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We show that the concept of m pulses can be extended to multilevel systems. Generalized m pulses

selectively excite a target state via a mechanism that is closely related to the familiar excitation dynamics

in a two-level system. The corresponding generalized area theorem does not refer to the "area under the

pulse envelope, " but to an integral over a difference of instantaneous quasienergies. Nevertheless, there

are the same possibilities of pulse shaping for the generalized pulses as for their two-level counterparts.
A semiclassical interpretation of the resonance condition leads to an analytica1 approximation to the

relevant quasienergies, and shows that the excitation mechanism is universal.

PACS number(s): 33.80.—b, 42.50.Hz, 03.65.Sq

I. INTRODUCTION

Recent advances in laser technology have drawn atten-
tion to an intriguing question: Is it possible to use
specifically "designed" laser pulses to achieve coherent
control of molecular dynamics [1—3]? One of the main
tasks in this line of research is to find principles for
"guiding the evolution of a quantum system" [4] by
strong laser fields, so that certain desired molecular pro-
cesses can be induced with high efficiency.

For a quantum system with only two relevant levels,
such a principle is well known. A "m. pulse, " applied on
resonance, leads to complete inversion [5]. These m

pulses are not unique. An infinity of pulses with different

shapes, but the same area under the pulse envelope, can
have the same effect. Nowadays, pulse shaping has be-

come an important tool for NMR spectroscopy [6,7].
In this paper, we show that it is possible to extend the

basic idea of m. pulses to transitions in multilevel systems.
Generalized m. pulses induce complete selective excitation
of a prescribed target state, and, exactly as for their two-
level analogs, there is a significant freedom in the choice
of the pulse shape. Accordingly, this freedom can be ex-
ploited in the design of optimal laser pulses.

The outline of our work is as follows. First, we briefly
review the theory of two-level m pulses and show how
these are related to their multilevel counterparts. We
then give an example of a generalized m. pulse, together
with an illustration of the possibilities of pulse shaping.
In Sec. IV we discuss the resonance condition for the gen-
eralized pulses from a semiclassical point of view. In Sec.
V we turn to compositions of ~ pulses, which lead to con-
trolled transitions between distant states, and briefly

sketch a possible extension of the method. The final sec-
tion contains a concluding discussion.

II. A NEW LOOK AT AN OLD PROBLEM

a, (t) ai(t)
iA (t) =[Ho +H ~i(tt)] (t) (2.1)

with (we assume E2 )E, )

Ei 0
Ho= (2.2)

and

0 1

H;„,(t)= pFo cos(cot)— (2.3)

can be solved exactly, if the resonant, or "rotating-wave, "
approximation is made [8]. Denoting the two eigenstates
of Ho by

l 0
0 ~ f2 (2.4)

the wave function can be written as

f(t)=a, (t)g, +a&(t)y2 . (2.&)

As a starting point for the discussion of generalized m.

pulses, let us briefly recapitulate some familiar facts. The
Schrodinger equation for a two-level system which in-

teracts with a periodic electric field of strength I'0 and

frequency co,

'Present address: Universitit Marburg, Fachbereich Physik,
Renthof 6, 35032 Marburg, Germany.

In the particular case of exact resonance, A~=Ez —E&,
and assuming the initial condition f(t =0)=y&, one ob-
tains oscillations [9]
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~a, (t) (z=sin' O,t
(2.6)

and it follows that the coefficients in the expansion (2.9)
are given by

with the Rabi frequency
1 1

v' ' ' v' (2.14)

pFo
A- (2.7) The important observation now is that the condition (2.8)

can be written as

Thus, after a time t determined by (cz—e))tF/A'=m . (2.15)

t
P

(2.8)

we have inversion, i.e., ~ az(tF )
~

= l.
For our purposes it is instructive to look at the same

problem from a different angle [10]. Since the full Hamil-
tonian H =Ho+H;„,(t) is periodic in time, there are
periodically time-dependent Floquet states ui z(t) and
quasienergies e( z, so that the wave function can also be
expressed as

f(t)=c)u)(t) exp( —ie)t/()i)+czuz(t) exp( —iezt/()'t) .

(2.9)

1ui(t)=
+2Q,

(2.10)

1uz(t)=
+2Q,

—QQ —t5, exp(icot)

QQ, +a
with the frequency detuning b, =(Ez Ei }/fi co, an—d—

Q =[(@F0/A') +b, ]'

the quasienergies are (modulo ()'t(0)

AQ
si =

—,'(E) +Ez )+

(2.11)

Whereas in (2.5) the wave function had been expanded,
with time depend-ent coefficients, in a basis of time-
independent eigenstates of Ho, we now are using a basis
of periodically time-dependent eigenstates of Ho+
H;„,(t)—i()t8t for an expansion with time indepen-dent
coefficients cj. The time evolution is described by the
dynamical phase factors exp( —iejt/A') (with j=1,2).

Again, in the rotating-wave approximation the Floquet
states are easy to calculate; one finds (see also [11])

QQe+ 6 exp(ia)t)

QQ, —S

This fact leads to an interesting interpretation of Rabi os-
cillations in the language of the Floquet theory. In the
presence of an oscillating force, the initial state
f(t =0)=tp, is split into a superposition of two Floquet
states with equal amplitudes, ~c) ~

=~cz~ =
—,', and, ac-

cording to (2.9), each of them acquires a dynamical phase
which is determined by its quasienergy. Measuring the
occupation probability of (pz at t =t leads to an interfer-
ence of these two components, so that the excitation
probability is determined by the difference of the two
dynamical phases. Equation (2.15) then simply states
that maximal excitation, or inversion, corresponds to
constructive interference.

Of course, from a mathematical point of view, both ap-
proaches (2.5) and (2.9) are completely equivalent. The
Floquet approach, however, becomes particularly
efficient if, instead of an oscillating electric field
C(t) =Focos(tot) with constant amplitude, there is a pulse
( (t)=F(t)cos(cot), provided that the characteristic time

tF during which the smooth envelope F(t) changes is con-
siderably longer than the period T =2m /co of a single os-
cillation. In such a situation, the Hamiltonian no longer
depends periodically on time. But if the amplitude F(t)
is "frozen" at a particular value F, we can define instan-
taneous quasienergies c& 2 and instantaneous Floquet
states u, z(t}. The key point then is that the response to
pulses with slowly changing envelopes is adiabatic, i.e.,
the occupation probabilities of the instantaneous Floquet
states remain constant, and the dynamical phases are
given by the time-integrated instantaneous quasienergies
[12,13]. Therefore, if we consider a two-level system
driven exactly on resonance by a pulse with an envelope
F(t) which starts from F(0)=0, reaches a maximal am-
plitude F,„,and decreases back to F(t ) =0 after a total
pulse duration t, it follows immediately from (2.15} that
the condition for inversion becomes

AQ
cz= —'(E, +Ez )+ +2 2 1 2

(2.12}
dt(e '"—e '"}=m. (2.16)

As expected, the case of exact resonance 5=0 is very
simple. We then have

ui(t) exp( ie)t/A)— F(t) F(t) F(t) (2.17)

This expression can be rewritten to look more familiar.
For a two-level system, we have [see (2.12}]

exp( —iE, t /()t }=
~2 -p( —E,t/~) '"p""'/" ~

and therefore (2.16) takes the form

~f dtF(t)=n.
fi o

(2.18)

u z(t) exp( i czt/fi)—
—exp( —iE, t/()i')

exp( —iEzt/R) exp( —iQt/2), (2.13)

This is the well-known "area theorem" [8]: Inversion in
a two-level system is obtained if the area under the pulse
envelope, multiplied by the transition matrix element p,
and divided by Planck's constant, becomes equal to m. It
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is important that the precise form of the envelope is ir-
relevant; it is only its area that counts. But whereas
(2.17) and, as a consequence, (2.18} are valid only for a
two-level system under the additional assumption of the
rotating-wave approximation, the formulation (2.16) is
much more general. The main purpose of this paper is to
demonstrate that there are generalized m. pulses which
can induce a selective excitation of specific "target states"
in a multilevel system. Such pulses are characterized by
the condition (2.16), but not by (2.18). This result be-
comes particularly clear if one performs a Floquet expan-
sion analogous to (2.9), whereas an eigenstate expansion
like (2.5) only confuses the picture.

III. GENERALIZED m PULSES: AN EXAMPLE

1.0

~ W
~ w

0.5—
0

0.0 [
1.0

~ W
~ ~

=0

n=4

n = 5 g"'

Iljt

As an example for the selective excitation of molecular
vibrations by short pulses of infrared laser radiation, we
now consider the model of a forced Morse oscillator

2

H(t)= +D(1—e ~") +dx F(t) cos(cot),
2m

(3.1)

F(t)=F,„sin
tp

(3.2)

with parameters of an H—F bond [14]: m =1744.8,
D =0.2251, P= l. 174, and d =0.3099 (all data in atomic
units). Of course, this simple model is not intended to
give a full description of the real HF molecule, but to
demonstrate salient features of the generalized rr pulses.

We now specify the pulse shape

0.0
0 20 40 60 80 100

i/T
FIG. 1. (a) Occupation probabilities ~a„(t}~'of unperturbed

Morse eigenstates y„during a laser pulse with the envelope
(3.2), frequency ~=0.016489 a.u. , and maximal amplitude

F,„=0.0431 a.u. The pulse length t~ is 100 laser cycles, or
0.922 ps. (b) Occupation probabilities of the instantaneous Flo-
quet states for the same laser pulse as investigated in (a). Only
two Floquet states account for a11 the dynamics: the state uo
connected to the initial state n =0 (fu11 line), and u5 (dashed
line), which is connected to the target state n =5.

where t~ denotes the pulse length, and choose the fre-

quency %co=(Es —Eo)/5. This frequency corresponds to
a "five-photon transition" from the vibrational ground
state n =0 with energy Eo to the fifth excited state n =5
with energy E5. Finally, we choose a pulse length of 100
laser cycles, t =100X2m. /co, which amounts to 0.922 ps.
The Schrodinger equation

ifir},Q(r) =H(r)p(r) (3.3)

and the occupation probabilities
~ a„(t) ~

are displayed.
Two things are remarkable: The excitation mechanism
appears to be incompatible with "sequential ladder climb-

is then solved numerically. This model is strongly
motivated by several previous studies [15—17].

Figure 1(a) shows the response of the Morse oscillator
to such a pulse with peak amplitude F,„=0.0431 a.u.
Starting from the ground state, the probability appears to
spread, and vibrational eigenstates up to n =7 become
significantly populated during the pulse, but in the end al-

most all the probability Bows to the state n =5. As a re-
sult of our particular pulse, the selective excitation of this
state has been achieved.

Figure 1(a) can be regarded as the analog of (2.5) for
the two-level system. The wave function g(t) is expanded
in a basis of the vibrational states y„,i.e., in the basis of
the unperturbed eigenstates of the Morse oscillator,

(3.4}

2

H (t)= +D(1—e ~") +dx F cos(cot),
2m

Then the eigenvalue equation

[H (t)—iiriB, ]u„(t)=E„u„(t)

0 ~ F ~F,„.(3.5)

(3.6}

has to be solved for each fixed value of F, with periodic
boundary conditions in time. Finally, the wave function
g(t), i.e., the solution to the time-dependent Schrodinger
equation for the pulse F(t), is projected at each moment

F(to)
to onto the instantaneous Floquet states u„'(t). The
result of this tedious procedure is shown in Fig. 1(b).
The picture now is much simpler than the previous Fig.
1(a), although it describes the same situation. Only two
Floquet states are populated during the pulse; these two

ing" (the occupation probability for n =6, which is the
state aboUe the target state, peaks even before that of
n =4). In addition, the time evolution of the population
does not show any symmetry, although the envelope
function F (t) is symmetric.

In order to obtain the counterpart of (2.9), namely, an
expansion of the wave function g(t) for the Uery same
pulse in the basis of instantaneous Floquet states, one first
has to freeze the amplitude F (t) at constant values F and
to consider the resulting one-parameter family H (t) of
strictly periodic Hamiltonian operators,
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states are those which are connected to the initial state
n =0 and the target n =5. Thus, seen from the "comov-
ing frame of reference" provided by the instantaneous
Floquet states, the excitation process can be described in
terms of two-level dynamics. The symmetry of the occu-
pation probabilities of the two Floquet states clearly
reflects the symmetry of the pulse shape.

This dynamical behavior can be explained with the
help of the instantaneous quasienergy spectrum [18], i.e.
of the eigenvalues e„.It should be noted that because of
the continuous part of the energy spectrum of the unper-
turbed Morse oscillator the Floquet states turn into reso-
nances with finite lifetimes, and the quasienergies acquire
negative imaginary parts [19]. However, in our case
these imaginary parts are so small that they can be com-
pletely neglected in the following discussion, even though
the continuum is properly taken care of in the numerical
studies [17].

The quasienergy spectrum for the present example is
shown in Fig. 2. Quasienergies are defined modulo %co: if
e„is a quasienergy of the Floquet state labeled by n, and
if 1 is an arbitrary integer, then e„+I%cois a quasienergy
that characterizes the same physical state. The quasien-
ergies displayed in Fig. 2 are labeled such that (n, —l) de-
scribes an eigenvalue that connects to E„—liiiro for van-
ishing amplitude F, where E„is an unperturbed energy
eigenvalue. A quasienergy spectrum describes both the
"dressing" of the unperturbed quantum system by the
photons of the laser field (via its modulo fico structure)
and the ac Stark effect, i.e., the distortion of the original
level structure with increasing field amplitude.

The particular choice fico= (Es —Eo) l5 of the frequen-
cy ro leads to a degeneracy (modulo fico) of the quasiener-

(3.7}

which is exactly identical to the condition (2.16) for the
usual two-level m pulses.

However, in the present case the quasienergy difference
is not simply proportional to the field strength, so that
the "area theorem" in its conventional form (2.18) does
not hold. For generalized m pulses this area theorem has
to be replaced by (3.7).

In analogy to (2.6) for the excitation probability of a
two-level system, the excitation probability can now be
written as

P =sin dt(s '"—s '")
2' o

(3.8)

gies c; and cf of the initial state & =0, and that of the
final target state f =5 at low amplitudes F. But, as seen
in Fig. 2, this quasienergetic degeneracy is removed when
the field strength becomes larger. Thus under the
influence of the pulse F(t) the wave function is first shift-
ed adiabatically into the Floquet state u; (t) connected to
the initial state; then, as the degeneracy is lifted, it is split
into a superposition of the two Floquet states u; (t) and
uf(t). After that, these two components of the wave
function evolve adiabatically, and each of them acquires a
dynamical phase which is determined by its quasienergy,
exactly as in the case of the two-level system. At the end
of the pulse, when the field strength becomes so low that
the instantaneous quasienergies are almost degenerate
again, both components interfere. Selective excitation of
the target state corresponds to constructive interference.
Therefore, the condition for the relative quantum phase
reads [18]

I I I I I I I I I (3 -3)

a .8
(4, -4)

T+
0 .02 .04 .06 .08

(a.u. )

—(0,0)

FICx. 2. Quasienergies (modulo Rco) for the Morse oscillator
driven with frequency co =0.016489 a.u. and constant amplitude
F. A label (n, —l) on the right margin indicates that a quasien-
ergy is connected to E„—laic@ for F~0, where E„is the energy
of the unperturbed eigenstate y„.The dynamics of generalized
~ pulses for the transition n =O~n =5 is completely deter-
mined by the removal of the degeneracy of the quasienergies
(0,0) and (5, —5).

Figure 3 demonstrates how well this formula works: The
solid line denotes the theoretical excitation probability
(3.8), calculated as function of the maxiinal amplitude
F,

„

from the quasienergies shown in Fig. 2; little boxes
indicate excitation probabilities that have been obtained
from a numerical solution of the Schrodinger equation.

The perfect agreement between theory and "numerical
experiment" shows that the basic adiabatic assumption,
i.e., the separation of fast and slow time scales, can be
valid even for subpicosecond laser pulses. Since the con-
dition for the applicability of the adiabatic principle is
2ir jro« t~, it is clear that substantial deviations from
strict adiabaticity will eventually occur in very short
pulses. An example for such deviations is shown in Fig. 4
for a pulse with i =50X2n.pro=0. 461 ps, only half as
long as before. But even in this critical case, the qualita-
tive agreement is still good.

Although condition (3.7} does not refer directly to the
area under the pulse envelope, it leaves a similar freedom
as the usual area theorem. Again, the precise form of the
envelope function F(t} is irrelevant, as long as it is
smooth (so that the adiabatic approximation applies). All
that matters is the value of the integrated difference be-
tween the instantaneous quasienergies, and an infinity of
difFerent envelopes can result in selective excitation. This
freedom can be exploited in a systematic procedure to
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(4.2}

~ 9
The frequency of classical oscillations is given by

dHo cooI
Q(I) = =coo— (4.3)

~ 'M

~ M

.80
When such a nonlinear oscillator is driven by an external
periodic force with frequency co, resonances emerge [21].
The most important of these resonances occurs if the os-
cillation frequency is equal to the driving frequency, i.e.,
at the action I„,determined by

Q(I„,)=co . (4.4)

.036 .038 .04 .042 .044
Fniu. (& ~.)

FIG. 6. Another example of designed pulses with the en-

velope (3.9): If t& =70T and t2=15T are kept fixed, then (3.8)

predicts that the plateau field strength F,„=0.0405 a.u. is op-
timal (full line). Again, the prediction is confirmed by numeri-

cal calculations (boxes).

Ra)=(Ef E; )I(f— i), — (4.5)

leads on the classical level to the appearance of a 1:1 res-
onance precisely in the middle between I; and If.

Semiclassically, the action I„=Pi(n+—,') (starting from

n =0) corresponds to the nth quantum state, and
E„=Ho(I„)are the quantized energy eigenvalues. It fol-

lows that a frequency which, quantum mechanically, cou-
ples an initial state i with a final state f by (f —i) pho-
tons,

I,~ = ,' (If+I; ) . — (4.6}
These examples may suSce to demonstrate the Qexibil-

ity of the present approach. From the viewpoint of nu-
merical efflciency, it is important to stress that the
quasienergies are, of course, independent of the pulse
shape. Thus they have to be computed only once, and can
then be used to calculate the integral (3.7) for any smooth
envelope F(t).

IV. UNDERSTANDING
THE QUASIENERGY SPECTRUM:

THE RESONANCE CONDIT1ON

A classical Poincare surface for the situation considered
in Sec. III (i =O,f =5) is shown in Fig. 7 for a field
strength of F=0.03 a.u. For the unperturbed oscillator,
such a plot would merely show straight lines I =const
(which, topologically, are circles, since the angles 8=0
and 2~ have to be identified). But now the existence of
the 1:1 resonance leads to a significant reordering of the
phase-space structure close to the resonant action. It is
important to realize that the resonance-induced closed
contours seen in Fig. 7 do not result from a continuous
deformation of the unperturbed "circles" of constant ac-

The particular choice of frequency in our example,
fico=(E5 —Eo)/5 to populate the fifth excited state, is not
obvious. Although the approximate selection rule
b, n =+1, valid for the weakly anharmonic Morse oscilla-
tor, suggests that a "five-photon transition" could be the
most efficient mechanism to excite the state n =5, it is by
no means clear that this perturbative selection rule,
which does not incorporate the effect of the pulse shape,
has any meaning at all in the strong-field regime. In this
section we will use a semiclassical argument to show that
there is a nonperturbative effect which strongly favors the
previous frequency choice, and explain the characteristic
behavior of near-resonant instantaneous. quasienergies
(Fig. 2).

Expressed in action-angle variables (I,B},the classical
Hamiltonian function of the unperturbed Morse oscilla-
tor reads [20]

6

0
~ W

o 4

0
0 .2 .4 .6 .8

angle 8/2~

I I I I I I I I I I I I I I I

H (I}=cooI
4D

with

(4.1) FIG. 7. Poincare section for a classical Morse oscillator
driven with amplitude F=0.03 a.u. , and frequency
co=0.016489 a.u.
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tion. When the field strength F is increased, the unper-
turbed manifolds have to break up, and fragments from
above and below I„,have to combine to produce the new
invariant manifolds. In this way, the classical resonance
couples the action I, =I„,—AI with If=I„,+AI, and
there even exists a purely classical counterpart to transi-
tions between the corresponding quantum states [22].

For a quantitative analysis we start from the full classi-
cal Hamiltonian

H(I, r'I}=Ho(I)+dFx(I, s'I) cos(cut) (4.7)

with constant amplitude F, and perform the usual reso-
nance approximation [23]: x (I,r'I) is expanded in a
cosine series

cpu
—

cou cos(8)Qcuu —Q(I)
x (I,sI) =—ln

Q(I)

= g x„(I)cos(n8);
n=0

(4.8)

then only the resonant term proportional to x& is kept.
In addition, the unperturbed Hamiltonian is expanded
quadratically around I„,. In this way, we arrive at

H(I, s'I) =E«s+Q(I«s)bI+ +y cos(8 cot), —(&I)'
2M

genvalues for this system coincide (modulo fico) with the
quasienergies of the original problem. The ansatz

P(z, t}=y(u) exp( i—st /R)

with u =z/2 leads to the Mathieu equation [24]

(4. 12)

y(u)+[a —2q cos(2u)]y(u)=0,
dU

with the parameters

8M
(e —E„,)f2

and

4My 2MdFx i (I )

f2 g2

(4.13)

(4.14)

(4.15)

Now the boundary conditions have to be taken into ac-
count: 0 is an angle variable, so that P(sI, t) has to be 2n.
periodic in 8. Therefore, y(u} must be a ir-periodic
Mathieu function, which imposes restrictions on the pos-
sible values of a and, thus, determines the (quasi) energies
c. For each given value of q, the parameter a has to be-
long to one of the sets of characteristic values [24]
[au, a2, a4, . . . j or [bi, b4, b6, . . . j, which give rise to
even or odd m.-periodic solutions of the Mathieu equation.
If we define

with

(4.9)
a„(q), k =0,2, 4, . . .

bk+, (q), k =1,3, 5, . . . ,
(4.16)

AI =I —I„,,
res HO( res ) &

d H
M

dFxi(I„,)r=

In general, canonical transformations and quantization
are noncomrnuting operations. But if we ignore this
complication and naively quantize the conjugate pair
(EI,sI), we obtain the Schrodinger equation

A'Q(I«, }
i% P(i), t)= E—„,+

we can finally write the resonant quasienergies as

f2
e„(q)=E„,+ a„(q)modirtto . (4. 17)

E~ —AQ7 (4.18)

most closely (the prime indicates differentiation with
respect to the quantum number n }, and replace the mass
parameter M by A /E„" . The expansion coefficien

res

x
& (I„,) corresponds to the dipole matrix element

2(n„,~x~n„,+1), so that the Mathieu parameter q be-
comes

One can also formulate this result without taking
recourse to classical mechanics [25]. To this end, we first
determine the resonant quantum state n„„i.e., the state
which fulfills the condition

+y cos(8 tot) itr(sI—, t) . (4.10)

After a transformation 8 —cot =z the term linear in the
momentum vanishes because of the resonance condition
Q(I„,) =co, and we are left with

4dF(n„,~x~n„,+1)
E„"

and the quasienergies are

(4.19)

ih' —g(z, t}= E„,— 2 +y cos(z) P(z, t) .
a'

(4.1 1)

This is nothing but the Schrodinger equation for a parti-
cle with mass M which moves in a periodic cosine "lat-
tice." A little reflection shows that the allowed energy ei-

E„(q)=E„+'E„"a„(q)modirtru —.
res 8 res

(4.20)

In this approximation, the quasienergy spectrum is
characterized by only two parameters: E„",which con-

res

tains information about the unperturbed energy eigenval-
ues close to the resonant state, and q, which quantifies
how this state is coupled to its nearest neighbors.

The Morse oscillator is a particular example where
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.8—
are similar semiclassical quantization rules to calculate
the quasienergies and Floquet states for periodically
driven systems [27,28], but now the quantization pro-
cedure refers to the extended phase space [(p,x, t)]. In
our case, the semiclassical rule which selects the correct
"quantized" manifolds can be expressed as

1
p dx=fi k+ —,

'

2' y
(4.22)

I I I I I I I I I

.8 (o)

(2)

= (4)

—(5)

0 .02 .04 .06
F (a.u. )

FIG. 8. (a) Quasienergies of resonant states for co=0.016 884
a.u. Quantum numbers on the right have the same meaning as
in Fig. 2. (b) Approximate quasienergies according to the
Mathieu approximation (4.20). Numbers on the right are the
quantum numbers k defined in (4.16).

tt} p dx =A(n+ —,'),1

277
(4.21}

where the closed quantization path g lies on a manifold of
constant energy. In action-angle variables, g would be a
straight line I =const stretching from 8=0 to 2m. There

these semiclassical techniques work well even for low
quantum numbers. The unperturbed Hamiltonian de-
pends only quadratically on the action, so that the quad-
ratic expansion around I„,introduces no error. If the
difference in quantum number between the initial state i
and the final state f is even, the relation (4.18) can be
satisfied exactly. For example, for i =0 and f =4 we
have n„,=2. Figure 8(a) shows the numerically comput-
ed, exact quasienergies for this case, whereas Fig. 8(b)
shows the evaluation of (4.20). To obtain this figure, the
Morse matrix element ( 2 Ix I 3 ) has been approximated by
the corresponding matrix element of a harmonic oscilla-
tor with the same mass m and characteristic frequency coo

as the hydrogen fluoride oscillator.
The good agreement between numerical values and the

analytical approximation is not the main point. In fact, it
is usually much faster simply to compute the quasiener-
gies than to search the required characteristic values in
suitable tables [26]. More important is the understanding
of principal features of quantum dynamics in strong laser
fields. In this respect, the interpretation of the quantum
number k introduced in (4.16) is instructive. As already
pointed out above, the original quantum numbers n for
the unperturbed Morse oscillator correspond to discre-
tized values of the classical action,

The path y has to lie in a plane of constant time t, and on
an invariant manifold which exists in the presence of the
driving force, i.e., on one of those contours seen in the
Poincare plot (Fig. 7). Because the resonance leads to
new manifolds that are not merely deformations of the
unperturbed energy manifolds, there are possibilities for
the choice of y which do not exist in the unperturbed sys-
tem. Hence, the quantum number k in (4.22) can be un-
related to n in (4.21). In Fig. 7, k =0 refers to the circle
with area 2M( —,'), then k =1 to that with area 2m'( —', ),
and so forth [29].

The semiclassical quantum number k that appears in
(4.22) is the same number that has been introduced in
(4.16}. For example, the "ground state" k =0, corre-
sponding to the innermost quantized circle in Fig. 7, is
associated with the characteristic value ao, which yields
an even Mathieu function with one lobe. In a quasiener-

gy spectrum, this ground state is the highest member of a
resonant "fan;" the excited states with higher values of k
lie successively below the ground state [see Fig. 8(b)).
This inversion is explained by the fact that the effective
mass M of the Mathieu excitations is negative, since the
unperturbed energy spacing decreases with increasing en-
ergy.

Thus our example of a m. pulse which led to a transition
from n =0 to 5 involves Mathieu excitations with k =4
and 5. More generally, a transition between n-states i
and f requires neighboring Mathieu states k =f i and-
k =f i —1. —This has an important consequence. In or-
der to mediate such a quantum transition, the resonance
in the corresponding classical phase space has to be large
enough to allow the semiclassical construction of a state
with k =f i, i.e.,—the area covered by the resonance
should be at least 2M(f i + —,

' ).—Thus the magnitude of
the classical resonance determines the magnitude of the
possible "quantum jump" f i This fa—ct fi. nally explains
the distinguished role of the resonance with the frequency
ratio Q(I„,):co=1:1. There are other resonances for
di6'erent rational frequency ratios, but their areas are,
generally, (much) smaller at equal values of the field
strength F [21]. Or, expressed differently, if it is possible
at all to construct a generalized m pulse with a frequency
that does not correspond to the 1:1 resonance, such a
pulse might require unrealistically strong fields.

To finish this section, let us sum up. The instantaneous
quasienergies, which determine the quantum phases of in-
terfering Floquet states in a strong resonant laser pulse,
can be understood by a semiclassical quantization of clas-
sical resonant phase-space structures, and are well ap-
proximated in terms of characteristic values of the
Mathieu equation. For weakly anharmonic systems, like
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the Morse oscillator, the classical 1:1 resonance is usually
the largest, which implies that a frequency which couples
initial and final quantum states i and f by f —i photons is
the best choice for a generalized m pulse.

V. COMPOSITION OF m PULSES
AND FURTHER EXTENSIONS

If the distance (in quantum number) between initial
and target states is too large, there is no m pulse for selec-
tive excitation, but careful numerical simulations [30—32]
have shown that there is a simple possibility to bypass
this problem. If a transition from, say, n =0 to 10 cannot
be achieved in a single step, it may still be possible to use
two laser pulses, a first one to induce the transition from
n =0 to a suitable intermediate state, e.g. , n =5, and then
a second one to populate the target state [31]. In our
language, both pulses must be m pulses, each of them
tailored to one of the transitions.

It is remarkable that ~ pulses can be contracted. Al-
though the excitation process is clearly divided into
separate steps, a second pulse can start before the first
one is over [30—32]. An example for this is given in Fig.
9, where we have used the model of the Morse oscillator
with HF parameters again to study the excitation of the
state n =9. First, the m pulse from Sec. III is used to
populate n =5, then a second m. pulse with frequency
co&=(E9 E, )/4 an—d envelope (3.2) excites the target.
(Parameters for the second pulse are amplitude

F,„&=0.0142 a.u. , and pulse length t 2=100X2~jco2,

0.04 —

(a)

o.op~'

—0.04-

(b)

2.0—
I

1.0—

corresponding to 1.175 ps. ) The overlap of both pulses is
0.4 ps, i.e., the second pulse starts 0.4 ps before the first
one finishes [Fig. 9(a)]. The differences E~

—
eo and E9

—
e~

for the individual pulses are displayed in Fig. 9(b). The
area under both curves is exactly equal to A m, which
manifests that both pulses really are m pulses. Figure 9(c)
shows the populations of the Floquet states involved in

the dynamics. The pattern for the first and second pulse
is the same. Thus, although both pulses overlap
significantly, they still act independently.

In a first approximation, this phenomenon can again be
explained in terms of the instantaneous quasienergy spec-
tra for the two independent pulses. The quasienergetic
degeneracy for the second pulse is removed only in the
fourth order of the instantaneous field strength F, that for
the first pulse even only in the fifth order. Hence, as long
as the field strengths are small, the relevant quasienergy
differences are almost equal to zero; the interfering Flo-
quet states collect their relative phases only in the
strong-field regime. In a manner of speaking, the low-

field regime is irrelevant. As long as the rising amplitude
of the second pulse remains so weak during the overlap
period that it does not influence the low-field degeneracy
of the fading first one, both pulses are dynamically in-

dependent, regardless of whether or not they are partially
superimposed.

In Fig. 10 we show the excitation probability of the
target n =9 as a function of the pulse overlap. Up to an
overlap of 0.42 ps the partial superposition has no effect,
and a practically complete excitation of the target
remains possible.

A thorough theoretical analysis of this example, how-
ever, requires a more elaborate approach. Quasienergies
can also be introduced if a quantum system interacts
simultaneously with two laser fields. Let Ho be the Harn-
iltonian of the unperturbed system, and p, its dipole func-
tion. We follow the strategy of Sec. III and first "freeze"
the two envelope functions F&(t) and F2(t) at some in-

stantaneous values F~ and F2. The total Hamiltonian is

then given by (we do not explicitly indicate spatial depen-
dencies)

H(t)=Ho F&IJ, cos(co&t) —FzIJ, cos(co2—t+5) . (5.1)

1.0
(c)

n
0.5!

P

0.0
0.0

I

0.5
I

1.0
J

1.5

0.5—

(ps)

FIG. 9. (a) Overall electric field @(t) for a laser pulse com-
posed from two n pulses for the transitions 0~5 and 5~9; the
overlap is 0.4 ps. (b) Di6'erences of the instantaneous quasiener-
gies for the individual pulses. The area under each of the two
curves is equal to A-m. (c) Occupation probabilities of the Flo-
quet states involved in the excitation dynamics.

0.0~
0.0 0.2 0.4

Overlap (p~)

FIG. 10. Resulting excitation probability of the target state
n =9 after compositions of two ~ pulses, as function of their
overlap.
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For simplicity we assume that the two frequencies m, and

co2 are not rationally related; 5 is a relative phase. If we

now introduce two independent time variables t, and t2,
we can employ the Floquet theorem to deduce that the
equation

(5.2)

with

H(t y, t2 ). Hp —F)iL cos(co)t] ) Fpp cos(c02tp+ 5)

(5.3)

has solutions of the form

f(t„tz)=u (t„t2)exp( i c,t,—/fi} .exp( —is2tz/A),

(5.4)

where the functions u(t„t2)are periodic in both t, and

t2

u(t, , t2)=u(t, +T„t2}=u(t„t~+T~), (5.5)

with T =2m. /coj, j=l and 2. The importance of this
statement rests in the fact that the restrictions

(5.6)

solve the "original" Schrodinger equation

(5.7)

It follows that we can formulate the eigenvalue problem

[H(t) —iA'B, ]u (t}=su (t) (5.8}

with s=e, +ez [see (5.4)] and quasiperiodic boundary
conditions, i.e., the eigenfunctions u (t) have to be restric-
tions of doubly periodic functions to the diagonal,
u(t)=u(t, t). These eigenvalues s and functions u(t) are
the instantaneous quasienergies and Floquet states for the
two-frequency problem.

As usual, there is an adiabatic principle associated with
this eigenvalue equation. If either amplitude F, and F2,
or both, varies slowly compared to T& and T2, a system
initially in a Floquet state will remain in the connected
state and acquire a phase which is equal to the time-
integrated instantaneous quasienergies. Thus it is
straightforward to extend the method of "adiabatic gui-
dance" to the case of two (or even more} laser fields.
First the quasienergy surfaces e(F„Fz)have to be com-
puted, then optimal envelopes F,(t),Fz(t) can be deter-
mined. In particular, it is in general not necessary to
separate the two pulses, as in the previous example of
composed m. pulses. On the contrary, the simultaneous
action of two strong laser fields can open up further pos-
sibilities for a controlled quantum-mechanical population
transfer, which need to be studied in detail.

VI. DISCUSSION

The concept of m pulses, well known from two-level
systems interacting with pulses of monochromatic radia-
tion, can be extended to multilevel systems. The general-
ized vr pulses provide instructive examples how strong
laser fields can be used to manipulate quantum dynamics
in a controlled manner. Although the two-state nature of
the underlying excitation mechanism is not immediately
obvious, it becomes clear after a transformation to a basis
of instantaneous Floquet states. The generalized area
theorem (3.7) does not refer to the "area under the pulse
shape, " but to a time-integrated difference of instantane-
ous quasienergies. Nevertheless, the spirit of the deriva-
tion of this result is the same as in the well-studied ease of
a two-level system. Moreover, there are the same possibil-
ities for systematic pulse shaping. The semiclassical
analysis of the resonance condition leads to approxima-
tion (4.20) for the quasienergies. This is a general result
which holds not only for the Morse oscillator, but for ar-
bitrary nonlinear, periodically forced systems. Corre-
spondingly, the mechanism of generalized m pulses is
universal, rather than system specific. It is important to
realize the nonperturbative character of this mechanism.
The external laser field is so strong that it does not mere-
ly shift the energy levels of the unperturbed system, but it
alters the level structure to such an extent that new quan-
tum numbers have to be introduced.

Our idealized discussion did not take into account
several experimental problems. For example, in a labora-
tory experiment not a11 molecules will be exposed to the
same laser field, either because of their random orienta-
tion or because of the spatial inhomogeneity of the inten-
sity in a focused beam. Thus some molecules might ex-
perience fields which satisfy the condition for construc-
tive interference, others might interfere destructively.
But even then, each molecule would either remain in its
initial state, or undergo a transition to the target state,
but the population would not spread over other levels.

If a transition between distant states cannot be induced
by a single ~ pulse, the process can be divided into small-
er steps [30]. The m pulses for individual transitions can
then be combined without any need for a phase relation
between them, and they can partially be contracted
without losing their individual effects. But the governing
principle behind the generalized ~ pulses, namely adia-
batic response of Floquet states, remains valid even when
two (or more) strong laser pulses act simultaneously. It
remains to be seen whether this fact can lead to even
more eKcient excitation schemes.

The numerical results of the present work are less im-
portant than the way in which they are interpreted. The
Morse system is certainly too simple to describe the dy-
namics of real molecules in strong laser fields, but the
strategy of dividing the problem into static (the computa-
tion of the instantaneous quasienergy "surfaces") and dy-
namic (the quantum evolution on these surfaces) parts is
general. It would certainly be illuminating to discuss the
dynamics of more realistic model systems with several de-
grees of freedom, including vibrational-rotational cou-
pling, from this point of view.
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