direction of propagation (z) and
the normalization is the same used in [12], for example,

yo and y& are the cavity decay rates of the two field

modes defined as
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fields, respectively. V denotes the transverse Laplacian
operator

pp2 8 + 8

which describes difraction while the coeScients ao, a&

are given by

C Cao=, a
2k, yo

'
k, y,

where c is the velocity of light and k, is the longitudinal
component of the wave vector of the field of frequency
~L. The parameter E, here considered real and positive,
is the normalized amplitude of the input field. We have
initially considered E spatially homogeneous to simulate
the e8'ects of a plane input wave. In the last part of the
paper, we briefly consider the action of a nonplanar input
beam in order to show the generality and robustness of
our results.

We first consider the uniform stationary solution (i.e.,
independent of x,y, t) which characterizes the OPO below
the threshold of signal generation; it is given by

E(1 i ho—)
g St A i'=0.

1+6
In the framework of the plane-wave model, where the
terms containing V in (1) and (2) are neglected, the state
(7) becomes unstable to uniform perturbations for input
amplitudes larger than

In contrast to Refs. [11]and [12] where details of the
stability analysis of the plane wave case are provided, we
focus here on spatially modulated perturbations. It is
then convenient to introduce a new variable B =—Ao A o'

and to separate Eqs. (1) and (2) in linear and nonlinear
terms

(13)

When 5&~0, the minimum of the function (12) is for
k =0, which means that the signal field arises as a uni-
form plane wave in the axial direction [see Eq. (8)). On
the other hand, for b,

&
(0 (the case of interest in this pa-

per), the function (12) is plotted in Fig. 1 and presents a
minimum for a mell-defined transverse wave vector given
by

(14)

which is independent of the pump detuning ho. The criti-
cal value of the input energy for this modulational insta-
bility (i.e., the threshold for signal generation) is readily
obtained from Eq. (12):

which is consistently lower than E,z, especially for large
detunings !6,!. This effect may have important conse-
quences on the experimental side where tunability of in-
put lasers requires low threshold of operation for OPO
crystals.

Note that the phenomenon which makes the OPO
threshold independent of the signal detuning for negative
values of 6& is analogous to the origin of phase traveling-
wave solutions at threshold in lasers as described in Ref.
[13] in the analysis of a model introduced in [14]. For
both OPO's and lasers, diff'raction coupled with the ma-
terial nonlinearity leads to an of-axis emission that com-
pensates for the off-resonance condition. Such a
phenomenon is confined to one side of the resonance
only. At de'erence from the laser case, however, numeri-
cal simulations of the OPO equations (1) and (2) above
the threshold (15) show the appearance of roll solutions
corresponding to periodic modulation of the output in-
tensity (see Fig. 2, solid line). The characteristic wave
vector of the spatial modulation is found to be k„in ex-
cellent agreement with Eq. (14). Numerical simulations

B,B =yo[ —(1+iso)8+iaoV 8]—yoA f (9)

B, A)=y)[ —(1+id, ))A)+A f Ao'+ia)V A)] +)yA)g .

(10)

By dropping the last term in both Eqs. (9) and (10), we
obtain the equations which govern the linear stability of
the solution (7). The generic solution of these linearized
equations is a linear combination of solutions of the form

T

8
A,(k)t i(k„x+ky)~e e

1

6.00
)

4.00

2.00

I
I

/

I I

E=[(1+ho)[1+(b,, +k ) )]'
with

(12)

where k„,k are the transverse components of the wave
vector and A,(k) are the four eigenvalues of the linearized
problem, which depend on k=(k„+k„)'~and on the
parameters of the system. The threshold for signal gen-
eration corresponds to the value of the input field E such
that an eigenvalue A,(k) vanishes and is given by

0.00—

000
I

O.SO ) .00 2.00

FIG. 1. The threshold input amplitude versus the roll wave
vector for yo=y&=1.0, 6&= —1.0, and five values of ho. The
values of ho are from the bottom curve to the top 0.0, 0.5, 1.0,
1.5, and 2.0, respectively.
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have been performed by using lattice spacing equal to 0.3
d f 200X200 sites and on rectangular

girds of 800X50 sites to check that the periodic oun-
d'd t ff t the formation and evolutionary conditions di no a ec

of roll patterns.
e of a roll at-The physical reason for the appearance of a ro pa-

tern instead of a phase traveling wave is that the para-
metric down-conversion proc g'm

'
ess ives rise to simultane-

ous emission o mo syf t ymmetric traveling waves because of
momentum conservation. Th p phe su er osition of these
traveling waves originates the roll configuration.

n exact form of the roll solution is unfortunately not
f erturbationavai a e.'1 bl . However, a careful application o per u

tions 15expansions a owallows us to find close approxima i
in ut in-whose range o va' 'f validity extends to values of the inpu in-
b (15).it far hi her than the threshold specified y

f e ual decay ratesFor simplicity we analyze the case o equa
for the field modes (i.e., yo=y, ), but the calculations are
easil extended to the general case. Moreover, the axeseasily exten e o
of the transverse plane have been chosen pa
pendicular to the rolls in order to simplify the final for-

I

2, =e[b,o+ i(1—Q 1+ho]cos(k, x ), (16)

where the smallness parameter e remains toto be evaluated
by the solvability condition which fixes the Fredholm al-
ternative . o n~15~. To find e we have to evaluate both second

condi-andt ir or erod h' d d of the expansion as the solvability con i-
16) totion vanis es a ow

'
hes at lower orders. The first order term o

the OPO signal yields a smaller correction on t e pump
field which can be evaluated at the next order in the per-
turbation expansion

B=e [a+Pcos (k,x)],
where

(17)

1 . It is important to stress here that the followingmulas. t is impor
ana ysis is wo1

'
t o dimensional in space. Equatio

(10) have an optimal form for a perturbation expansion
close to threshold. By solving the equations related to
the linear operator, one finds that t eere is no contribution
atfirstorder ort e ef h fi ld B while the solution for the field

A) is

2aok, (6, +oi)

1+ho

k22(1 —+1+6,o)[1—b,o
—4b,oaok, —2i(b,o+2aok, )]

I+(6o+4aok, )
(19)

& —+&+to

(2aok + )Re(P) ——', Im(P)
3b,o

(20)

The expansion is then closed by evaluating the smallness
parameter e y use ob f the solvability condition at the
third order

1/2

I

the unstable)We e ieve ab 1' that its appearance close to the
o eneousfor the generation of spatially homogboundary or e

s atiotem-1
' f rtuitous. Further bifurcations to spa

'
signa is or ui

erl in sha e of theoral dynamics still preserve the under ying s ap
roll patterns. For example, for E— 'g g=4 zi za rolls develop

fi ith creation and annihilation of dislocations [Fig.at first wit crea ion
attern "freezes" and5(A)]. At later times, however, the pattern

It is easy to verify from Eq. (20) that the denominator is
alwa s ositive, so that the bifurcation leading to rolls in
OPO's is always supercritical, i.e., the ro ph roll attern exists
and is stable immediately above threshold. A comparison
between the previously analytical calculations and the
numerical simulations is shown

'
g .n in Fi s. 2 and 3 for both

the signal A
&

and the pump field A0. The agreement is
1 f 'nput amplitudes E far from the pre-

dicted threshold (15). An explanation of this fact is that
expression (17) is actually an exact solution of Eq. (9)

well above threshold the amplitude of spatial modulation
of the signal field remains larger than that of the pump
field, in agreement with the perturbation expansion.

At lar er values of the input amplitude, a second spa-
'

1 bilit develops in a direction perpendicular to

to recover the original translational symmetry broken by

configuration o e inf th tensity of the signal field is shown
. N that this instability first affects transverse

wave numbers smaller than the critical one given y

Re(A, )

0.40—

0.20

Im(A, ) oo-

—0.20

—0.40—

0.0
I
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FIG. 2. Comparison between simulatioations (solid curves) and
anal tical form (16)—(20) (dashed curves) for the real (larger

the threshold for the formation of rolls. The parameters are t e
same as in ig. wi p . p—F' . 1 'th 5 =1.0 a =1.0, and E=1.5.
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starts to scro11 transversally as if it was superposed to a
traveling wave [see the time evolution of Figs. 5(B)—5(F)].
We believe that defects of the dislocation type are at least
as common in OPO's as optical vortices [9]because of the
above specified mechanism for the formation of rolls.
Hopf bifurcations, a necessary ingredient for optical vor-
tices, appear for positive values of 5& leading, among oth-
er things, to patterns oscillating between two rolls
configurations perpendicular to each other. The role,
type, and interaction of defects in OPO's are presently
under investigation.

We show in Fig. 6(A) that for E=8 the initial roll pat-
tern breaks into filaments. For higher values of the input
intensity there is a competition between rolls and fila-

ments leading to optical turbulence as the filaments move
in an erratic way in the transverse plane [see Fig. 6(B)].
Again, this behavior can be associated with the attempt
of the system to recover the spatial symmetries broken by
the appearance of the roll patterns.

Finally, for sake of completeness, we present the re-
sults of numerical simulations with a nonplanar input
beam and show that roll patterns are a robust feature of
the system. Figure 7 shows the intensity of the signal in
the transverse plane after short-term transients have been
discarded. The breaking of the translational symmetry
due to the top-hat shape of the input beam results in an
orientation of the rolls perpendicular to the circular
boundary induced by the input amplitude and in the sta-
bilization of filaments. The spatiotemporal dynamics in
the presence of physical shapes of the input laser beam is
presently under investigation in order to provide experi-
mentalists with realistic predictions.

In conclusion, we have shown here both analytically
and numerically that roll patterns organize the spatio-
temporal evolution of OPO's if the detuning parameter
5& of the signal field is negative. For b,

&
&0, diffraction

FIG. 7. Transverse configuration of the OPO signal intensity
after transients have been discarded, for an input beam of top-
hat shape and maximum amplitude equal to 4.0. The other pa-
rameters are fixed as in Fig. 4.

coupled with the nonlinearity of the system allows for an
off-axis operation of the OPO with a threshold lower than
that predicted by the plane-wave theory. This can be
relevant on the experimental side where the input ampli-
tude is a key parameter for the realization of practical de-
vices [1]. The analysis and numerics presented in this pa-
per is not exhaustive of all the spatio-temporal dynamics
exhibited by OPO's. For example, the role of different
decay rates for the field modes has not been studied and
we have focused on negative detunings 6& only. A de-
tailed diagram of the organization and onset of patterns
in degenerate and nondegenerate OPO's will be the sub-
ject of future work.
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