
PHYSICAL REVIE%' A VOLUME 49, NUMBER 3 MARCH 1994

Quantum-nondemolition measurement of photon number using radiation pressure
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We propose a quantum-nondemolition measurement of the amplitude quadrature and the photon-

number statistics by using the effect of radiation pressure on a freely suspended mirror. We propose to
measure the momentum fluctuations of the mirror which will give us a readout of the amplitude quadra-

ture fluctuations. The scheme we propose is able to avoid the back-action noise leaving the state of the

field after the measurement practically undegraded.

PACS number{s): 42.50.Uk, 03.65.8z, 42.50.Lc

I. INTRODUCTION

There has recently been considerable interest in the
mechanical effects of light [I]. It has been proposed that
by measuring the deflection of atoms from a standing-
wave light field a quantum-nondemolition (QND) mea-
surement may be made on the photon number of the field
[2].

The mechanical effects of light on macroscopic objects
have also been considered. The theory of radiation-
pressure-induced optical bistability has been given by
Meystre et al. [3]. Experimental demonstrations of this
effect have been given in both the optical [4] and mi-
crowave regimes [5]. The radiation-pressure coupling of
the light field to a freely suspended mirror introduces a
nonlinearity which gives rise to the bistability.

In this paper we give a quantum-mechanical analysis of
the radiation-pressure coupling of a light field to a freely
suspended mirror in the adiabatic limit. We propose to
use the momentum fluctuations of the mirror as a meter
that provides information on the fluctuations in the am-
plitude quadrature of the external field and in the photon
number. We shall evaluate under what conditions a mea-
surement of the momentum fluctuations of the mirror
gives us a QND measurement of the amplitude quadra-
ture statistics of the field. We shall use the criteria intro-
duced by Holland et al. [6] to evaluate the quality of the
proposed scheme as a QND measurement, taking into ac-
count the cavity loss and the back action of the noise on
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the meter.
The effect of radiation pressure on a freely suspended

mirror has also been considered in the context of optical
interferometers for gravitational wave detection [7—9].
Whereas in those systems one measures the optical phase
shift to determine the position of the mirror, in our appli-
cation we measure the momentum fluctuations of the
mirror to determine the amplitude statistics of the light
field.

II. MODEL

Let us consider a single-mode optical cavity at frequen-
cy coo with one partially reflecting mirror with transmit-
tivity V and one totally refiecting mirror at the other
end. This second mirror can be considered as a harmonic
oscillator with mass m and frequency co . A coherent ra-
diation field transmitted through the first mirror hits the
second mirror which starts its oscillation because of the
radiation pressure force.

The total Hamiltonian can be written as

H =H, +He

with

w2

H& =Acooa a+ +—,'mco x —Aga ax,

H, = ,' f dto[-(P(to)+k(to)x)' +toQ'( t)o]

+la +I a .
The optical mode of the cavity is described by the Bose
operators a,a, while x represents the displacement of the
oscillating mirror and p its momentum. The coupling
constant g can be expressed in terms of the cavity length
L and frequency ~0 as g =coo/L. The first term of 02 de-
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scribes the coupling of the harmonic oscillating mirror to
the heat bath described by the bath variables P and Q.
This coupling to the bath is linear but it is more realistic
than the usual rotating-wave approximation [10]. It gives
the damping in the momentum of the oscillator and the
heat bath is considered in equilibrium at temperature T.
The other two terms of H2 represent the damping of the

cavity mode in the usual rotating-wave approximation.
In the input-output formalism [11] the equations of

motion for the system variables are written as

~aia, (coo+5 —gx, )+ a, =Qy, a;„,
2

p, =O,

—m co x, +Aga,*a,— p, =0,
2P?l

where ct, =(a )„x,=(x )„p,=(p), are the steady-

state mean values and a;„=(a;„). By choosing the de-

tuning 5 so that

da 1 Xa
[a,H, ]

— a +Qy, a,„(t),
dt iW

' ' 2

X
5= —

( coo
—gx, ) = —coo 1—

da '

dt

dx
dt

i' 2
[a,H, ]— a +Qy, a;„(t),

1
[x,H, ],

iA

(4)

the equations simplify and we get the solutions

8ANp
~s 2 an

mcco "T

p, =0, (9)

dP 1 Xm

d
= .

Z
[P,H, ] P —V'r.—~;.(t),

dt i' '
2m

ct,'a, = ia,„[',8L

(e;„(t))=0, (e;„(t)e;„(t'))=ktt T5(t t'), —(5)

where kz is the Boltzmann constant.
Equations (4) are interpreted as quantum-Langevin

equations in the Stratonovich sense. The steady-state
solutions can be easily derived; however, it turns out that,
due to the presence of the oscillating mirror, the mode in-

side the cavity is detuned. We can get rid of this detun-

ing by introducing ab initio a cavity detuning 5 which can
be adjusted either by varying the length of the cavity or

by varying the frequency of the external field. Thus the

frequency coo in Eq. (2) is modified to coo+ 5 and the equa-

tions of motion (4) become

da . ~ ~a
i (coo+5 g—x )a — —a+ Qy, a,„(t),

dx
dt

=p /m,

p = —mao x +Aga ta — p —Qy e;„{t).

Within the usual semiclassical approximation we get the
steady-state equations, obtained by putting d ( a ) Idt
=d ( a t

& Idt =d ( x ) Idt =d (p ) Idt =O,

where y, =c"7I2L is the cavity damping constant with c
the speed of light; y represents the damping of the os-

cillating mirror in the usual Markoffian approximation

[1]; and a;„(t) and a;„(t) are the Bose operators describ-

ing the input field near the frequency of the cavity mode,
i.e., a;„(t)a;„(t) is the number of photons per second at
frequency cop hitting the partially reflecting mirror. The
quantity e;„(t) is determined in terms of the heat-bath

operators at initial time; thus it depends on the state of
the bath at this initial time [10]. It can be shown that in

the limit of high temperature (i.e., ksT»A'co ) the

statistics of the "noise" variable e;„(t) is that of a white

noise [10]

5a =a —u, ,

5x =x —x, ,

&p=p —p,

(10)

and the fluctuations with respect to the mean value of the
input field

~ain ain ain '

To the lowest order in the fluctuations we get

—g= Ag+ri .
dt

The vectors g and ri are defined by

( =(5a,5a, 5x, 5p),
q'={Q}.5a,„,Q) .5a,'„,0, —Q}.E,„},

(12)

where for simplicity we showed the transpose of the
column vectors g and g. The matrix A is given by

—y, /2 0 0Ig as
—y, /2 —iga,*

1/m

I cg p /2m

0 0

Aga,* fig a,

By using the Fourier
f {t) = (2m )

'"f dcof (co)exp(i cot },we get
transform

where we used the definitions given above for g and y„'
x, is the steady-state value of the mean displacement of
the oscillating mirror, ~a, ~

represents the steady-state
mean value of the photon number inside the cavity, while

~ a;„~ is the mean number of photons hitting the first cav-

ity mirror in 1 s at the frequency of the cavity.
We now consider the evolution equations of small fluc-

tuations with respect to the steady-state values given in
Eq. (9). To this end we define
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g(co) =g 'g(co), (14} rewrite Eq. (18) in the following way:

with 8 =iNI —A where I is the identity matrix. After
some algebra the matrix 8 ' is given by the expression

b1, b12 b13 b14
'

b21 b22 ~23 b24
8 '(co)=-

b31 b32 ~33 ~14

b4, b42 b43 b44

where

0 (1+n )y, 0 0

ny,
M=

0 0 0

0 0
0 ymk~ T

(Ie( )g'( '))=5( + ')g '( )~[/ '( — ]',
with

(20)

(21)

Pa
+EN

2
. Xm

Nm N +l N
2m

(16)

7a
b11 = +EN

2
Nm N +EN

7m

2m

i ia, /'g'fi
+ =b22( —co),

is the determinant of B. The matrix elements b; are
given by

We are now able to calculate the various correlation
functions of interest. The correlation function of fluctua-
tions of the momentum of the oscillating mirror, after
lengthy but straightforward algebra, is given by

(5p(co)5p(co') )

8
~ a;„~ g A' ( n +—,

'
)
+y k~T

N +y, /4
=5(co+co')

2 2 2
co . (22)

[(co —co ) +co y /4m ]

a,g R
b,2=i =b3t,

Xa
b13 =E'a, g +iN

7m +ico =b33( —co),
2m

b42(co) b3i (
—co) b32( )

=E =l
ficom fi fi

y. . b4i( —~)
b 4=i ' '

+ico = =b24( —co)
m 2 ficom

III. QND CRITERIA

Let us try to answer the following question: how good
is this system as a measurement device for the amplitude
quadrature of the input mode at frequency No? In order
that this system be a good measurement device, a cri-
terion introduced by Holland et t2l. [6] should be
fulfilled: the quality of the measurement is determined by
the level of correlation between the probe field and the
signal field, i.e.,

Va
b33 = + l N

2

'2
Ym +.
2m

~(ginyout) (gin)( pout)i2
~~in yOut V V~in ~Out

(23)

r.
b '4 m 2

+lN

Va
644 —l N +EN

2

2

1

m N
&43

m

We are interested in studying the two-time correlation
functions of fluctuations with respect to the steady state
which are given, in terms of Fourier transforms, by

(g(co)g (co'))=LB '( )(g( )g ( '))[g '(co')]

(18)

where X'" is the input signal incident on the apparatus
and Y'"' is the output probe measured by a detector. For
a perfect QND measurement device the correlation
coefficient C;„,„, is unity. In our case X'" is the ampli-

tude quadrature of the input signal X'"=(a;„+a;„),and
the probe is the momentum of the oscillating mirror, so
that Y'"'=e;n+( t/y /m)P. V;„and V„.„, are the vari-

ances of the two fields defined as Vz = (Z ) —(Z) . To
the lowest order in the fluctuations we have

[(&'"(r)&'"t(r') ) —(I'"(r) ) ( &'"t(r') ],„
The correlations of the noise terms are given by [11]

(5a;„(co)M';„(co')) = (5a t„(co)5a;„(co')) =0,
(5a;„(co)5a;„(co')) =(1+n )5(co+co'),

(5ct;„(co)5a;„(co')) =n5(co+co'),

(8;„(co)Z;„(co')) =k~ T5(co+co'),

(19)

[(5a,„(r)5p(r') )+ (5a ~„(r)5p(r') ) ],
m

(24)

where we used the subscript sym for the symrnetrized ex-
pression

where n =exp[(ttlcoo/ki3T) 1] is vanishingly —small at
optical frequencies. Because of the 5 function we can &~;.(&,&')= (5ct;„(&)5ct;„(&'))+ (5a;„(&)5t3;„(r')), (25)
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V ...(t, t') = (e;„(t)e;„(t'))+, (5p(t)5p(t') ),ym

(X'"(co)Y'"'(co') )

7m—2i fico a +n(a +a'

V'y
+ [(5p(t) e;„(t'))+(e;„(t)5p(t')) j .

=5(co+co')
( y, /2 —i co)(co co—i y—co/2m )

(27)

(26)

In terms of the Fourier transforms, by using Eqs.
(14)—(17) and the independence of the input fields
(5a;„(co)e;„(co')) = (5ct;„(co')) (e;„(co')), after some alge-
bra we get the symmetrized expression

V~,„(co,co') =(1+2n )5(co+co') . (28)

In order to calculate V .„,(co, co') we need the Fourier
transform of the correlations t, 5p(t)e;„(t') ) and
(e;„(t)5p(t')), while the Fourier transform of the other
terms in Eq. (25) have been obtained in Eqs. (19) and (22).
Finally we have

V .„,(co, co') = V .„,(co)5(co+co'),

~a;„~ g iri (1+2n ) +kii T (co —
) +-

m

2 (29)

V„.„,(co) = '2

(coco)+2 1 'Vm

4 m

In Fig. 1 we show the variance of the output field normalized to its maximum value attained at co=co for various
temperatures. We are now able to give the explicit form of Eq. (23)

C;„.„,(co) = 1+

2 2

(co~ co ) + 1r
4 m2

T~ 2 2+ Vt2

B 4

4y co ~a;„~ g iri (1+2n )
(30)

where for simplicity we choose the phase of the external
field to get o.;„real. In Fig. 2 the behavior of

(co) =C;„.„,(co) near the resonance value is shown for

a particular set of experimental parameters and various
equilibrium temperatures. The maximum is obtained for
co=+co; then we have

(C;„„.„,),„=(1+P)

with

2

2m 4P= —,', kii Ty
~a;„~ g A' (1+2n)

(31)

(32)

V(m)
1

We see that as long as p((1 it is possible to have

0. 8
C(co)

0. 6

0 . 4

0.8-

0.6

0. 2 0.4

0. 99 1.0 1.01

FIG. 1. Spectrum V(co) = V «t(co) /V„,„,(co ) of output

probe fluctuations measured by a detector, normalized at its
maximum value reached for co=m, is shown vs the dimension-
less angular frequency co/co at various temperatures.

0.9 0.95 1.0 1.05

FIG. 2. Correlation coefficient C (~)=C - (co)&in &out
—C2 ,„, «, (co) is shown vs co/~ for various temperatures.
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[(X'"(co)X'"'(N') ) —(X'"(N ) ) (X'"'(N') ) ],„
yu /2 EN

=(1+2n ) 5(N+N') (36)
y, /2+ i cor=+ktt?y y. /(le;. Ig&)

eT
2ttt ia i

' (33) and

(37)V,„,(N, N')=(1+2n)5(N+N') .

Then, the criterion in Eq. (34) becomes
so that P—= —,', r . Let us now consider how much the pro-
posed scheme degrades the signal field. Holland et al. [6]
show that the quantity of interest for such a purpose is (38)Cx x- (N'='

(Cx,„.„,),„=1. For N &(N, the relevant quantity is

given by

~
(XinXout ) (Xin) (Xout) ~2

C~in~out V V~in xout

%hen C;n .U,
= 1 the scheme is completely able to iso-

late the noise introduced by the measurement process.
Being X'"'=Qy, (a+a ) —X'" we now consider the
symmetrized expression

[(X'"(t)X'"'(t')) —(X'"(t) ) (X'"'(t') ) ),„

= [V'y, (X'"(t)(a(t')+a (t')) ) ],„—V;„(t,t') .

(35)

After some algebra, by using Eqs. (14)—(17) and correla-
tions given in Eq. (19), always considering a real input
field for the sake of simplicity, we get the symmetrized
Fourier transforms

~

(Xout pout ) (Xout ) ( pout ) ~

2

g OUt yoUt V Vg OUt yOUt

(39)

A perfect state-preparation device would have

CX t y
= 1, which gives the variance in the signal out-

put, given a measured value for the probe field, as

V(X'"'i Y'"')= V,„,(1—C,„, ,„, ) =0 .

In the present situation we can evaluate

(40)

where we used Eq. (28). Then, the scheme is completely
able to isolate the noise introduced by the measurement.

However, in order to have a good QND measurement
scheme the state of the field, after the measurement,
should remain unaffected by the measurement. Holland
et al. [6] introduced a third criterion to indicate how
good the scheme is as a state-preparation device. It turns
out that the quality of state preparation for a QND
scheme can be evaluated by considering the quantity

( [X'"'(t)&'"'(t') ) —(X'"'(t) ) ( &'"'(t') ) ],„

=Qy, ((5a(t)+5a t(t))e,„(t'))+ ((5a(t)+5a t(t))5p(t') ),„

((5a;„(t)+5at„(t))5p(t')) .

After lengthy but straightforward algebra we get the symmetrized Fourier transform

(41)

2i —tilNg [a;„+n (a;„+a „)]
7 01

(y /2+i N)(N N iy N/—2m)—

Thus, finally for a real input field we get

(42)

C .„, .„,(N)= 1+

2 2

(N~ N )+
4 m2

2
Fg

kg TNl co +

4ymN ~a;n~ g fi (1+2n)

where we used Eqs. (29) and (37). We thus obtain

2 2.CX'"'r'"'(N x'"r'"t N (44)

In the best situation considered above, the value of
C,„, ,U, can be = 1; in such a case the minimum value of2

V(X'"'~F'"')=0. It means that the scheme is a very
good QND measurement device because the state after
the measurement is not degraded.

IV. CONCLUSIONS

The maximum correlation between the momentum
fluctuations of the mirror and the amplitude quadrature
fluctuations occurs at co=+co . Thus one should observe
the amplitude of the variance of momentum fluctuations
at this maximum (N =kN ) as this will give the best
measure of the amplitude quadrature of the input mode.
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The width of the variance of momentum fluctuations is
determined by the damping constant of the oscillating
mirror.

For co=+~ we get

V .„,(cu; ~a;„~ )=kaT 1+ g~ '~~,.~'

k~ T 'Va &m
(45)

Thus, the number of photons impinging the cavity at fre-
quency mo is

( a;„) =—[ Vr,„,(co; (a;„( )
—V .„,(co;0)]

1
(46)

with

64 gfi

7m Va
(47)

fixed by the experimental setup.
Let us now consider a possible experimental situation

specified by the following set of parameters which could
be adjusted by an experimentalist: I.=10 ' m, NO=10'
s ', 5'=2X10, y jm =10 ' s ', m =10 kg, and
T=4 K. Then P-1.39X10' ~a;„~ . For an input
power P =Rcoo~cr;„~ -0.105 W we have ~a;„~ =10' s

then P=0. 139 and (C;„,„,),„=0.877. For higher in-

put power (C;„.„,),„rises and can approach l. At

lower input power with a;„~ —10 s ', we can still have

a good criterion for smaller values of the cavity damping
constant. This could be obtained by using the mirrors re-
cently considered by Rempe et al. [12] with a transmit-
tivity T=1.6X10 . In this case y, =4.8X10 and we
could obtain (C;„.„,),„=0.99 with an input power

P = 1.05 X 10 W. At lower frequencies with

coo=3X10' s ' with the same mirrors we still could
have a good criterion (C;„.„,),„=0.97 with an input

power P=0.1X10 W and y Im =10 ' s ' with

m =10 ' kg. In Fig. 2 we show C (co)

=C~;„r.„,(co)=Cz.„,„.„,(co) for these values of the pa-

rameters and various temperatures. We conclude that a
measurement of the quadrature phase of the external sig-
nal, by measuring the momentum fluctuations of a freely
suspended mirror induced by radiation-pressure fluctua-
tions, should be feasible. Our conclusion is supported by
the values of the above criteria that for co=+co are
C,„, „„,=C;„.„,=1 for the values of the various pa-

rameters considered, while always C;„.„,= 1 holds.

Therefore, we can consider the scheme as a good QND
measurement device, giving a measurement of the num-
ber of photons for a sufticiently high input power and in a
good range of temperatures, without feeding any spurious
noise into the system and leaving the state practically un-

changed after the measurement. This scheme could be
useful in a tap extracting information from a transmis-
sion line by means of a nondestructive measurement of
the number of photons.
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