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An optical magnetometer based on atomic coherence effects is analyzed using a quantum Langevin ap-
proach. The large dispersion of a phase-coherent atomic medium (“phaseonium”) at a point of vanishing
absorption is used to detect magnetic level shifts via optical phase measurements in a Mach-Zehnder in-

terferometer with sensitivities potentially superior to state-of-the-art devices.

Effects of Doppler

broadening and fluctuations of the driving field are discussed and a comparison to standard optical-

pumping magnetometers is made.

PACS number(s): 42.50.Lc, 07.60.Ly, 07.55.+x

I. INTRODUCTION

The development of SQUID (superconducting quan-
tum interference device) magnetometers [1], based on
quantum interference effects between supercurrents,
opened a variety of fascinating applications in biology,
medicine, and electrical engineering. With the advanced
techniques of multiple SQUID arrays it is now possible,
for instance, to study the tiny magnetic fields produced
within the human brain with a field strength of less than
1071°G.

Recently we have proposed an optical method to detect
magnetic fields, based on quantum interference effects in
atomic systems, which in principle provides sensitivities
comparable to that of a SQUID without the need of cryo-
genic cooling [2]. In this paper we investigate the quan-
tum noise limits of the sensitivity of such a device.

One way of detecting magnetic fields by optical means
is to make use of the Zeeman effect [3]. The interaction
of the magnetic moment of an atom with an external
magnetic field leads to a perturbation of the energy levels.
Associated with this is a shift of the atomic transition fre-
quency.

8w,, =aB (1)

between the two levels ¢ and b. Here a=(ug/
#)(m,g, —m,g,) contains Bohr’s magneton, the magnet-
ic quantum numbers, and the gyromagnetic factors and
can be of the order of 10’ s!/G. Although for magnetic
fields of order 107 !° G this frequency shift is very tiny, it
leads to a substantial change of the index of refraction at
the atomic resonance

Sn msﬁ)ab . (2)

This variation causes a phase shift of a light beam
transmitted through the medium, which then can be
detected with very high accuracy by interferometric
means. As can be seen from Fig. 1 for the case of a two-

*Permanent address: Ludwig-Maximilians-Universitdt, Sek-
tion Physik, Theresienstrafe 37, 80333 Miinchen, Germany.

1050-2947/94/49(3)/1973(14)/$06.00 49

level atom, usual unsaturated materials are highly ab-
sorbing near the atomic resonance, which prevents an ap-
plication of the high dispersion.

This absorption-dispersion relationship, however,
changes completely if we consider atomic systems which
display quantum coherence and interference effects [4-9].
In such systems, the absorption of a photon by an atom
in the lower level can be canceled almost perfectly. This
led to the prediction and observation of such effects as
nonabsorbing resonances [4], lasing without population
inversion [5-8], and the possibility of an ultralarge index
of refraction in a completely transparent medium [9].

A typical spectrum of the linear susceptibility for a
nonabsorbing resonance is shown in Fig. 2. At resonance
(A=0) we note a vanishing imaginary part of the suscep-
tibility )}/, indicating a point of zero absorption. At the
same time, the real part y’, which determines the index of
refraction, displays a large slope. This gives the in-
gredients for the highly sensitive magnetometer proposed
in Ref. [2]: A small magnetic field induces a variation in
the index of refraction which causes a phase shift of a
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FIG. 1. Real (') and imaginary part (x"’) of the susceptibili-
ty (in arbitrary units) for a two-level atom in the ground state as
a function of the atom-field detuning A=w,, —v. 7 is the radia-
tive decay rate. At resonance one recognizes a large slope of x’
indicating a large dispersion of the index of refraction. A small
magnetic shift of the optical transition frequency leads to a
change of the index of refraction for a probe field of fixed fre-
quency v.
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Ay
FIG. 2. Susceptibility spectrum of a nonabsorbing resonance.
Displayed are the real (line) and imaginary parts (dashed) of the

susceptibility in arbitrary units as a function of the atom-field
detuning A=w,, —v.

transmitted probe field.

We here calculate the value of this phase shift for the
particular atomic configuration shown in Fig. 3, in which
a strong driving field between the unpopulated levels a
and c creates electromagnetically induced transparency
on the a-b transition [7]. We determine the quantum
noise limits for the phase shift measurement in a Mach-
Zehnder interferometer thereby taking into account
effects of pump laser fluctuations, Doppler broadening,
and thermal population of level c¢. To this end we analyze
in Sec. II the response of the phase coherent medium on
the probe field within a Langevin approach. In Sec. II A
we calculate the linear susceptibility of the medium and
in Sec. II B we evaluate the fluctuations imposed on the
probe field by the atoms. The signal and noise in the ac-
tual setup of the Mach-Zehnder interferometer are then
analyzed in Sec. III. In Secs. IV and V we discuss the
influence of Doppler broadening and collisional pumping
on the magnetometer operation. In Sec. VI we compare
the sensitivity of our magnetometer to standard optical
pumping magnetometer. A summary of the results is
given in Sec. VII.

II. LANGEVIN APPROACH
TO THE HIGH-INDEX MATERIAL

In this section we analyze the optical properties and
the quantum noise of the atomic system shown in Fig. 3.

meg=-1

FIG. 3. A configuration in which strong driving field of Rabi
frequency € couples levels a and c¢. Radiative decay from a to b
and a to ¢ goes at rates y and ¥’ whereas collisional phase decay
of the c-b polarization occurs at rate y.. The electric field of
the probe laser is denoted by E.

A strong driving field of Rabi frequency Q couples the
upper level a of a dipole allowed optical transition a-b to
an auxiliary level ¢ inducing transparency on this transi-
tion. The interaction of the probe field E and the strong
driving field with a single atom is described by the Hamil-
tonian

H"=—p(E s, +E o)) —#Q*s,+06)) , (3)

where /KJ 1s the dipole moment of the a—b transition,
E (E'7)) are the positive- (negative-) frequency part of
the probe field strength, the atomic variables are defined
as

6o=Ib){al, 6,=la){al,
&,=Ib)cl, 6,=Ib){b|, @)
¢,=lc)al, &.=le)cl,

and the strong driving field is described by the stochastic
c-number variable ).

The equations of motion of the atomic variables can be
obtained from the Hamiltonian Eq. (1). Including the de-
cay processes indicated in Fig. 3, they read in the interac-
tion picture

éa=—(y+y')6,,—i-%(ﬁ(_’60—H.a.)
—i(Q*¢,—H.a.)+F, , (5a)
6,=7v0, +i-§—(ﬁ(_’60—H.a. +E, (5b)
6o=—[iA+Ly+y"]5,
+il;—(a,,—aa E T +i0s +F, (5¢)
6,=—[i(A—A)+1y 16,
—i%i‘(“&;%-iﬂ*a‘o-i-ﬁ‘ol , (5d)
&,=—[id'+ Ny +y'+v)18,
+i%ﬁ‘+’af+imac—aa)+ﬁaz , (Se)
where A=w,, —v and A’=w,.—v'; v and V' are the fre-
quencies of the probe and driving field. Note that we
have included in Eq. (5) a collision-induced perturbation
of the energy of level ¢ leading to a dephasing of the b-c
and c-a polarizations, but have neglected collisional de-
phasing of the a-b polarization. This is a good approxi-

mation as long as the gas pressure is below 10 mTorr,
corresponding to a density of 2X10' cm ™ at room tem-

perature. The fluctuation operators F in Egs. (5) have a
zero mean value and are § correlated,
(FDF, (1)) =(F F,)8(t—1") . (6)

The diffusion coefficients (ﬁxﬁy) have been calculated
using the generalized fluctuation-dissipation theorem [10]
and are listed in Appendix A.

Dalton and Knight [11] have shown that fluctuations
of the pump laser field can essentially influence the opti-
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cal properties of driven atomic systems. In our case the
finite linewidth of the pump laser affects the effective life-
time of the c-b polarization. In order to make the effect
of the finite pump-laser linewidth transparent, we trans-
form the Langevin Eq. (5) to new variables:

Q=0 , 6,=6,e"%, 6,=6,0e ¢, 7

where we have separated the phase ¢ of the pump laser.

We will show in Appendix B that, under conditions
typical for the magnetometer discussed here, a depletion
of the pump field due to the interaction with the coherent
medium can be disregarded. Therefore Q, as well as ¢
can be viewed on as the amplitude and phase of the un-
perturbed pump laser. The phase in an ordinary laser un-
dergoes free diffusion, which means it obeys an equation
of motion [10,12]

H)y=u(t), (8)

where u(¢) is a b6-correlated Langevin-noise operator,
whose diffusion coefficient is given by the pump-laser
linewidth v :

(u(tu(t' )=y 8(t—1t") . 9)
We thus have in the new variables

élo__[l(A A+ 3y —ip(1)]6

—i-%ﬁ‘+’3;0+i9060+ﬁam , (10a)
620= —[A+ 3y +y' +y ) F+ip()]64
+i%ﬁ(+’ +iQ6.—8,)+F, ,  (100)

N

with I~7010=F01e ~i4 and F"zo =F, e

A. Semiclassical steady-state solutions and susceptibilities

In a first step we calculate the linear susceptibility of
the coherent medium with respect to the probe field, as-
suming a small probe field strength E. We derive expres-
sions for the mean values of the populations (&, ), (&),
and (&,) and of the polarization (&,,) in zeroth order
of the probe field, and for the mean values of the polar-
izations (&,) and (&) in first order of the probe field.
We thereby replace the probe-field strength E(z,t) and
J

the Rabi frequency of the driving field Q4(¢) by their
semiclassical steady-state values E(z) and Q.

From Egs. (5) and (10) we find the semiclassical set of
equations in zeroth order of E

(Y =—(y+7 K80 —iQy((8Y) —c.c.),  (lla)
(6y)y=7(8) , (11b)
(3(2(()))>——[1A’+ Ly +y'+y ) {69

—i{u(0)eR()) +iQy({8)—(&)), (110

and in first order

(69 )=—[iA+ 1y +1)](8)

+i-§;—E(+’((6§,°)) (6‘0’) +190(6“’ ,

(12a)
(éw)"—[l(A A)+l7/c]<6(])
+idpnon) — i E (1)
+iQ(ay") . (12b)

The second terms on the right-hand side of Eq. (11c) and
(12b) can be obtained by a formal integration of Eq. (10).
We obtain

i<p<r)am(t>>:—fo‘dt'wtm(t')aw(t'))

~— [ar(pop)) (et . (13a)

Substituting the correlation function of the noise opera-
tor with the help of Eq. (9) we find

{ (1)>=-£—(+) i(A—A")+ %
0 lﬁE e~ - N
[Q+T (y+y')—AA—A )P+ +

Q3+1T (v +7")—A(

where I'. =y _.+v ;. The linear optical properties of the
medium are determined by the susceptibility [10] defined
as

p _pN(Uél))
€E ™) - €E'™

X ) (15)

A—A’)—é[(A—A')(y+y’)+AFC]

i(#(t)alo(t)>=—%'}’L<610(t)) >
(13b)
—l<y(t)620(t))=—%yL(ﬁzo(t)) .

We then solve Egs. (11) in steady state and obtain
(6!"y=(8")y=(8%)=0, (14a)
(8")=1. (14b)

Similarly we find from Egs. (12)

[(A—A")y+y")+AT ]
(14¢)

where N is the number density of atoms. For a measure-
ment of very small magnetic fields we have A, A’ <<y.
Furthermore, we assume a sufficiently strong driving field
such that Q3>>(y+7’ )T, with ', <<7,y’. In this case
we obtain from Eq. (14c) for the real and imaginary parts
of the susceptibility, Y’ and )'’, determining the disper-
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sion and absorption of the medium:

2 .
'z_M_(_w (16a)
X fieq ﬁé ,
2y T
na BN e (16b)
X fie, 20

We note from Eq. (16b) that in the limit I',—O0 there is
no absorption of the medium, although all population is
in the lower level of the probe field transition. At the
same time we recognize from Eq. (16a) that the index of
refraction is linear in the detuning A—A’. Substituting p
by the radiative decay rate [10] y=p2v/6mfie,c’, we
find for the index of refraction n =1+ 1y":

ne1-—=LaN@a—-a), (17

81° Qp
where A is the wavelength of the atomic transition.
Throughout this section we assume that the driving and
the probe field are in resonance with the corresponding
transitions in the absence of a magnetic field. As indicat-
ed in Fig. 3 the probe as well as the driving transition are
sensitive to magnetic fields. Therefore in the presence of
a magnetic field B parallel to the propagation direction of
the two light fields we have [3]

Hp
=~ﬁ_gbB , (18a)
A'=—%i£ch , (18b)

where pup is Bohr’s magneton and g, and g, are the
gyromagnetic factors of levels b and c. A probe field
propagating a distance L through the coherent medium
with the index of refraction n given in Eq. (17) will ac-
quire a relative phase shift

2m(n—1)L

A¢sig = A = "3—'}\.2NL %—aB

- a2 (19a)
due to the magnetic field. The residual absorption of the
coherent medium due to collisional dephasing of the b-c
coherence and the finite linewidth of the driving laser
leads to a reduction of the amplitude of the transmitted
field by a factor «,

-

K=exp [ }L)(”L (19b)

_ 3 .., 07T
_exp[“gl LNE— ] .

In the second part of Eq. (19b) we have inserted x*’ from
Eq. (16b) and have again substituted g in terms of y.
Hence the steady-state value of the probe field at the out-
put of the gas cell is given by

B. Noise properties

In order to determine the noise properties of the probe
field at the output of the phaseonium gas cell we first ana-
lyze the quantum properties of the polarization of the
medium at the operation point A=A'=0 (no magnetic
field). To this end we apply a c-number Langevin ap-
proach (Fokker-Planck approach) [12,13]. In this ap-
proach correlation functions of the c-number variables
correspond to normally ordered correlation functions of
the original operators, where normal ordering is defined
as

£ 61,61 .80 6, .6, .6..60,0,,8,,E7. @1

The c-number Langevin equations can be obtained from
the operator Egs. (5) and (10) simply by replacing the
operators by their c-number counterparts. The diffusion
coefficients of the c-number Langevin operators F, can
be derived from the quantum diffusion coefficients as out-
lined in Appendix A. We have

G,= —(y+y’)a,,—i4%(E<—’ao—c.c.)

—i(Qyop—c.c.)+%, , (22a)
dbz'yaa+i'%(E(_)Uo‘"C.C-)+7b » (22b)
c'f0=—[iA+%(y+y’)]ao+i%(ab—aa)EH)

+i(—10010+f700 5 (22¢)
010=—[i(A—A)+ 1T Jo

~iL E o3 +ilyo,+ F (22d)

ﬁ 20 o~ 0 ”IO’
d‘20=—(iA'+%r)0'20+i%E(+)UTO
+iQo,—0,)+F, (22e)
where :’/’am=f7alo+iolo(t+ (), 5702():57020

—ioylty)u(t),and T=y+y'+y . +y..

We now assume that the probe field is quasistationary,
which means that the medium adiabatically follows the
time evolution of the field. In this case we can neglect the
time derivatives on the left-hand side of Egs. (22), and ob-
tain for the microscopic (dimensionless) polarization of
the medium in first order of E:

oM=L g — r
# 2[Q5+ Ly +y))T,]

o

+F, (1), (23)

where the effective Langevin noise operator #,(1) is given

E(L)=E(0)ke e . 200 by
J
1 = 1 2pE(+) 0 P () 1 rrc __.ﬁo Frc g%
71,([)-—3 lﬂogul‘l*zrcgao-f- 7T '7;20+lﬁE 5 1+ﬁg F, IT 1+ 46(2) (7020 57020)
/30, TT.(y+y)
Py ey TV g (24)
2y 2y 805y
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and

—, (y+yI
D=0+ —y—:—i . (25)
The diffusion coefficients of F,(¢) can be determined from
the atomic diffusion coefficients given in Appendix A.
Restricting the calculation to the lowest-order contribu-
tions in the probe field E we find

(F(OF () =(F5F,)8(t—1')
&;2;;: LL(E “NHE (1))
X8(t—t") (26a)
and
(F,)F (1)) =~ X;:; (EFDE (1) 8(t—1")
(26b)

where we have used again that I', is small compared to
v, 7', and Q3>>yT..

The equation of motion for the propagation of the
slowly varying amplitude of the probe field reads [10]

a9, 9

+c —PW(z1), (27)
at 0z

E(+) )=— iv
&0= 5

where we have introduced the macroscopic polarization

P(z,t)=P(z,t)+ Fp(z,1) (28)
of the medium, which is determined by the atomic polar-
ization 0. Its semiclassical value P reads

P(z,0)=pN5o(D)| ;_5, » (29)

where N is the number density of atoms in the sample
and 7, is the semiclassical value of the microscopic polar-
ization. As shown in Appendix C the Langevin noise
operator Fpl(z,t) is & correlated and its diffusion
coefficient is given by the diffusion coefficient of 7, (¢);

L

<5E(+’(L,t)5E‘+>(L,t')>=<5E‘+’ 0,t—— |8

2
(TP*’(z,t)7P(z',t')>=%N<:7},”57,,)8(:—:’)5(2 —z').

(30)

We proceed by assuming small field fluctuations
around the semiclassical steady-state values such that

ERz,0)=EF(2)+8EF)(z,¢) . (31)

The correspondingly linearized propagation equation
reads

d d
9 4.2 (+) =t sp»)
” c % SE'"(z,t) 26, 8P V(z,t) , (32a)
where according to Egs. (28) and (29)
2 Fc
8P(z,1)=i2N SE+)(z,1)
fi 2005+ 5y +y' )T, ]
+Fplz,t) . (32b)

Inserting Eq. (32b) into (32a) and performing a Fourier
transformation yields the simple linear differential equa-
tion

d

8 s () e Y= (i — (+)(, . v .
chSE (z;o)=(io—nc)OE' " '(z;0)+ 26, Fp(z;0) ,
(33a)
where
" 2 r
7= vx" _ vp°N c (33b)

2¢c 2cfie 2@+ Ly +y T, ]

Note that e “":=k. We can easily integrate Eq. (33a) and
obtain

51«:‘+’(L;w)=5E‘+>(o;w)e"w‘L/C’e*ﬂL

f dz e ~ ML —2)gi(w/c)L —2)
260c

XFp(z;0) . (34)

With Eq. (30) we eventually find for the correlation of the
field fluctuations at the output of the phaseonium gas cell

0,t'— L >e —2nL
¢

——E——N Laz e~ =2(F 7 ) 8t —1t') (35)
46 Ac? f i E=E(2)
and
(SE‘—)(L,t)éE“”(L,t'))=<5E‘_) o,t—£ SE'*) O,t’—£l>e_2’7L
C [
IfA—Ndeze—”‘L—”(:?;sp) -1, (36)
4 E=E(2)




1978 MICHAEL FLEISCHHAUER AND MARLAN O. SCULLY 49

Substituting the diffusion coefficients Eq. (26) and making
use of the initial condition 8E‘*(0,1)=0, we finally ob-
tain for the field fluctuations at the output

(8E' AL, 1)SE' (L, t"))
:%ﬂi‘“m)i‘“(ma(z—t’>, (37a)
(8E'"AL,t)8E‘ T (L,1"))
—4iZVNL£2 y#)-/y CETOE T 0)8(t —1') .
(37b)

III. QUANTUM LIMITS
OF MAGNETOMETER SENSITIVITY

To analyze the quantum limits of the magnetometer
sensitivity we now calculate the signal and noise of the
phase measurement in a Mach-Zehnder 1nterferometer as
shown in Fig. 4. Our measurement signal j is the
difference of the photocounts of the two interferometer
outputs. The balancing of the two outputs eliminates
noise contributions from classical intensity fluctuations of
the input probe field [14,15]. We assume here that both
detectors have an efficiency of unity and that all beam
splitter are lossless and have a 50% transmittivity.

Denoting the field strength at the Mach-Zehnder out-
puts by ES and 24, we have

~ 26qdAc 1, A A Al— ~

j=— fo drlE{ (DEST ) (n—E (0ET (0],
(38)

where A is the effective beam cross section and ¢, is the

measurement time. The values of the field strength in the
different parts of the Mach-Zehnder interferometer, as in-
dicated in Fig. 4, are related by the beam-splitter input-
output relations

A+ [ CS B S
Ef=+—FEF"+—E (39a)
5 5 3 ‘/2 2
driving
laser ~ A—=
Ey
probe Ey :7 E, v
laser '

;' E[r
: Adg

FIG. 4. Mach-Zehnder interferometer. Probe laser radiation
acquires a magnetic-field-dependent phase shift (relative to Ad,)
which is detected by a difference measurement of the two out-
puts.

E;ﬁ):\_/%ggﬂi_iﬁgi) , (39b)
and

By = | B e LB % 39¢)

g =x L poy 1 g (39d)

where EU is the vacuum-field contribution from the
unused input port.

To determine the mean out})ut signal (?) and the prin-
ciple measurement error { Aj>), we again make use of the
c- number approach introduced in Sec. II. (j) and
(A7 7?) can be expressed in terms of a corresponding c-
number variable j via

Gr=4), (40a)

(AT =(Aj2y+—5 1+« (ny,) . (40Db)
Here

Moy = 26":“ (ELTELD) 41)

is the number of input photons passing through the inter-
ferometer during the measurement time. It can be ex-
pressed in terms of the input power P, as

=(P;,t,,)/fv. The first term of Eq. (40b) results from
fluctuations due to the interaction of the probe field with
the coherent atomic medium. The second term describes
shot noise. It originates from the vacuum fluctuations of
the radiation field. A brief derivation of this term is
given in Appendix D.

In the c-number approach, the field operators in Egs.
(39) are replaced by the corresponding c-number vari-
ables and the vacuum contribution E, vanishes.

In the first step of our calculation we derive an expres-
sion for the mean output signal {j ), which is determined
by the semiclassical field value at the output of the
phaseonium gas cell, Eq. (20). with the help of the
beam-splitter relations, Eq. (39), we obtain

(7Y =nik cos(Adg,— Ady) 42)

where A¢, is the phase shift due to a phase plate in the
other arm of the interferometer. Adjusting the parame-
ters such that A¢,=m/2, we have in the limit of small
phase shifts (small magnetic fields)

(G)=nkAdg, - 43)

In the second step of the calculation we determine the
noise properties at the resonance point (zero magnetic
field). Substituting the result for the correlation of the
probe field at the output of the gas cell, Eq. (37) together
with the beam-splitter relations into the nonlinear noise
term
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2¢yAc
2y — 0 (+)
8= |— f f drd7(8[E§(nE{Y (1)~
we find after a somewhat lengthy calculation
T, 1Qp0bel”
(A]2>— N)»ZLY —probe_ —==—?n,,
9 o
1 _’L’ |Qprobe‘2
=Iln— ——ZKZ”in . (45)
kK |vY Q5

In the second line of Eq. (45) we have substituted g with
the radiative decay rate ¥ and have introduced the Rabi
frequency of the coherent probe field at the input of the
phaseonium gas cell Q. ,p.=pE E'(0) /4.

For physically reasonable parameter values, the noise
term (45) due to the interaction with the atomic medium
can be made small compared to the shot-noise contribu-
tion

1+
(8% hor = ———2" Pin (46)
and the magnetometer sensitivity is purely shot-noise lim-
ited.

Equating the expressions for the measurement error,
Eq. (46), with that of the signal, Eq. (43), we find the
minimum detectable magnetic-field strength

172 1/2

1+«2
2k

_l4r 1 B
min a 3 }\,ZLN y

Aiv
Pintm

B (47)

The first term in Eq. (47) decreases with increasing num-
ber density N or interaction length L. On the other hand,
the transmission of the coherent atomic medium de-
creases as well as can be recognized from Eq. (19b),
which leads to an enhancement of the second term. An
optimum is reached if

02
o %‘l ~T, . (48)
Under these conditions we obtain
r. fiv 12
min ~ a m ’ (49)

which is the main result of this paper.

It is useful at this point to consider a numerical exam-
ple. Reasonable parameters are y =10" s~ |, [, =103s"},
Qy=7, A=500 nm, L=10 cm, t, =1 s,P,,=1 mW,
a=10"s"1/G, and N=2X 10" cm ™ (10™* Torr at room
temperature). In order to stay within the linear approxi-
mation of the probe-field interaction, the Rabi frequency
of the probe field Q. needs to be smaller than y and
hence 4 >1 cm? The minimum detectable field for this
case is of the order of 10712 G. To compare this value of
the sensitivity with that of “state-of-the-art” SQUID’s,
we have to consider the minimum magnetic energy E,,,
detectable with the optical magnetometer. Folding the

E{ T N(nE (0SEST(#)EST ()

—E{(ET ()],

44)

r

probe laser several times back and fourth through the
coherent medium, we can operate with a small sample
volume. In an interaction volume of 1 cm® we obtain for
E aglm the theoretical value of ~4X 107 Js, which is
of the same order as that of state-of-the-art SQUID’s.

1IV. INFLUENCE OF DOPPLER BROADENING

In the preceding sections we have assumed that both
the driving and the test field are in resonance with the
corresponding transitions if there is no magnetic field.
We therefore implicitly assumed that there is no inhomo-
geneous broadening. In this section we study the
influence of Doppler broadening on the magnetometer
signal and will derive conditions under which Doppler
broadening can be essentially eliminated.

The width of the susceptibility spectrum in Fig. 2 is of
the order of a few natural linewidths of the optical transi-
tion. Therefore one might expect that an atomic velocity
distribution and the associated Doppler shifts wash out
the dip in the absorption spectrum and the large disper-
sion at the resonance point. We will show, however, that
for approximately equal frequencies of the a —b and the
a —c transition Doppler broadening can be eliminated if
the probe and driving field have the same propagation
direction. The physical reason for this behavior is the
two-photon nature of the process.

To demonstrate the elimination of the Doppler effect
we concentrate on a subgroup of atoms with a velocity
component v in the z direction. In this case the detunings
of the probe and driving field, A and A’, Eq. (18), get an
additional component

Hp v
A=7g,,B +wab: , (50)
,__FsB
A ——7ch+a)ac ¢ (51)

From the expression for the polarization of the probe-
field transition, Eq. (14c), we recognize that it is essential-
ly the difference of the two detunings which determines
the atomic polarization. In particular we see that the
denominator of Eq. (14c) becomes independent on the
atomic velocity distribution if

rAl <<Q2, rAp(y+y')<<2Q}, T, Ap<<205, (52)

where A, is the Doppler width of the optical transition
and r=(w,, — @, )/wy,- When the frequencies of the
probe and driving transition become very close and Q is
sufficiently large, these relations are practically always
fulfilled. If the levels b and c are, for example, hyperfine
levels of the ground state in alkalines, r is of order 107,
so that for a Doppler width of 10° s !, already a Rabi fre-
quency of 107 s~ ! would be sufficient to fulfill (52). Under
conditions (52) the contribution of the considered atomic



1980

velocity group to the real and imaginary part of the mac-
roscopic susceptibility near resonance are

v
B+2
, N, [T
XUN ﬁeO ﬁz K (533-)
0
' pZNU Fcﬁ wa)iz—
v ﬁeO 2 0 ab®chb C2
’ 2
plrty) ooy L (53b)
2 et | 0

After averaging over the velocity distribution, the
second term in Eq. (53a) disappears, since it is linear in v.
That means Doppler broadening does not affect the
dispersion of the material at the operating point and
therefore does not affect the phase shift of the probe field.
The absorption of the material can, however, be
influenced by the Doppler effect. We find for the
transmittivity « of the phaseonium gas

A
r. +(y+y')r262—

K=exp l—é;)»zLN—(%
0 0

} . (54)

For the above-mentioned example of hyperfine levels in
alkalines, even the effect on the transmittivity is negligi-
ble. Thus we have shown that the magnetometer can
operate essentially Doppler free if the probe and driving
field frequencies differ only slightly and the Rabi frequen-
cy of the driving field is sufficiently large, such that con-
ditions (52) are fulfilled.

V. COLLISIONAL PUMPING INTO LEVEL ¢

If levels b and c are closely spaced, as it should be the
case in order to cancel Doppler broadening, the energy
spacing fiw,. might be less than the thermal energy kpT.
In this case thermal processes drive population back and
forth between levels ¢ and b with a rate R. In a dilute gas
this rate is determined essentially by the time between
successive collisions with the walls of the gas cell or other
atoms and is small. Nevertheless the nonzero population
in level ¢ leads to spontaneous emission noise on the a-b
transition and hence to an enhancement of the total mea-
surement error. In this section we discuss the influence
of collisional pumping on the susceptibility of the medi-
um and calculate the noise contribution in lowest order
of both the pump rate R and the probe field.

In the case of a pump process from b to ¢ with rate R,
we have to modify the equations of motion (11) and (12)

- (0)

(6, )=—(y+y' )8 —iQy(oQ)—c.c.), (55a)

(8,)=R(8)—(6@))+y(6?) , (55b)

(65)=—[iA+ LT +R)|(8)
+iQy((8 ) —(8)), (55¢)
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(1)
(6 Y=—[iA+Ly+y'+R)(&y")
+i%E(+’<(c’i‘b"))—(c’?ﬁ,°)>)+iﬁo<f?(1}))> ,

(55d)

< (1)
(610)=—[i(A—A)+1T +R (&Y

—i%E‘*’(&lgo’)+iﬁo(a{,"> : (55¢)

For sufficiently small R, i.e., R <<y, we find near reso-
nance under the conditions used in Sec. II

<a‘c°)>z<a£,°’>z§ : (56)
(6%)=0, (56b)
and
. i(A—A)+(iT,+R)
(66 ~iLE™ - : (56¢)
Q‘O

From this result we recognize that a small thermal
pump into level ¢ does not change the index of refraction.
It, however, enhances the absorption. The transmittivity
of the medium now reads

K=exp {— ——;’—)»ZLN—_LZ
8 Q5

AZ
(FC+2R)+(y+y’)r2_—gl ] .
Q5

(57

The enhancement of the absorption due to a small
pump into the upper level is on the first glance somewhat
counterintuitive. It can be understood, however, if one
recognizes that the pump process does not only increase
the population in the upper level, but also destroys coher-
ence on the b-c transition. For small pump rates the
second effect supersedes the first one, and the absorption
is therefore enhanced.

To calculate the noise contribution we note that in the
presence of the pump rate R, there are contributions to
the effective noise operator ¥, already in zeroth order of
the probe field. They result from the zeroth-order contri-
butions in the diffusion coefficients of #, and ¥, ,which

read
RZ
(g; g(ﬂ))(o):R(o.a(O))z ,
’ 4 (58)
(7* F )(0)=R(<0.(bO)>+(U(CO)>)+,VI(UEIOJ>

910" %10

FAr (ORI

Taking into account only these contributions, we find for
the effective noise operator

1 | I =
:7 2 700+1907‘710

p ﬁ%

, (59)

and thus for the effective diffusion coefficient

’

(:7;&71,):59’—%21—). (60)
Yiko
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Following the procedure in Sec. IIT we find from Eq.
(60) a contribution to the measurement error
’ 2
iNszR(y_+y ) (1—«*) N
4 02 In(1/¢%)

(A pump= , (61)

which under optimum conditions, Eq. (48), is approxi-
mately

<Aj2>pump~~~T{‘LJ’—“;Y—(AJ’Z)shot : (62

Since R <y_. and usually the linewidth of the driving
laser y; is larger than the collisional decay rate in a coat-
ed cell, we may neglect the noise contribution due to col-
lisional pumping into level c.

V1. COMPARISON
TO OPTICAL PUMPING MAGNETOMETER

The detection of magnetic fields via optical pumping
techniques was first described by Franken and Colegrove
in helium [16] and improved by Cohen-Tannoudji et al.
[17] and Kastler [18] and others. An atomic system with
three lower magnetic sublevels, say m;=+1,0,—1 and
one upper level, is driven by resonant unpolarized light.
A magnetic field, which for simplicity we take to be
parallel to the propagation direction, splits the energies
by an amount #iaB. Due to optical pumping, the popula-
tion of the m;==1 states is driven into the m;=0 level
and the pump light will be transmitted through the other-
wise absorbing gas.

Now, if there is a rf signal applied to the gas which is
resonant to the sublevel transition, the atoms will be
driven back to the m;==1 states and the gas will again
absorb the optical radiation. Thus by monitoring the
transmitted pumping light while varying the rf one has a
sensitive measure of the spacing of the magnetic sublev-
els. This is summarized in Fig. 5. The ultimate precision
to which we can measure this frequency and the strength
of the magnetic field is determined by the intensity fluc-
tuations Am of the transmitted light. To measure the res-
onance frequency, one determines the positions of the
half maxima. The intensity fluctuations at these points

aB WRF

FIG. 5. Optical-pumping magnetometer: atomic level scheme
and principle of operation. Optical field dumps population into
levels by and renders the medium transparent. The resonant rf
field drives population back and leads to absorption of the opti-
cal field. Magnetic-field strength is detected by monitoring
transmitted light intensity as function of rf frequency.

lead to an error A, =|0w/dm|Am, where dm /3w is
the slope of the transmission curve at the half maximum.
Assuming that the intensity fluctuations are only due to
shot noise we find for the frequency error under optimum
conditions

172

il , (63)

Awerror=7mag P.t
in“m

where P;, is again the input power, v is the frequency of
the pump field, and 7,, is the measurement time. ¥, is
the width of the transmission line, which in the absence
of power broadening is the transverse decay rate y, of
the rf transition. Equating the signal frequency to the er-
ror we arrive at the minimum detectable magnetic field
for the optical pumping magnetometer

172
fiv

B _ Ymag
Pintm

min
a

(64)

For small input powers, where y.,,~7., the optical
pumping magnetometer gives the same sensitivity as the
phaseonium magnetometer. (Note that we have ignored
other noise sources than shot noise.) However, as P,
grows, the transmission line gets power broadened and
Y mag iNCreases. In order to see the effect on the magne-
tometer sensitivity, we calculate the width of the
transmission line by solving the corresponding density-
matrix equations within a second-order perturbation ap-
proach in the rf field. We thereby consider the level
configuration shown in Fig. 5.

In the interaction picture we have the equations of
motion for the populations

Po, b, =V +Paati(Q%pyy —c.c. )—i(ﬂ:tf’b+b0—c'c') )
(65a)

pbobozyopaa+i(ﬂ:pb+b0~c.c. )—i(ﬂ;'ﬂc)bob~ —c.c.),
(65b)
Py b =V -PaatilQ¥p, —c.c. )+i(ﬂ;"‘pb0b_ —c.c.),

(65¢)
for the rf polarizations
Po b, = ATV Py, b,
—iQdps b, ~Pyb,) T Pas 5 (66a)
Pogp_ = —iA+Y ppp_
—iQudpp b, Py b ) i0PZ (66b)
and for the optical polarization
Pab, = — gpabo —iQ%p —iQupay,
+iQpy 5 tiQpy 4, - (67)

Here ¥ ,,7_,7, are the longitudinal decay rates of the
optical transitions, =y, +y_+vy,, QO and Q are the
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Rabi frequencies of the rf and optical field, and A is the
detuning of the rf from the magnetic transition frequen-
cy. In the absence of the rf field all population is optical-
ly pumped into level b, and the medium is totally trans-
parent with respect to the optical field. With the rf cou-
pling, population is driven back into levels |5, ) and the
optical field is absorbed. The absorption is given by the
imaginary part of the optical susceptibility, for which we
find from Egs. (65)-(67)

p*N Q%
4lQf?
A1+y5+-FZi

2|Q|?
YC F

Xn___ (68)

fie,

As can be seen, an increasing Rabi frequency (2 leads to a
power broadened transmission line with width

5 172
1+—4|Q|

y.T (69)

Ymag:‘}/c

For a sufficiently small input power, such that vy, =7,
the minimum detectable magnetic field, Eq. (64), de-
creases with increasing input power P;,. However, above
a certain value P, corresponding to the critical value of
the optical Rabi frequency Q°=+1/y T /4, B, satu-
rates _and _ approaches the value B ; —(1/
alV'y, /t,, V'3\2/2m A, where A is the pump laser cross
section. In Fig. 6 we have plotted the sensitivity of the
phaseonium magnetometer and the optical pumping mag-
netometer for the same set of parameters as a function of
the laser power. One can see that the phaseonium mag-
netometer gives much higher sensitivities because it does
not suffer from power broadening. It should be noted
that the value of the probe-field Rabi frequency in the
phaseonium magnetometer must be considerably smaller
than the driving-field Rabi frequency in order to satisfy
linearity. This, however, gives a much larger upper
bound for Q. as compared to the optical pumping
case. It should be noted, furthermore, that we have
disregarded atomic noise in the discussion of the optical
pumping magnetometer, which can significantly contrib-
ute to the measurement error.

10.
opt. pumping magnetometer
Jhemm e N TTm==
Bmm
0.1 phaseonium magnetometer
0.01 0.1 1 10. 100. 1000.

FIG. 6. Sensitivity of optical pumping and phaseonium mag-
netometer, as a function of laser power in units of the critical
power P{ .

VII. SUMMARY

In this article we have analyzed the quantum noise lim-
its of the sensitivity of an optical magnetometer based on
atomic phase coherence. The high dispersion of a
phaseonium gas at the point of zero absorption is used to
detect small magnetic level shifts via the change of the in-
dex of refraction. If we put the phase coherent material
in one arm of a Mach-Zehnder interferometer, the optical
phase shift associated with this variation of the refractive
index can be measured with very high accuracy.

It was shown that the magnetometer is basically shot-
noise limited and does not suffer from power broadening,
which is the reason for the enhanced sensitivity of the de-
vice when compared to the standard optical pumping
magnetometer. Because of the coherent cancellation of
absorption, noise contributions from the interaction of
the probe field with the medium are small. Using a bal-
anced measuring technique additional intensity fluctua-
tions of the input probe field are eliminated. The effect of
Doppler broadening is mitigated if the transition frequen-
cies of the pump and probe field are close (such as in the
case of hyperfine sublevels) and both fields propagate in
the same direction.

Another advantage of the proposed magnetometer is
its large dynamical range of operation. In conventional
optical magnetometer high sensitivity is achieved only
when additional laboratory fields are shielded. For the
phaseonium magnetometer the dynamical range is basi-
cally limited by the width of the transmission dip in the
susceptibility spectrum of the material. For the parame-
ters used in the above example this is of order 107 s/,
corresponding to dynamical range of at least 0.1 G.

In conclusion, we emphasize that the optical phaseoni-
um magnetometer is an interesting alternative to a
SQUID. The principle sensitivity limits are comparable
or even superior to the actual sensitivity of state-of-the-
art SQUID’s, but can be achieved without the need of
cryogenic cooling and in a large dynamical range.
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APPENDIX A

1. Quantum diffusion coefficients
The operator Langevin Egs. (5) have the structure

f(=A4,(+F (1), (A1)

where AAX is the deterministic part of the equation and ﬁx
is the quantum noise operator. The associated diffusion
coefficients can be calculated using the generalized
dissipation-fluctuation theorem [10,12]

, (A2)

(FB)=—(24,)—(43)+(5p) .
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From this we obtain

(E,F)=(y+y')(86,), (A3)
(F,F))=v(6,), (A4)
(E,F,)=—y(5,), (A5)
(FF, )=—v.(8,), (A6)
<F,T,1F,,1>=y'<aa>+yc<ac> , (A7)
(ﬁ)‘,zﬁaz>=y0(aa) , (A8)
(F, F, )=v.(8,) . (A9)

All other diffusion coefficients follow from (A3)-(A9) or
are zero.

2. c-number diffusion coefficients

The c-number diffusion coefficients can be obtained
from the quantum diffusion coefficients (A3)-(A9) by
transforming the expressions in the fluctuation-
dissipation theorem (A2) into normally ordered operator
products. If the operator product Xy is normally ordered,
its expectation value is equal to the expectation value of
the corresponding c-number product. Hence we have

d d

—(xP)=—Axy) . A10

o (29) i (xy) (A10)
Using again the generalized dissipation-fluctuation

theorem, Eq. (A2) together with its classical counterpart,

we find from Eq. (A10)

(P.E)+(3A)+(45)
=(F.F)+{x4,)+(4,p), (A1)

where A, and ¥, are the deterministic term and the fluc-
tuation operator in the c-number Langevin equation.
Thus we obtain

(FF)V=(FEF)+(24,)+(4,9)
—(xd4,)—(A4,p) . (A12)

The right-hand side of Eq. (A12) can be expressed in
terms of c-number variables by normal ordering of the
operator products. Hence we finally find

(F,F)=(y+y)o,)+i(Qy{a3)—c.c.)

+i%(f(+)(03)—c.c.) : (A13)
(F,%,)=v{o, >+i—§—(E(+)(03>—c.c.) , (A14)
(i7,,7,,)=—y(aa)—i-ﬁ;—(E(H(ag)—c.c.) , (A15)
(7,,57010)=i§3‘<00)—i-i—f”’(a?ﬁ , (A16)
<i7b9’020>=—i%E'(+)(ofo) , (A17)

(9’005700)=—2i-%E(+)(00) , (A18)

(F5 Fo) =1 {0 ) +T {0 )+ (E T (0g) ~c.c),
(A19)
(F* F, Y=T.{0,), (A20)
20 20
<7g203020>=_2i§0<0'20> N (AZI)
—_:P 5w+
<700570!0> l‘ﬁ E <0'10) ) (A22)
<57,,057,,20>=—iﬁo<ao>—i%E‘+’<am> : (A23)
(7,,10.‘7020)=I“c<00)+i§0<010>
+i-%f(+)(<ab)—(ac>) : (A24)

All other coefficients follow from (A13)-(A24) or are
zero.

APPENDIX B

1. Propagation of the driving field

In the discussion of Sec. II we have assumed a constant
driving field. To verify this assumption we here discuss
the susceptibility of the coherent medium with respect to
the strong pump field and show that the pump field
changes only very slightly while propagating through the
atomic sample. The susceptibility for the pump field is
determined by the a-c polarization (&,). The first non-
vanishing term of {(&,) is in second order of the probe
field. From Eq. (5) we find

I ﬁpml:oe l 2
9 95

ir, L —i(a—a)
(6)~ild 14

) (B1)

where we have assumed small detunings. From this we
obtain
_ N (A—A") [Dpronel’

’
X pump ﬁfo (_)_2 ﬁz ’
0 0

_ (B2)
p'zN Fc _‘}_’_’I‘Qprobel

fie, 4Q7 v Ql

"
Xpump

In order to estimate the change of the pump-field ampli-
tude and phase during the propagation through the
coherent medium, we assume ﬁpmbe(z)zﬁpmbe(O), and
note that y'~y. As we have seen in Sec. III an optimum
operation of the magnetometer is reached if the interac-
tion length and the atomic number density are chosen in
such a way that the probe-field intensity at the end of the
phaseonium gas cell is decreased by a factor 1/e. The
real part of the probe-field susceptibility is for magnetic-
field strength of order 107® G-—corresponding to
A—A’'~10 s~ '—of order 1078, The absorption and the
dispersion for the pump field essentially differ from these
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values by the ratio of the probe and pump Rabi frequen-
cies squared, |Q,opc|2/Qg, which we can recognize by
comparing Eq. (B2) with Eq. (16). Since we consider here
the case of a weak probe field, this ratio is small com-
pared to unity. Therefore the influence of the medium on
the pump field is negligible and we may assume an undep-
leted driving field.

APPENDIX C

1. Derivation of Egs. (27) and (30)

To describe the noise properties of a field propagating
through a sample of atoms we apply a technique intro-
duced by Drummond and Carter [19]. Following this ap-
proach we subdivide the quantization length
(—ct,, /2,ct,, /2) in 2M+1 intervals each of length
ct,, /2M + 1. The center points of the intervals are

nct,,

2= n M, .. M. (C1)

We consider the case of a quasimonochromatic field
with mean frequency v and a corresponding wave number
k. Since a description of a propagating field requires a
multimode approach, we include a finite number of
modes with creation and annihilation operators c, and
¢,. The corresponding wave numbers are

k, =k +21T
ct

n=—M,...,M. (C2)

m

The interaction operator of the probe-field modes with
the coherent atoms reads

Hint=_ﬁg 2 (@:66"’ie_i(kn_k)zm+H_a.) )

i,n,m

(C3)

Here the index m characterizes the position of the atom
and i is a number index. Note that for points inside the
interaction region 3, =(ct,, /L)N/2M +1 is the number
of atoms in one length interval (W is the total number of
atoms in the sample). The coupling constant g is related
to the dipole moment p and the quantization volume
Act,, via

v 172

— (C4)
260 Actm

=_E—
8™ s

At this point it is convenient to introduce the new field
variables

~ 1 M

—_— N
bj=————775 3 Cyexp
n=—M

_ 2minl
2M+1)

2M+1

’

I=—M,.... M (C5)
which fulfill the Bose commutation relations
(6,6 1=5, . (C6)

In terms of these field variables the total Hamiltonian can
be written as
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H=H3,+ 3 #v,ele, +H™
n

. A"'/\ /\T/\
=H%om v 3 b/b,+# S v; b/ b,
1 Ll

1+

—#g S{2M+1)'?b65 +H.a.} . (€7
il

Here the last sum is taken only over / values correspond-
ing to positions inside the interaction region and

= 2 oM, P oMt

M 2mhe [Z'n'in(l—l’)
n=—M

] . (C8)

From Eq. (C7) we find the equation of motion of the
slowly varying field amplitude

by=—i Svpb,+ig 3 2M+1)'25}" (C9)
I i

We proceed by transforming into ¢ numbers and apply a
continuous approximation in the limit M — 0. In this
limit we have the following correspondences:

lct,,
N
2M+1

2M+1)"2b,—alz,t) ,

z,
(C10)

—iS v,,,b,,(2M+1)1/2—>—c%a<z,t) .
2

Thus the equation of motion for the space- and time-
dependent complex amplitude of the probe field reads

3 a
o oz

alz,t)=ig lim 2M+1)3 ol

Z,**Z

(C11)

Making use of the relation between a and the field
strength E‘ ™

172
v
Hgt)= | —F—— | ralz,1), C12
E')(z,¢) 2e At alz,t) (C12)
we obtain from (C11)
d d : v
—+c— |EP) =j—P(z,t),
3 caz (z,1) 12EOP(2 t) (C13)

where we have introduced the macroscopic polarization

P(z,t)=—2— lim QM +1) 3 o
ct M o ;

m Z’%Z

=P(z,t)+Fplz,t) . (C14)

The semiclassical value of P—indicated by the

overbar—is given by the semiclassical value of the atom-

ic polarization &,
P(z,t)=pNoy(t)l g_ 5, - (C15)

Fplz,t) in Eq. (C14) is a S-correlated noise operator,
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which is related to the corresponding microscopic noise
operator

oly=z4+FUr) , (C16a)
Fp(z,1) —E—A}lm 2M+1)2:7" (t) (C16b)
L —® 7>z
Therefore we have
(FUz,)Fplz',t"))
2
= lim (2M +1) ypeR
XZAFOF (1))
ij z,-—»z,z,.—»z'
2
=L N(FF, )8t —108(z—2") , (C17)

where we have used the correspondence lim,, , ,[(2M
+1)/ct,, 18 —8(z—2z").

APPENDIX D

1. Vacuum-noise contribution

In order to determine the vacuum-noise term in Eq.
(40), we replace the phaseonium gas by a passive medium
with transmittivity « and solve for the quantum expres-
sion of the output signal ] Denoting the field annihila-
tion operators at the different points of the interferometer
by a,,ay, . . . ,as in analogy to Fig. 4, we find

A tm
j=71—f0 dralas—ala,) . D)
m

Using the beam-splitter relations (38) and (39) and noting
that [20]

a3=Ke s”‘a +V 11—k, , (D2)

where a, is an additional vacuum field that couples in due
to the medium losses described by «, we obtain

A

j= %(e*+e)aga0+ée*(agav +aay)

+ \/15 e"a'*ao - —;—e(a:ga,, +ajay)— Vl—ae’aga;
+pure vacuum terms . (D3)

i(Ad —
Here e=ke ¢ and €=V1—x% The* ‘pure vacu-

um terms” contain only normally ordered products of
vacuum operators and hence give zero contributions to
first- and second-order moments. Calculating
(A7?)=(7*)—(7)?* from Eq. (D3) yields

(A]?) =kcos*(Adg,—Ady){Ank ) +1(1—k*){n;,)

+sinX(Adg, — Ado)(n;, ) (D4)
At the operating point where A¢,=/2 we have
cosz(Agbsig—Ad)o)zO , sinz(A¢sig—A¢o)z1 . (DS)
The vacuum noise contribution therefore reads
A + &2
(A12)=(1—2K)(ni,,) . (D6)
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