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We consider processes quadratic in incident intensity, in which two identical photons are annihilated
simultaneously. We construct a formalism for these processes that is maximally analogous to the
Stokes-Mueller formalism for linear processes. The two-photon properties of the incident beam require
nine Stokes-like parameters for their description; the Mueller-like matrix which gives a complete
description of frequency doubling or hyper-Raman scattering is of size 4X 9. Of the 36 independent ob-
servable matrix elements, 12 are activated by pure real elastic dipole susceptibilities, four by an imagi-
nary component in the electric dipole susceptibility (absorption), nine by handedness alone, two by ex-
tramultipole mechanisms alone, and nine require both handedness and extramultipole mechanisms.

PACS number{s): 42.65.—k

I. INTRODUCl'ION

Molecular optics has benefited greatly in recent years
by a change of emphasis away from amplitude-based
theoretical quantities, moving instead to intensity-based
observable quantities. The formalism that accomplishes
this is the Stokes-Mueller formalism [1,2].

The chief advantage of the Stokes description of light
is that it puts pure polarized light (with steady polariza-
tion vector} and depolarized light (with rapidly fluctuat-
ing polarization vector) on the same footing. Stokes in-
troduced his four optical parameters in the early 19th
century [3], even before Maxwell put electromagnetic
theory into finished form. A relationship between the
Stokes parameters and the Pauli matrices was noticed in
the early days of quantum mechanics [4] and was
developed in detail in the 1950s [5].

The Stokes vector has four elements, each measureable
as a sum or difference of intensities observed through
various polarization filters. In a linear scattering process,
we let the incident light have Stokes vector s and we mea-
sure Stokes vector s' for a particular ray of the scattered
light. Linear scattering theory requires that s' depend
linearly on s, so the most general possible relation be-
tween them is

s'=Ms .

The 4X4 matrix M is called the Mueller scattering ma-
trix [2]. It characterizes completely the polarization
behavior of the scattering process, at the given
wavelength(s) and given scattering angle.

Scattered light is nearly always depolarized, even if the
incident light is not, but the amplitude-based description
fails to capture this essential element of reality. Also, the
material properties in matrix M may be ensemble aver-
aged directly, unlike properties in a susceptibility matrix.
This is particularly important in the third rom and third
column of M, where the off-diagonal elements average to

s'=ASS, (1.2)

where S is a measureable "double Stokes" vector of nine
elements and Af, is a "double Mueller" matrix of size
4 X9. As in our previous work, we find that Jkfcontains a,
number of those peculiar elements that orientation aver-
age to zero in the central multipole approximation off res-
onance, no matter how high the multipoles are taken.
There is no commonly accepted name for such elements.
In the past we have called them "retardation elements, "
but this captures only one of their aspects. In Ref. [8] we

zero for solutions and vapors of small nonabsorbing mol-
ecules, even when helicity effects are included. However,
several of these predicted zero elements are in reality
large and easily measured in scattering by viruses [6]. In
fact they are especially useful, being hypersensitive to the
size and shape of the viruses and to clustering and partial
orientation. This major scattering effect cannot be under-
stood at all within an amplitude framework, but is now
well understood within the Stokes-Mueller framework.

It has recently struck us as strange that there is no
nonlinear formalism comparable to the Stokes-Mueller
formalism for linear optical processes. The density ma-
trix is even more important for nonlinear processes than
it is for linear, because temporal incoherence of the light
has an important efFect on nonlinear phenomena. In-
coherence is handled automatically along with depolari-
zation in a formalism based on the density matrix [7].

In a foregoing preliminary paper [8] we supplied the
missing Stokes-Mueller-like formalism for processes that
are bilinear in each of two incident intensities, taking one
photon simultaneously from each incident beam. In this
paper we do the same for processes that are quadratic in
one incident intensity, taking two photons simultaneously
from a single incident beam. These processes include
two-photon absorption, incoherent frequency doubling,
and hyper-Raman scattering. The main result of this pa-
per is an equation very analogous to (1.1},namely,
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called them "odd diagonal modulation" (ODM) elements,
since in that work they all had an odd number of diago-
nal modulation indices. However, the ODM rule no
longer applies in this work, and we need a new name. We
therefore propose the name extramultipole because in

off-resonance experiments their appearance always indi-

cates an effect that lies outside or beyond the central mul-

tipole series.
We have shown in previous papers that nonzero orien-

tation averaged values of the extramultipole elements
may be caused by (1} anisotropic orientational distribu-
tion of the particles, (2) absorption, (3) retarded dipole-
dipole interactions, and (4) constant magnetic field. In
view of (3), they will carry important information when
light interacts nonlinearly with structures near wave-
length size. We may even anticipate that because of the
large nonlinear effects near surfaces and because wave-
length size particles have relatively very large surfaces,
the new extramultipole observables may be even more
valuable in nonlinear scattering than they are in linear.

In this paper we treat the polarization dependence of
nonlinear effects within the regime where the effects are
quadratic in incident intensity. We do not treat phase-
matched doubling in crystals, which has a polarization
fixed by crystal symmetry and which may have a compli-
cated intensity dependence best treated by coupled wave
algebra [9].

In Sec. II we show that for a single beam, there are
nine double Stokes parameters that determine its two-
photon properties, and we define a particular embodi-
ment of them that is maximally analogous to the linear
Stokes parameters.

In Sec. III we treat simultaneous two-photon absorp-
tion from a single beam, showing that in the most general
case there are nine measurable two-photon absorptivities.
In Appendix A we show how the nine parameters col-
lapse to two in the case of small molecules and one laser
beam, as is well known.

In Sec. IV we show how to prepare pure polarized,
coherent laser light with known double Stokes parame-
ters, using a linear polarizer and two ordinary retarders.
In Appendix 8 we give a complete set of polarization
cases that may be used to measure the entire double
Mueller matrix JK.

In Sec. V we show how to measure the nine double
Stokes parameters of any given beam; as from a laser
with unsteady (mode locked) output, or from a synchro-
tron, or from the intense light of a magnetically confined
plasma. Details are in Appendix C. If Ai is measured us-

ing light prepared by the methods of Sec. IV, and if an
impure, incoherent incident beam is characterized by the
methods of Sec. V, then all the Stokes parameters of its
quadratically scattered light may be predicted.

In Sec. VI we develop an unapproximated theory of
quadratic scattering using the T-matrix approach. This
is required if we are to examine At in the presence of
effects such as damping, line broadening, and retardation,
which go beyond perturbation theory.

In Sec. VII we formally justify Eq. (1.2), the Stokes-
Mueller-like relation that governs quadratic frequency
doubling and hyper-Raman scattering.

In Sec. VIII we derive the relation between the theory
for two different incident photons and the theory for two
identical incident photons.

In Sec. IX we classify each of the 36 elements of A in

terms of its activating mechanism.

II. THE DOUBLE STOKES PARAMETERS

i j,k, . . . =H, V

XH, H, H, . . EH+ (XV H, H. , . . . ++H, V, H, . . . +

XEH 'Ev+ (2.1)

which contains the same field products that appear in the
expansion of (EH +E~)", namely, EH, EH 'E„,
EH Ev, . . . , EHEv ', Ev. As may be easily counted,
there are n+1 such terms. To calculate an event rate,
the amplitude for the process must be multiplied by its
own complex conjugate giving (n+1} terms, each con-
sisting of a molecular quantity times an amplitude factor
of the form

m = (Eg(t)EP ~(t)Er'r«(t)EV" «(t) )„,, (2.2)

where the time average over the fluctuations has been
taken. But each such factor is a polarization parameter,
and, in general, the values of the mpq are independent,

save for the Hermitian relation m =m* that exists by
construction. Therefore, the number of real values need-

ed to specify a11 the polarization parameters is the same
as the number of real values needed to specify a general
Hermitian matrix of size (n+1)X(n+1},and this num-

ber is ( n + 1 } . Therefore, the number of independent po-
larization parameters for an n-photon process is (n + 1) .

For two-photon processes in a single beam, there must
be (2+1) =9 double Stokes parameters. In contrast, in

a previous paper, we showed that there are 16 polariza-
tion parameters that govern two-photon effects that take
one photon from each of two beaxns.

A. How many one-beam n-photon parameters existed

We begin with a brief classical overview of the prob-
1em. Consider a beam of light with horizontal and verti-
cal amplitudes (EH(t), Ey(t)},. The time dependence in-

dicates amplitude fluctuations too fast for any detector to
follow, but too slow to be considered part of the optical
frequency. These fluctuations are always ignored in ele-

mentary presentations, but they are accurately absent
only in light from very well stabilized cw lasers. All oth-
er sources have them, and they reveal themselves as
depolarization and incoherence. In this paper we consid-
er their effect in multiphoton spectroscopy. We will

show that for a process involving n simultaneous photons
from a single beam, the fluctuating beam must be charac-
terized in general by (n+1) intensity-based Stokes-like
parameters. An elementary argument follows.

The amplitude for an n-photon process is
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B. Review of the Stokes operator theory

1 0 0 1

0 q 73 s T4=
0 i

()
. (2.3)

We note the orthogonality

Tr[~ rp]=25 p. (2.4)

The four r matrices are the generators (in the Lie sense
[10])of the irreducible Hermitian representation of group
SU(2). We define four operators s, as

v v
s = g g (~ ); a;+a (a=1,2, 3,4) .

i =H j=H
(2.5)

To show that these are the Stokes operators, we take
their expectation values with respect to the arbitrary pho-
ton density matrix, given by

We now approach our construction of the nine double
Stokes operators. To make it as analogous as possible to
the construction of the Stokes operators, we begin by re-
viewing that paradigm. Let aH+ (aH ) and ay (ay ) be the
creation (annihilation) operators for the horizontally and
vertically polarized photons, respectively. Also, let ~, be
the unit matrix and denote the Pauli matrices by

zation volume to optical signal I, as measured by a photo-
tube. The other operators then yield

sz= X (nH —"„}p(ne,nv)=II' I—y,
nH ny

s3= g (n + —n )p(n +,n )=I + I—
n, n

g)
+' g)—

(2.10)

(2.11)
{2.12)s4= g (n nl )p—(ns, n )=Is IL—,

ng)nl

where D+ and D refer to diagonal linear polarizers and
R and L refer to right and left circular polarizers. These
expectation values are exactly the four polarization pa-
rameters defined by Stokes in 1852 [3]; therefore, the f
may reasonably be called the quantum-mechanical Stokes
operators. Once the four Stokes parameters are obtained,
we may define

4
p(1)—t (2.13)

a=1

where the s trace back to the full density matrix p
through (2.8}. Because of the orthogonality of the r ma-
trices (2.4), we may isolate the Stokes parameters by the
formula

~(nH nv'na nv)lna nv&&na nvl .
s =Tr(p'"r } . (2.14}

W{nH, nv, n~, ny)= 8 (n~, ny,'n~, nv) . (2.7)

(2.6)

The basis functions are eigenfunctions of the photon
number operator for horizontally and vertically polarized
photons. The W matrix contains all the information
about the beam of light. Mathematically it must obey the
following rules.

(1} The diagonal elements 8'(nz, nv ,nz, nv) 'must be
the probability p(nz, nv) of finding number densities

(nzz, nv) of (horizontally, vertically) polarized photons if
the normalization volume is subjected to a photon num-
ber measurement.

(2) The off-diagonal elements determine all the correla-
tion properties of the beam. They must be Hermitian, in
the sense that

But this is exactly the formula for calculating the expec-
tation value of operator v in a state represented by den-

sity matrix p"'. So (2.13) and (2.14) create a formalism in
which the Stokes parameter operators are the Pauli ma-
trices and p"' is a special kind of reduced density matrix
for the light. Of course, p'" contains far less information
about the photon state than the full density matrix p, but
it does contain all information about the Stokes parame-
ters and anything that depends solely on Stokes parame-
ters. This includes all linear optical properties.

To connect p"' with classical electromagnetic theory,
we replace the s in {2.13) by the intensity expressions of
(2.9)-(2.12) and further replace the intensities by the
square modulus of the amplitude for a general plane wave

t Err, Ev] after it passes through the appropriate polariz-
ers [11].The result, after considerable calculation, is

EHEH EHEv

The expectation value of any operator (for example,
t~ ) is given by

VEH v v time avg

Then (2.13) becomes

(2.15)

s =Tr~„~(ps }, (2.8) (2.16)

where subscript n indicates that the trace is taken in the
photon number space. Recognizing a;+a in (2.5) as the
photon number operator when i =j, we can immediately
evaluate

s, —g (nH+ny)p (nn, ny) In+Iv I„,~, — —
nH, n&

where (In, Iv) is optical intensity measured through a
(horizontal, vertical) polarizer. To make this strictly
true, we implicitly absorbed into the ~ matrices a factor
which converts from photon number in a given normali-

and using the orthogonality (2.4), the classical formula
for the Stokes parameters becomes

S =(T )~~j{E;Ej'&; (2.17)

which is identical mathematically, though not in form, to
the definition of 1852. Here and elsewhere in this paper,
double occurrence of an index implies summation over
the range of the index.

'%e have recast these old results in a form that makes
particularly clear the path that one must follow to obtain
new results for the case of nonlinear properties.
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C. Construction of a yarticular set of double Stokes operators

b
&

—=aeaH b2 =avav b3 =—' 2aHav (2.18)

where H and V (horizontal and vertical) span all possible
I

We now construct a similar set of operators relevant to
processes involving two simultaneous, identical photons.
There are two procedures that we could use. First, we
could reduce the results already obtained for two
nonidentical photons and project out those terms con-
sistent with Bose-Einstein statistics. This is the familiar
method used in electronic theory. Alternatively, we
could redo the theory from the beginning, explicitly using
operators that create and annihilate two identical pho-
tons simultaneously, traveling essentially the path laid
out in Sec. II B. Because of its clarity and simplicity, this
is the method we will use.

Only three essentially different double annihilation
operators or double creation operators are possible,
namely,

polarizations. We rewrite this compactly as

gb =a; a) gj (2.19)

where the 2 X 2 X 3 constant matrix g is defined such that

gHH, 1 gV, V2 gH, V3 2gVH, 3 (2.20)

with all other elements equal to zero. This constant ma-
trix has the orthogonality

gij pf ij v pv ' (2.21)

(3,3)
Sn = g (j1n)„„b„+b,

(JM, ~)=(1,1)

(2.22)

where 0 runs 1 —9 and (j4,v) runs from (1,1) to (3,3) like
an odometer. The A, matrices are the 3X3 analog of the
Pauli matrices. In detail,

Each double creation operator may be paired with a dou-
ble annihilation operator to produce nine operators. We
define a certain weighted sum of these operators as

1 0
0 1

0 0

0 0 0

0 1

o, z,=g-,' o
1 0

0 0 1

0 0 1

1 0, A 3= 0
0 —2 0

0 0 0

0 0
0
0

0 0

0
A4= 1

0

1 0
0 0
0 0

0 —i 0
(2.23)

5= 0 0
0 1 0 1 0 0

A7= 0 0 i—
0 i 0

0 0
i 0

0
0

i 0 0
0 0 0

and

Tr(Z~Z„) =2S (2.24)

(A~) Ii(A~)" =25 5j3 (2.25)

The expectation values of the operators defined in (2.22)
are to be calculated, as always, according to

S„=Tr(„)(pS„), (2.26)

where p is the same photon density matrix defined in
(2.6). As we will show, the nine parameters S„charac-
terize completely the abilities of the light beam to initiate
simultaneous two-photon processes. Therefore, we call
them the quantum-mechanical double Stokes parameters.

We now calculate the expectation values of the So.
This is most easily done if we rewrite the double Stokes
operators in terms of the Stokes operators; such a pro-
cedure is ubiquitous in many-body theory. The Stokes
operators obey

These nine A, matrices are the Lie generators of an irre-
ducible Hermitian representation of group SU(3), just as
the r matrices are similar generators for SU(2). Their
commutation rules and other properties may be found in
standard textbooks [12]. The A, matrices have several
orthogonalities, namely,

and using these commutators we arrive at

S3

S4

S5

S6

S7

Ss

S9

2 ~s2

Q—(3$ s )

j (p2 p2)
2

Si $2 $3

(S1+S2)S3

V —81 $2 )$4

Q —,'(s, +s2)s4

2S

iS

—
—,'s4 2

+ —Q —,'(s3+ls4)

V 2(s3 i$4)

Q —,
' (s4+ ls3 )

Q —,'(s4+ls3)

(2.28)

The first column is quadratic in number density while the
second is linear. In the classical limit of high photon
density, the expectation value of the second column is
much smaller than that of the first, so the first column
alone gives the two-photon absorption operators in all
practical situations.

We may now define a reduced 3 X 3 density matrix for-
malism for two-photon properties. With the normaliza-
tion shown in (2.28)

[s2,s3 ]=2ls4, [s3,s4] =2ls2,

[s4,s2]=2ls3, [si,s ]=0 (a=2, 3,4)
(2.27)

9
P' '=

—,
' g A,„Sn

A=1
(2.29)
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from which, using orthogonality (2.24), the expectation
values Sz may be isolated by the formula

(2.30)

Again, this expression has the form of an expectation
value calculation in density matrix theory. Matrix p' '

plays the role of a density matrix for the light while ma-
trix A.„is the operator for observable S„. The reduced

I

density matrix p' ' contains all the information about the
light that is relevant to simultaneous two-photon process-
es, but information about higher processes is missing [13].

To relate p' ' to classical electromagnetic theory, we
replace the expectation values Sn in (2.29) by the quadra-
tic Stokes expressions in the first column of (2.28)
(without carets), and we then make further replacements
in terms of [EH, EvI just as we did above Eq. (2.15) for
p"'. The result, after much calculation, is

(2)—
EH EH

EV2Ee~2

~2EjrEvEH

E E*
E2E+2

V V

2EaEvEv»

&2EjIEHEv

v 2EvEHEv

2EHEHEvEV

(2.31)

Putting this into (2.30), it may be shown by direct calcu-
lation that

A linear depolarization factor p is then defined via

0 Q, IJkl ~ Ei Ej Ek Ei }time (2.32) p =Q(sz+ss+s4 }/s t (2.37}

where

Q, ijkl (~Q)itvgijitgklv ' (2.33)

and it is always true that O~p~ l. A similar relation
holds among the double Stokes parameters. The density
matrix p' ' always obeys an inequality [7(a)]

The C matrix is given explicitly in Table I. Note from
the definition of g that C is symmetric for exchange of i
and j, and for exchange of k and I. Thus any exchange of
E symbols or of E' symbols in (2.32) must produce the
same S. The C matrix also possesses the orthogonality

Tr(p pi ) & Tr(p )Tr(p )

Substitution of (2.29) into (2.38) leads to

(2.38}

CD, ijkiCA, ijkl 28QA &
(2.34)

9

St gS
A=2

(2.39)

leading easily to an inverse for (2.32)

~EiEjEk Ei }time 2 ~Q, ijkl Q

which will be used in Sec. VII.

(2.35) where again the equality holds only for pure polarized
light. Perhaps when double Stokes parameters are actu-
ally measured for an incoherent beam, it will be useful to
quote the single number

D. A depolarization parameter for double Stokes parameters

Linear Stokes parameters always obey the inequality
9

P= QSk Si
A=2

' 1/2

(2.40)

s2 ~s2+s2+s2 (2.36)

in which the equality holds only for pure polarized light.
as its nonlinear depolarization and incoherence parame-
ter, with range 0 ~P ~ 1.

TABLE I. The tabulated quantity is the C matrix defined by Eq. (2.33).

Im HHHH HHHV HHVH HHVV HVHH HVHV HVVH HVVV VHHH VHHV VHVH VHVV VVHH VVHV VVVH VVVV

1

0
0

0

0

0

v'-,'

0
.Q t

0

0

.+1
0

-v'-,'
0
0 0

v'-,'

0

0

0

0
0

-v'-,'
0
0

0
0

0 0
0
0

0

0

0
0

0
v' 1

0
—i 0 0
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III. THE DOUBLE STOKES DESCRIPTION
OF TWO-PHOTON ABSORPTION

E
E(y, co) =H( —,

' y —t co —t n)Q. ( 4
m. —co) (4.1)

As a first application of the double Stokes parameters,
we will use them to describe two-photon absorption. We
begin with the usual expression for the event rate

(EiEjEk I ~time( ~ij ~kl )ensemble &
(3.1)

where the nine T; form a true two-photon absorptivity
tensor when the absorber is small compared to wave-

length. They still make a 3X3 matrix even when this is
not true, but one must be careful about how the matrix
transforms when the molecule rotates. In propagation
frame one component of E vanishes (call it z). Thus in-

dices i, j, k, and I run over two values, the two transverse
directions. Substitution of (2.35) into (3.1) leads to

'(t)
+2-photon SA DA

where

(3.2)

A 2 ~A, ijkl ~ ~ij kl j'ensemble ' (3.3)

The nine quantities SA are the double Stokes parameters
for the light; the nine molecule quantities D~ are double
Mueller two-photon absorptivity parameters for the ma-

terial. In Appendix A, we show that for a single absorber
in one position, there are three identities among the D A,
but that after the ensemble average, all nine DA are in-

dependent. Also we perform there the ensemble average
for the small molecule case in which T;, rotates like a
true tensor, finding the expected formula for a fluid with

only two of the Dz nonzero. These are linear combina-
tions of the two two-photon absorptivities measurable
with linear and circular polarizations [14].

where E(y, co) is generally complex. Substituting stan-
dard Jones matrices [11]for H and Q, we obtain

E(co,y) = (E/2)(1+i)i ~

cos(y co—)+i cos(y+co)
sin(y a)—)+i sin(y+ co)

(4.2)

$3

$4

cos2co cos21'
E cos2~ sin2y

sin 2'

(4.3)

The proper value of ( ~E~ )„,is measured by any linear
detector and will normally be reported in units such that
s, is total optical intensity I(J cm sec '). But if si is

normalized to 1, the other Stokes parameters are the
Cartesian coordinates of a point on the Poincare unit
sphere if we interpret 2y and 2' as the Mercator coordi-
nates. The polar angle (latitude) is 2'; the equatorial an-

gle (longitude) is 2y. All linear polarizations lie around
the equator at 2m=0, with horizontal linear polarization
on the Greenwich meridian (2y =0). Right circular po-
larization is at the North pole (2co=+m/2), left, at the
South (2'= —

m /2). By varying 2' over ( —m. /2, +m. /2)
and 2y over ( n, +m. ), th—e Poincare point moves to any
desired pure polarization.

B. Known double Stokes parameters

The linear Stokes parameters are then easily calculated,
giving

S)

IV. PREPARATION OF A BEAM
WITH KNOWN PARAMETERS

Now we construct the two-photon analog. We substi-
tute (4.2) into (2.32). The result is

A. Known Stokes parameters

When we use light scattering to determine the proper-
ties of a molecular system, we want full control of polar-
ization for both the incident light and the scattered light.
This goal can be achieved using a half-wave plate, a
quarter-wave plate, and a linear polarizer.

We let "vertical" mean perpendicular to the scattering
plane and let "horizontal" mean parallel to the scattering
plane. All rotation angles for optical elements are mea-
sured counterclockwise from the scattering plane to the
transverse axis of the element, looking into the source.
For polarizers the transverse axis we use is the pass axis;
for retarders, the slow axis.

We start with pure polarized linear light at m. /4 to the
vertical; at this angle the H and V components are equal,
and this has a simplifying effect on the algebra below.
The light then passes through the quarter-wave plate
[with angular position about the optic axis measured by
(3n/4 co)] and then t—hrough the half-wave plate [with
angular position measured by (y/2 —co/2 —~/8)]. This
train is represented by

S,
Q —,', (3 cos 2' cos 2y —1)S2

S3 cos2co cos2y

S4 —,'(cos 2' sin 2y —sin 2')
Ss = ( ~E~ )„, Q —,'(1 —cos2cocos2y)cos2a) sin2y

S, g —,
' (1+cos2co cos2y )cos2co sin 2y

—Q —,'(1 —cos2co cos2y)sin2co

Q —,
' (1+cos2co cos2y )sin2co

cos2co sin2y sin2co

(4.4)

The prefactor ( ~E~ )„,is measureable only through
the event rate of a simultaneous two-photon process; it
depends upon the temporal coherence of the original
beam as well as its intensity. If this vector is normalized
by ( ~E~ )„„S,has the value Q —' rather than the 1 that
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appears in the analogous linear case. This is traceable to
the normalization of matrix A,

&
and has no physical

significance. In Appendix B we give examples of the
nine-vector S for a number of familiar polarization cases,
plus several unfamiliar ones that are needed to form a
complete set of double Stokes experiments.

angles (co, y ) and do nine experiments indexed by Q, then
we have

(5.3)

where B is a stack of nine row vectors b. If we choose
the angles properly, we can make the B matrix invertable,
and thus

V. MEASURING THE DOUBLE STOKES
PARAMETERS OF A GIVEN BEAM 4n~n .1

7l
(5.4)

)E(incident) (5.1)

where P(n /4) is a diagonal linear polarizer. In Appendix
C we show that this results in the formula

JV(co, y) =re.S=ribA(a), y }S„, (5.2)

where JV is an event rate, ri is an efficiency factor, and
b A(ca, y }represents the entire optical train, given explicit-
ly as (Cl1). If we choose nine difFerent sets of retarder

In this section we show how the double Stokes parame-
ters may be measured for a given beam of light, even if it
is depolarized and incoherent. If the light is prepared by
the method of the preceding section, it will be pure polar-
ized with known double Stokes parameters. But intense
light near the surface of a star, or from a superhot, mag-
netically confined plasma will generally be incoherent and
only partly polarized. Even synchrotron light, which
may be coherent but is generally of mixed polarization,
must be dealt with by the principles of this section.

Figure 1 shows the conceptual apparatus. The optical
train is inverse to that of Sec. IV; the internal linear po-
larizer is rotated to 45' from the vertical or horizontal to
simplify the algebra.

The detecting material at the focus may be anything
that has a response quadratic in intensity at the frequency
of the light; it may be fluorescence, ionization, acoustic
response, thermal lensing, or anything else. Because of
the internal polarizer, the vapor always "sees" light of
the same polarization, and the tensorial nature of the
two-photon absorption never appears in the measurement
process. Absolute excitation rates are not required. The
optical train is

Eittt n ne)(d) y ) = p( t 77)Q( 3 77—o) )

With this we have measured the nine double Stokes pa-
rameters, up to an unknown scale factor 1/g. A good
practical set of (co,y ) angles is specified in Appendix C.

VI. NONPERTURBATIVE THEORY
OF NONLINEAR LIGHT SCAITKRING

We begin our treatment of nonlinear light scattering by
examining the basic theory in a form that is free of the
usual dipole and perturbative approximations. Our
purpose is to display the exact dependence of the
quadratic scattering on the experimental vectors
Ik"', A,"',k' '

A.
' 'I, where k"' and A,

"' are the propaga-
tion and polarization vectors of the incident beam and
k'2' and A,

' ' are the wave vector and polarization passed
by filters in front of the detector. These A, vectors have
nothing to do with the A, matrices of Sec. III.

We follow the convention that the horizontal (upper)
element of polarization vectors is always pure real. The
vertical (lower) element is real for linearly polarized light,
but complex for elliptical light (and pure imaginary for
circular light). We take all polarization vectors normal-
ized by A, A,

' =1, where the asterisk means complex con-
jugate. The exact vector dependence of quadratic scatter-
ing, which we will find, then leads on to an exact Stokes-
Mueller-like formalism.

As we did in a previous paper on linear scattering [15],
we develop the theory using the Green's operator formal-
ism [16]. Let d Q be a small solid angle around scattering
angle 8 and let do be the cross section for scattering into
d Q. Then the observable difFerential cross section
do /1 Q is to be given by

(6.1)

light source

P L V
+++

where C is a collection of fundamental constants and fre-
quencies and A is a scattering amplitude. In quadratic
scattering, o will be in m sec photon 'molecule ' (like
two-photon absorptivity), whereas the analogous quantity
in linear scattering is a true cross section with units
m molecule '. The amplitude is the matrix element

Q 2-photon detector A(8) =(final~ T~initial) (6.2)

FIG. 1. Apparatus for experimental determination of the
nine double Stokes parameters of any kind of light beam, in-
cluding incoherent depolarized beams. H is a half-wave plate
rotatable about the optic axis of the instrument, Q is a similarly
rotatable quarter-wave plate, P is a fixed polarizer, L is a lens, V
is any kind of detector for two-photon excitations, and S is a
beamstop.

of a scattering operator T, which we now construct. The
Hamiltonian of the total system is

H =H~ +HM+H (6.3)

where Hz is for radiation, H~ is for material, and H is
the interaction. The eigenfunctions and eigenvalues of
H„and HM are, respectively, E„and ~r), and E and
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im). The usual treatment then finds a series of approxi-
mate perturbative solutions. However, the T-matrix
method avoids these and finds a nonperturbative solution
for 3 which is in principle exact.

The most general amplitude for two-photon scattering
would be of the form

A=(fi(n, 2—nd, n2+ndiTln„n2&li), (6.4a)

A =n, (fi—(0, 11T12,0) li) .

Energy is conserved according to

E; +2Acoi =Ef +1Aco2 .

(6.4b)

(6.5)

When Ef =E;, the process is frequency doubling; when

EfAE;, it is hyper-Raman scattering.
From our knowledge of Hz and H~ and their eigen-

systems we may in principle construct an integral opera-
tor inverse to the differential operator z (Hs+H—M),
where z is any complex number. This inverse is the
zeroth-order Green's operator

~ ir)im)(mi(ri (6.6)
z —E —E„

It may be shown that the desired matrix T is given by

T =H'+H'GH', (6.7)

where G is the complete Green's operator, inverse to
z —(Hz+HM+H'). It is found by solving for G in the
equation

G =GO+GOH'G . (6.8)

Using creation operator a,+ for mode 1 and annihila-
tion operator a2 for mode 2, the radiative part of the
amplitude in (6.4b) may be expressed as

(0, 1iTi2, 0& =Q-,'(0,0ia;Ta,+a,+ i0, 0& . (6.9)

where states ii) and (f ~
are the initial and final states of

the material, and the initial radiation state i n „n2 ) has

n, photons at co& in the pump mode and n2 photons at co&

in the observed mode. The final state is
(n |—2nd, nz+nd i, where n& photons have been created
at co2 and 2nd destroyed at co&. Any number of other
modes may be occupied in any way, but if their occupa-
tion numbers do not change, they do not affect the prob-
lem, and we suppress them. The intensity dependence of
(6.4a) is very complicated, but it is given in principle by
the full T-matrix theory. However, it is much better to
deal with these complicated cases by (for example} Flo-
quet theory [17] or by Maxwell's equations describing
coupled waves in a nonlinear medium [9].

To obtain useful results from T-matrix theory, we must
stay in the regime where the amplitude scales with in-
cident photon number, i.e., the event rate scales quadrati-
cally with pump intensity. Thus within T-matrix theory
we consider only those virtual processes that contribute
to intensity-independent damping and coupling of polar-
ization waves. Under these conditions we may use the
smallest possible number of photons in the matrix ele-
ment, rewriting A as

=Ca,+a,+ io, o), (6.10)

where half the pseudocommutator expression has been
swallowed up by the vacuum. We say pseudocommutator
because T' is not exactly the same as T. Similarly, if we
commute an a &+ operator leftwards, we eventually
create the fragment (o,oia 1+ =0, making a similar
simplification. We must do this twice, and we need
the pseudocommutators ( Ca,+ —a,+C"}=8 and

(Ba,+ —a&+8')=2 Fortunately, these can be worked
out, and the whole radiative matrix calculation, in
skeleton form, is

(1,0 T~0, 2) =(o,oia2 Ta,+a&+ 0,0)
= (o,oica,+a,+ ~0, 0)

=(0,0IBa,' io, o& = (o,oil lo, o& . (6.11)

In the final expression, all terms containing operators a 2

or a&+ have been consumed by the vacuum, leaving a
quantity which can be evaluated numerically (with ap-
proximations).

To carry out (6.11), we must specify H' and then use it
in the construction of T. In general H' has two parts,
one due to the electromagnetic vector potential A and
the other due to spin interaction [18]. In this paper, we
do not treat the spin part. The electromagnetic interac-
tion consists of two terms

V= (
—2p A+A A),1

2m
(6.12)

where p is the momentum operator for the particle and m

is its mass, and where A is in momentum units. The two
interaction terms have different polarization dependence,
but as we shall see, they combine to produce only a single
common polarization dependence in the final result. The
quantum-mechanical form of A is

A =g [a„U'~'+ a „+U*'"'], (6.13)

where p runs over all appropriate modes of the radiation
field and

U(P)—
C

' 1/2
ch'

)
A, '" exp(i k'"' r), -

2k'~'V
(6.14}

in which r is the position of the charged particle, e is its
charge (e negative for the electron), and V is the normali-
zation volume for the photons (hereafter taken as unity).
The quantities in this definition are in Gaussian units
[18],but the Gaussian A has been converted to momen-
tum units by the factor e/c in U, above. Substituting
(6.13) into (6.12), the complete spinless interaction opera-
tor is

Now a&+ and az commute and az io, o) =0. Therefore,
if we knew the pseudocommutator (a 2 T —T'a

2 )=C,
we could write

a2 Ta,+a,+ io, o) =(T'az +C )a,+a, io, o)



49 GENERALIZED STOKES-MUELLER FORMALISM FOR TWO-. . . 2007

V = —2 g [a„U'"'p+ a „+U""'p ]
P

—U(P).U(v)+n —
u + UEP).Ue(~)

P V P V

[ci„,V] = —2U""'p . (6.17)

By a proof very similar to one in an earlier paper on
linear scattering [15] it may be shown that 6 obeys the
pseudocommutator relations

+a +a U*(")-U' )+a +a + U '"'-U ' ) ~
JLl V P V

(6.15)
and

a 6 —G a = —2G (U""'p)G
P P P P (6.18)

There should be a sum over all charged particles, with
the particle label appearing on p and on U (because of the
r inside U). However, this changes nothing essential, and
we suppress it.

We now begin detailed implementation of the skeleton
calculation (6.11) using this V. With the commutator
[cia,a„+ ]=5&„it may be shown that

Gap+ ay+-Gp=g(U(P) p)gp (6.19}

where 6 =6(z) and 6„=6 (z fico„—}. Now T = V
+ VGV (see 6.7), and we may use (6.16) and (6.17) to show
that (0, 1~ V~2, 0) =0. This leaves as our whole calcula-
tion

~2(0, 1~T~2,0) =(0,0~a2 VGVa,+a,+ ~0, 0) . (6.20)

[ V, a„+ ]= —2U'"'p

where p = ( p —A }. Similarly,

(6.16) Using (6.16)—(6.19) in the skeleton (6.11), it is now possi-
ble to move ci 2 all the way right and both ci &+ all the way
left [19]. The result is

~2(0, 1~T~2,0)=(0,0~(1+ Vgi)(2U" 'pgU"'pg&U"'p+2U'" pg&zU~' 'p 6& U"'p

+2U(1) pG U(1) pG Ue(2) p+2U(1).Uo(2)G1U(1) p

+2U( & )."G U( & ).U+(2)+ U4 (2)."GU(& ).U( &)'p i2

+U"'U'"6 U" 'p)(1+G„V)~0,0) . (6.21)

The big operator is the P of (6.11). Terms that contain
U p three times come from three passages through A p;
other terms contain one U.p and one U.U, and they
come from one passage through A p and one through
A A. On each G there is one subscript for each photon
energy subtracted from its z, as in 6» =G(z —2fuu, ) or
6,2

=6 (z —fico
&

—fuu2).
We now approach the crucial step of the argument.

Every summand in this expression contains, in various
orders, the factors U' ",U",U" '. But, as may be seen
in the definition (6.14), each of these symbols can be writ-

ten as

(6.22)

where A, is a unit-length polarization vector and U is a
scalar plane wave propagating with either k"' or k'z'.
The A, 's are just numerical constants and may therefore
be factored out of the integrals. Then in tensor subscript
notation (with sum over repeated indices understood), the
main part of the central sum of (6.21) becomes the polar-
ization factor A, 'A, '"A, 'k" times

Fcj =(2U'"p;GU'"pkgi U'"p, +2U"'Pkgi2U'"'p gi U'"p,

+2U"~P 6 U" ~P 6 U" ~P +2U'"U" '5 GU" ~P +"2U"~P G U"'U' '5I k 12 Pj 112 Pi Pk S'k &Z lJ

+ U+(2)" GU(1)U(1)fi + U(1)U(1)fi g Ue(2) )jk Jk 2 Pg (6.23)

and the entire amplitude (6.4b) may be written as

A =n A, '"'g" A, '"A,"'n1 i ~ijk j k

where

(6.24)

g...= &0,0I(fl(1+ V62)F,p, (1+6» V) ~i}~0,0) .ijk

(6.25)

The simple expression (6.24) displays the main point

we have been working toward. The entire exact polariza-
tion dependence of the amplitude is one tensorial factor
of A, for every annihilated photon and one of A,

* for every
created photon. This, of course, is exactly the same as
given by the lowest contributing orders of perturbation
theory.

The Q of (6.25) provides everything that perturbation
theory provides, plus many important effects that go
beyond perturbation theory. In particular, all possible
multipole effects fall out quite naturally from Q, as well
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as radiative damping and retardation effects, which must
be added ad hoc to perturbation theory. But these effects
alter only the size of the amplitude; none alters the alge-
braic form of the polarization dependence, even in princi-
ple. Therefore (6.24) can be used with complete
confidence as the basis of an exact generalization of
Stokes-Mueller formalism.

VII. NONLINEAR LIGHT SCATTERING
IN GENERALIZED STOKES-MUELLER FORMALISM

We now show how double Stokes parameters describe
the simultaneous annihilation of two identical photons
and creation of another.

The first step is to resolve a small technical inconsisten-
cy. Our Stokes and double Stokes transforms were writ-
ten using two-component polarization vectors, transverse
to their propagation direction in three-dimensional space.
But in (6.24}, modes 1 and 2 propagate in different direc-
tions, so A,

'" and A,
' ' cannot both be transverse in the

same coordinate system. We take the system such that
A,
(" is transverse, and we let R be a matrix which rotates

any vector by the scattering angle about the axis perpen-
dicular to the scattering plane. We can always insert a
Kronecker 5 into (6.24} in the form

We take the time average of the two electrical Geld prod-
uct expressions, and also we take the ensemble average of
QQ'. In taking the orientational part of the ensemble
average, we use the tensorial rotational transform if we
can; but if we have to, we use a nontensorial transform
with a rotating exponential part, as may be seen explicitly
from (6.14). Then we substitute (2.16) to create the
Stokes parameters s' of the scattered light and (2.35) to
create the double Stokes parameters Sz of the incident
light. Finally, using the orthogonality of the Pauli ma-
trices, we arrive at a formula with the same structure as
the Stokes-Mueller formalism, and which was advertised
as (1.2):

(7.7)

where the 4X9 double Mueller matrix JÃfor , nonlinear
light scattering is

Jkf, A(theory) =(r, )zL CA z~ k„(Ql&k QL~„),»,~b&, . (7.8)

This is perhaps the central theoretical result of this pa-
per. But we emphasize immediately that At is also
measurable. If we use nine different settings of the re-
tarders for the incident light, we can measure nine
different Stokes vectors for the scattered light. Indexing
these nine experiments by q, (7.7) becomes

(7.1) aq ~aA Aq (7.9)

Now A,
" 'R is perpendicular to k' ', and we can define

A,I' '=A, ' 'R~l and Qljk =R &~'Q~~k, allowing us to
write

(7.2)

~ (classica1) ge(2)E (2)I I (7.3)

Setting this equal to the quantum amplitude (7.2) we find

E' '=n ~ A, '"A,'"I 1~I k k

and since n, =c(E"') and E, "=E"'A.', ",we hav. e

(7.4)

E( ) —~ E( )E(I C~Ijk Jt k (7.5)

where c is a constant provided by basic electromagnetic
theory. Now it is easy to transform this classical expres-
sion to a Stokes-like formalism. Absorbing the c into Q,
we multiply (7.5) by its own complex conjugate, giving

E(2)E+(2)—~ ~ + E(&)E(1)E*(1)E (1)I L ~Ijk ~Lmn j k m n (7.6)

in which all indices run only over two transverse axes; the
lowercase indices run in incidence system and uppercase
in observation system. Quantity n

&
is the number of pho-

tons in mode 1 of the normalization volume. The caret
on Q reminds us that it has a different dependence on
scattering angle than the original Q, as it has absorbed a
rotation through the scattering angle.

Now we are ready to switch from quantum physics to
classical physics. The Jones matrix representing the po-
larizer in front of the detector is the dyad P=A, ' 'A," ',
and when field E' ' is incident on it, the transmitted field
is P E' ' or A,

' '(A, *' 'E' '). Therefore the classical elec-
tric field amplitude that passes this filter is

where s' is 4X9 and SAq is 9X9. The latter wi11 have
an inverse S z' if the experiments are chosen correctly; a
suitable choice is shown in Appendix B. Then an empiri-
cally measured A is given by

Jil, ~(experiment)=s, S ~ . (7.10)

Theory and experiment meet when the left-hand sides of
(7.8) and (7.10) are compared. The 36 elements of this
matrix are a11 that theory can predict and all that experi-
ment can measure concerning the two-in, one-out process
with a single incident beam. This is true whether or not
the sample obeys the dipole or any other multipole ap-
proximation, whether or not damping and retardative
effects are important, or whether or not the sample is per-
turbed by external fields.

VIII. IDENTICAL INCIDENT PHOTONS
vs DIFFERENT INCIDENT PHOTONS

In Ref. [8j we gave a Stokes-Mueller description of
two-in, one-out scattering for three coplanar beams, all
with different frequencies. %'e found that with two
different incident photons (labeled 1 and 2},

3) —~+)()(
a any Sp Sy (8.1)

But if one of the incident beams is turned until it has ex-
actly the same direction as the other incident beam, we
have a system very similar to the one described in this pa-
per, except that the two incident beams have different fre-
quencies. If the two frequencies then approach each oth-
er, we have exactly the system of this paper. Equation
(7.7), in slightly elaborated notation, is
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(3) AI(3~1+1)g(1,1)Sa aA A (8.2)

+ ,'(E E-,')„,(E,E„')„,.

Using (8.4) in (8.3), we find

Jg(3 1+1)C» —1 grAI(3~1+2)+At(3~2+) )]a, A A, ijkl 4 +4 a, Py a, yp

(8.4)

X [(yji) i~i(( yy )ji + (yj3)(i (yy )jk ] (8.5)

or by the C orthogonality (2.34)

(3~1+1) + (3+—1+2) e~rs, A ~a, j)y (yji)ik( y jiCA, ijki (8.6)

Since a is a free index on both sides, each row a of At, A
is made from the corresponding plane a of JK &y. The
transformation matrix (y)3);k(yy)j(CA, jki, with free in-
dices P, y, and A, is clearly of size 4X4X9. Explicit
evaluation shows it to be quite sparse. Suppressing the
matrix superscripts and the optical correlation factor A.,
the formulas provided by the matrix are

, =Q—,'(3' „+Att, 22+At 33+At 44),

At 2=+—,'(2At 22
—At „—JK 44),

,2+At,

JK(s 4
—At o 33

—JK(r 44

,'(At „—%23+—Al , „JK 32)—,

JK fl QT~(JK 13+JR 23+JR 31+JR 32)

At 7=+ ,'( JR, ,4+—A—t 24 At 4, +—At, 42),

()=Q ,'(AI )4+A—t 24+At 4, +JR 42),

Af9= JK 34, +At 43 ~r

(8.7)

This would have been difficult to guess in advance. The
remaining sections of this paper investigate the patterns
of the 4X9 double Mueller matrix JK A, based on known
patterns of AL p under various simplifying assumptions.

IX. ACTIVATING MECHANISMS
FOR THE DOUBLE MUELLER ELEMENTS

The detailed calculation of At using Kramers-
Heisenberg approximation and dipole approximation re-
sults in formulas that are given in Appendix D. Under
these approximations, the exact nontensor susceptibility

where photon 1 lies exactly between photons 1 and 2. To
clarify the relation between At( j)

'+ ' and At( A'+", we
eliminate s( ' from (8.1) and (8.2), and rewrite in terms of
incident field amplitudes [see (2.16) and (2.31)],finding

'+ "Cn;Jki (E;EJEk Ei* )„.m,

At(3~1+2)( )» (E(1)E»(1))a,py +p ik i k time

(8.3)

Now if the beams 1 and 2 both become identical to 1, the
field averages will be related to each other by some corre-
lation factor ~,

ir. (E;E Ek Ei')„m, = —,'(E,Ek')„,(EiEi')„,

Q; k becomes a true tensor, namely, the usual second-
order susceptibility y'l -k. %'e mean that y'l .

k is the sus-
ceptibility of an individual scatterer in a given uniform
dielectric environment, not significantly perturbed by
other scatterers of the same kind. Thus it holds for low-
pressure vapors and dilute solutes. In such a "sparse
fluid, " the nonlinear scatterer rotates over all orientations
with equal probability and the tensor rotation formula is

X'jk =Rij(Q)Rjs(Q)Rkx(Q)Xjjx (9.1)

X
0

B C &3C 0 0 0 0 I

D E v3E 0 0 0 0 m

0 0 0 F F n n 0
0 0 0 0 0 6 —6 0

where X =Q—', B Q ,'E an—d wh—ere A, . . . , 6 and 1,m, n

are given in Appendix D in terms of molecular quantities,
namely, scalar products of y( ' with itself. The 8 depen-
dence is simple, and is given explicitly in Appendix D.

The numerous redundancies and zeroes of matrix (9.2)
explain why the theory of y( ' efFects has been able to get
along so far without a super Mueller formalism. But all
the simple relations within matrix (9.2) will fail whenever
the dipole and Kramers-Heisenberg approximations fail,
and some of its hitherto unrecognized elements will be-
come important.

The seven observables A -6 come from the real part of
These observables were enumerated a number of

years ago by Bersohn, Pao, and Frisch [20], who gave for-
mulas for certain linear combinations of them.

The three observables I, m, n involve the imaginary part
of y' ' and have not been previously treated. They may
be especially interesting, as they may distinguish between
resonant and nonresonant scattering on the basis of po-
larization. In linear scattering, no such polarization-
based criterion for resonance exists.

The remaining 20 vanished elements will take nonzero
values if we go beyond the dipole and Kramers-
Heisenberg approximations, and none has ever been pre-
viously studied. Everything we say below will assume
that the sample is an isotropic suspension of arbitrary
particles, i.e., that the unweighted average over all orien-
tations obtains. This assumption helps us to characterize
several distinctly different subsets among the 20 vanished
elements of Eq. (9.2).

By combining the known characteristics of A, » with
the formulas (8.7), which show how to construct At A
from A, py, we can deduce a number of characteristics of

In Ref. [8] we stated the following result as Theorem 1:
If the scatterer is achiral, if n3 is the number of oc-
currences of Stokes parameter 3 among the indices
[a,p, y], if n4 is the same for 4, and if n3+n4 is odd,

where R;j(Q) is the 3 X3 rotation matrix that rotates one
uppercase index through Euler angles Q to lowercase.
After performing the operations specified by our major
result 7.8, and then taking the orientation average, the re-
sult is

(A((dipo)e, sparse fluid) )
~ orientation
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then JK'
&

'+ ' vanishes on orientation averaging.
Applying this in the formulas (8.7), we find that

Theorem 1 implies the following pattern of zeros when
the incident photons are identical:

~ ~ ~ 0 Q 0 Q Q 0

~ ~ ~ ~ Q Q Q Q ~

~(achiral) g
r orientation p p p p. . . . p

0 0 0 0 . 0

(9 3)
It is interesting and gratifying that in the nine construc-
tion formulas (8.7), the chiral and achiral elements are
never mixed.

Theorem 2 of Ref. [8] may be used similarly. It states
the following.

If the Green's operators are real, if all relevant molecu-
lar states may be taken real, if n3 is the number of oc-
currences of Stokes parameter 3 among the indices
[a,P, y], and if n3 is odd, then Jkf'&~,'+ ' vanishes on
orientation averaging.

For identical incident photons, the zeros that result
from this theorem fall as follows:

~(real Green's operators, real states) g
~ orientation

~ ~ ~ ~ Q Q ~ ~ Q

~ ~ ~ s 0 Q e ~ Q

o o o o o o '9 4'

~ ~ ~ s Q 0 ~ e Q

Again, formulas (8.7) do not mix vanishing with nonvan-
ishing elements. These zeros show the positions of the
extra multipole elements; the zero values will persist no
matter how far the multipole expansion may be carried,
as long as the Green's operators and the molecular eigen-
state are pure real.

It is very instructive to look at a matrix which com-
bines the information in these two patterns with that in
(9.2). We let D characterize an element that is activated
by the real part of the dipole susceptibility, A (for ab-

sorption) by the imaginary part of the dipole susceptibili-

ty; H by handedness; and E by any of the extramultipole
mechanisms, namely, (1) anisotropic orientational distri-
bution of the particles, (2) absorption, (3) retarded
dipole-dipole interactions, and/or (4) constant magnetic
field. The following interesting pattern then emerges:

orientation

D D D D HE HE H H AE
D D D D HE HE H H AE

HE HE HE HE D D AE AE H
H H H H E E D D HE

(9.5)

The symbol HE means that the element will vanish if
there is no handedness and will vanish if there is no ex-
tramultipole effect. Therefore, they require both handed-
ness and an extramultipole mechanism. Our experience

with linear scattering is that HE elements are small and
difficult to observe. The single E elements, in contrast,
are large in linear scattering for particles of wavelength
size, but disappear in small molecules like the fifth power
of diameter/wavelength [6(c)]. Single H elements are
never large, but they have certainly been observed in
linear scattering; they give Raman circular dichroism
[21]. There is no linear analog of the AE elements. The
A does not indicate a vanishing, but rather in an appear-
ance (with absorption). Therefore AE elements appear if
there is absorption or an extramultipole effect, whereas
HE elements need both handedness and an extramul-
tipole effect.

Pattern (9.5) was derived in Ref. [8] using only the A p
term in the interaction of radiation and matter; but as al-

ways, the same polarization dependence holds when the
A A term is included. We have discovered a most re-
markable general proof of this assertion, which, however,
is too long for the space left on this page.

X. CONCLUSION

In this paper, we have constructed a generalization of
the Stokes parameters which describes completely the po-
larization properties of two simultaneous identical pho-
tons. When two identical incoming photons are simul-

taneously transformed into one outgoing photon a 4X9
matrix relates the nine incoming double Stokes parame-
ters to the four outgoing Stokes parameters. In aniso-
tropic systems we have examined the behavior of this ma-
trix under inversion and near resonance, and we have ex-
amined the effects of orientation averaging, which reveals
the existence of "extra multipole" effects. These results
give new insights into the nonlinear response of chiral
systems, systems near resonance, and systems near wave-

length size.
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APPENDIX A

Letting

[ T„„,( T„+T „),T
= [ r, exp[i'&i ],r2 exp [ iy2], r3 exp [ ig3]], (A2)

we write the nine molecular two-photon absorptivities

Here we investigate the algebraic properties of the nine
two-photon absorptivity parameters and their collapse to
old, well-known results in the case of absorbers small
compared to wavelength. Taking z as the propagation
axis and expanding (3.1) we have

( iE2T.,+E.E,(T„,+ T,„)+E,2T„))2) .

(Al)
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DA of (3.3) in terms of the six r, rtl symbols, finding (t) A
'~~2-photon

60 tCA;;jj,CA ijij p CA, ijji }

D2

D3

D4

D6

D7

D8

D9

Q —,'(ri+rZ+r3)

Qs(Pi+F2 2r3)

(ri r2)—
2rir2cos[ipi2]

2r2r3cos[y23]

2r3ricos[itpi3]

2r2r3sin[y23]

2r3r, sin[ip, 3]

2rir2sin[ipi2]

(A3)

where y&2 =y& —
y2, etc. These nine equations contain six

r, rtt symbols, which, upon elimination, leave three rela-
tions among the D symbols. They are

(V 2Di+D2) =3(D3+D4+D9),

Di ~2DiD2 —2D2= ', (D3+D6—+D7+Ds } ~

D i ~6D i D3+ 2&3D2D3

=—', (D3 D6+D7 —Ds) . —

(A4a)

(A4b)

(A4c)

These relations hold for a single molecule in a given posi-
tion. However, upon taking the ensemble average, all
nine D's become independent pieces of information.

We now take the ensemble average for small molecules,
in which case the two-photon absorptivity rotates like a
tensor. In this case

( TIJ TKL ~ensemble ij Tkl ( iI~jJ~kK IL ~orientation &

(A5)

where R is the Euler rotation matrix, an explicit function
of the Euler orientation angles. We now substitute the
4-R orientation average formula [22]

4 —1 —1 Tll TJJ

X —1 4 —1 TIJ TIJ
—1 —1 4

IJ JI

(A7)

4 —1 —1

N2-photon so (P 1&j 2 ~P3 }
'(t)

—1 —1 4

5F

5G

5H

(AS)

where the 5's characterize the absorbing ensemble of mol-
ecules and the p's are polarization parameters that
characterize the light. This formula does not depend on
any special property of the light. But we may use the for-
mulas implicit in (A7) to trace the p parameters back to
double Stokes paraineters, and (if the light is pure polar-
ized and coherent) thence back to Stokes parameters, and
finally thence to the normalized, complex polarization
vector A, of the incident light. The final relation is

(P„P2P3} (~k X~ 1 1) (A9)

Entries 2 and 3 of the p vector are identical, and it is also
true that for identical photons, entries 2 and 3 of the
molecular vector are identical (5G =5H ). Therefore, (A8)
collapses to an even smaller formula

There is a more or less standard notation for the three
elements of the column vector on the right. They are
known [14] as (5F5G5H), a particularly simple way of
writing the three rotational invariants of the two-photon
absorptivity tensor. Here the letter 5 has nothing to do
with the Kronecker delta symbol; it was chosen for its
proximity in the Greek alphabet to the one-photon molar
absorptivity c. Carrying out the sum over A, we write
the two-photon absorption rate for small molecules in a
familiar form

~ ~iI jJ~kK~IL ~orientation

4 —1 —1

2 —1 5F
(A10)

3o(5ij 5kl&5ik5jl&t5il5jk ) 1 4
—1 —1

Now ~A, .A,
~

is 1 for all linear polarizations and 0 for both
circular polarizations, and we find

&IJ &a~

X 51~ 5J

~IL ~JII

(A6)
N(linear)

OC

N(circular }

2 5F
—1 3 5G

(Al 1}

where the 6's are Kronecker delta symbols. This is valid
only if the molecule is small compared to wavelength,
and the dipole approximation is made. Now combining
(3.2), (3.3), (A5), and (A6) and performing the summa-
tions that involve Kronecker delta symbols, we find

in exact agreement with old results [14].

APPENDIX B

The linear Stokes parameters for nine polarization
cases, as calculated by substituting (4.2) into (2.17), are
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s(0,0)

(H)

s( v)

{D+)

s(D —)

s(L) —( ~@~2)

S(R)

s( QL)

(El)

s(E2)

s 0, —~/2

s 0,~/4

s 0, —m. /4

s n/4, 0

s n/—4,.0

s 0, —m/8

s n /8—, n /4

1 1

1 —1

1 0
1 0
1 0
1 0

gl
1 0

0
0
1

0
0
0
0
1

v'-,'

(B1)

s n/8, —. m/2

These nine points are picked for their symmetric disposi-
tion on the Poincare sphere. The first six cases (the usual
basis cases for linear Stokes work) lie at the apices of an
octahedron oriented on the two poles (R and L),
with four cases equally spaced around the equator
(H, D+, V, D ). To these we have added three cases that
lie symmetrically with respect to the Srst six on the sur-
face of the Poincare sphere. Polarization QL is an ob-

lique linear polarization halfway between V and D
(22.5' from each); E, is an elliptical polarization halfway
between H and R; E2 is an elliptical polarization halfway
between D+ and l.. All nine cases are shown on the
Poincare sphere in Fig. 2.

The corresponding double Stokes parameters, as calcu-
lated by substituting (4.2) into (2.32), are

S(H)

s( v)

S(D )

S(D )

S(L)

S(R)

S(QL)

S(E&)

S(E2)

v'-,'

v'-',

1

2

1

2

1

4

1

2

1

2

l
4

——'a
2

1

2

0 0

0 0

1g
2

0 0

0 0

0 0

0 0

gl 0

0 0

——'a
2

1

2
1

2

(B2)

where a =1++—,
' and b =1—Q —,'. This matrix is in-

vertable; therefore these polarizations cases form a com-
plete set, in the sense that no other polarization case can
give linearly independent information. This may or may
not be an optimum set to use experimentally.

APPENDIX C

Here we present the details of passage from Eq. (5.1) to
Eq. (5.2), followed by a demonstration that the nine re-
tarder plate angle pairs of Appendix B may be used with
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where I is an intensification factor due to focusing. We
now define an "apparatus vector" A given by

V' v

31T Y N 7T
A (co y)=A, *Q —co HI & j jk 4 kl 2 2 8

(C5}

The shortest formulas we have found result from the use
of a diagonal linear polarizer, i.e., from

FIG. 2. A stereo pair showing the nine Poincare points that
represent the polarization cases of Eq. (Bl). These points make
a complete polarization study for two-in, one-out processes with
identical incoming photons. All nine points lie on the surface of
a Poincare sphere of unit radius.

A

sin(y+co)+i sin(y —co)
—cos(y+ co) i co—s(y —co)

l(, =I1,1]/v2

in which case the apparatus vector becomes

(C6)

(C7)

cos(28) sin(28)
sin(28) —cos(28) (Cl)

Q(8) =
2

1+i cos(28) i sin(28)

i sin(28) 1 i co—s(28) (C2)

while for P, a polarizer passing polarization vector l(„ the
formula is in general

A'A: l.Ay

J'
(C3)

Thus apparatus takes incident vector E and turns it into
E' according to

E =IX,;Aj' Qp Hkr EI, (C4}

the apparatus of Fig. 1 to measure the double Stokes pa-
rameter of any light beam, including depolarized in-
coherent beams. If the double Stokes parameters of such
a beam are measured by this method, they may be used in
(7.7) to predict the Stokes parameters of the scattered
light of a two-in, one-out process. The Jones matrices H
and Q of (5.1) are given by [11]

In terms of the apparatus vector, the amplitude for two-
photon absorption is

A=T~ E E' =I (T; iL;A, )(A;A„EtE„), (C&)

where T is the two-photon absorption tensor of the mole-
cules at the focus. From here, the even rate becomes

~(~,y)=&I&I'= qI'& IT,. l(,.Z I'&,„„»,
X(A(A Aq Aq )(EIE~Ep Eq )

(C9}

where t} is a detection efficiency. Quantities g, I, and the
absolute-two-photon absorptivity tensor T will usually be
unknown; therefore we absorb everything unknown into
ri. Now trading the four factors of E for an S by (2.32},
we find the result promised in (5.2) of the main text:

JV(co, y) =g( AI A„Aq'A 'CA t„)SA, (C 10)

where the parenthesis is [b (co,y )]A of (5.2). U'stng (2.33)
and (C7), this can be evaluated explicitly for the ap-
paratus of Fig. 1. Writing b as a column vector, it is
symbolically

b(co, y) =

2
3

3

48 [
—2+6 cos[4y]+3 cos[4(y —co)]+6cos[4co]+3cos[4(y+co)] }

—
—,
'

I cos[2(y —co) ]+cos[2(y+co) ]]
—,', [

—2 —2 cos[4y ]—cos[4(y —co) ]+6 cos[4co] cos[4(y—+ co) ] ]
v'2

[2 sin[4y ]+sin[4(y —co) ]+4sin[2(y —co) ]+4sin[2(y+ co) ]+sin[4(y+ co) ] ]16
v'2

16
[2 sin[4y ]+sin[4(y —co) ]—4 sin[2(y —co) ]—4 sin[2(y+ co)]+sin[4(y+co) ] ]

v'2.
8

'

[
—sin[2y —4co]+4 sin[2co]+ sin[2y+4co] ]

8 I
—sin[2y —4co] —4 sin[2co]+ sin[2y+4co] ]

—,
' [cos[2y —4co] —cos[2y+4co] ]

(Cl 1)

Now we perform nine experiments using the nine (co,y) pairs of Eq. (Bl), and write the nine vectors b as rows of matrix
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B of (5.3). Numerically, it is

0.82 0.58 —1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.82 0.58 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.82 —0.29 0.00 0.50 —0.71 —0.71 0.00 0.00 0.00
0.82 —0.29 0.00 0.50 0.71 0.71 0.00 0.00 0.00
0.82 —0.29 0.00 —0.50 0.00 0.00 0.71 —0.71 0.00
0.82 —0.29 0.00 —0.50 0.00 0.00 —0.71 0.71 0.00
0.82 0. 14 —0.71 0.25 0.85 0. 15 0.00 0.00 0.00
0.82 —0.29 0.00 0.00 —0.50 —0.50 —0.50 0.50 —0.50

0.82 0. 14 0.71 —0.25 0.00 0.00 0. 15 —0.85 0.00

(C12)

For exact values, use the r~elacements
0.82~+2/3, 0.58~ 1/&3, 0.29~1/v'12, 0. 14
~1W48, 0.71—+1/&2, 0.85~(2+&2)/4,
0.15~(2—&2)/4, 0.50~1/2, 0.25~1/4, and 0.00~0.
Matrix 8 has an inverse, and singular value decomposi-
tion shows that it is not close to a singularity. Thus the
nine double Stokes parameters are provided by (5.4) of
the main text.

C

8 —6 —5
—6 1 2 —3 8
—20 8 16 -10 8
—6 8 2

15 —6 —5 4 —6

(D2)

APPENDIX D

The quantities presented are symbols used in the dou-
ble Mueller matrix, Eq. (9.2). These symbols are valid for
isotropic suspensions of molecules of any shape, if the
molecules are small compared to a wavelength:

e"=7P)',

,&(2,sym), &(2,sym)
3 (gIJK g LMN

(D3)

A =g—', [6a+2c+(3b+3d —2e')(1+cos 8)],
B = 4(b +d +—e')sin 8,
C =Q —", [c +e'(1+cos 8)],
D =4(b+d+e')(1+cos 8),
F. = —Q —",e'sin 8,
F =4&2(b +d +e')cos8,

G =4&2( b+ d )cos8—,

I = —4e«sin 0,
m =4e "(1+cos 8),
n = —4&2e "cos8,

where 0 is the scattering angle and

(D 1)

~IJ~KL ~MN

bIJ~KM ~LN

+XIJK XLMN ) ~IL 5JK ~MN

~IL ~JM ~KN

bIM~JL ~KN

~«p, «(2, sym) &(2,sym)
1 ( gIJK gLMN

XIJK XLMN IIJbKL ~MN

and

X
(2, sym) R [X(2,sym)] X"(2, sym) —1m[X(2, sym)]

XIJK T(XIJK +XIJK )
(2,sym) —

& (2) (2)

(D4)

(D5)

(D6)

(D7)
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