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Phase dependence in two-color excitation of a model atom by intense fields
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We solve numerically the one-dimensional Schrodinger equation with a model potential for the case of
excitation by two commensurate (the fundamental and third harmonic) intense laser fields and find a
strong dependence of the atomic evolution and high-harmonic generation on the relative phase between
the two fields. Our method employs the Kramers-Henneberger frame to exploit the insights gained from
emphasizing the wave-packet dynamics of an electron oscillating under the influence of the strong laser
fields.

PACS number(s): 32.80.Wr

The excitation of an atom by a very strong laser field
continues to attract attention from experimentalists and
theorists [1,2]. The application of a single laser frequency
has led to the discovery of above-threshold ionization [3]
(ATI), high-harmonic generation [4], and the ejection of
electrons by very strong fields in a tunneling process [5].
Recently, attention has been focused on the issue of sta-
bilization [1,2,6] and suppression of ionization in strong
fields. Theoretical concepts such as the production of
dressed wave packets [7], the use of the Kramers-
Henneberger frame [8] to describe strongly perturbed
atomic electrons, the adoption of Floquet methods [9],
and the use of computationally intensive numerical
methods [10] have all contributed to our understanding
of strong-field atomic physics. Often, one-dimensional
models [11,12] have proved useful in developing theoreti-
cal insights which retain their utility in fully three-
dimensional (and therefore more complicated) models
[13].

When an atom is excited by two distinct frequencies,

phenomena related to the phase-dependent modification
of the electronic motion are produced [14]. Early work
on two-color excitation of atoms by the fundamental and
second harmonic of a laser field demonstrated how ATI
and ionization yields can be significantly changed by
phase-dependent interactions [15,16], suggesting that a
form of "coherent control" [17] over the multiphoton dy-
namics is possible. In the present paper, we extend these
considerations of two-color excitation to the intense-field
stabilization regime in which the ponderomotive quiver
motion dominates the dynamics. We address the prob-
lem of two-color excitation by a fundamental and its third
harmonic: For such a choice of frequencies, there is
direct competition between the two fields to access near-
resonant states [18,19] so that phase dependence is ex-
pected to be significant even at modest intensities. At
higher intensities the tunneling followed by a quiver pic-
ture of ionization and high-harmonic generation [20—22]
can be modified in a phase-dependent way by such a corn-
bination of frequencies. These interfere to enhance or di-
minish that part of the quiver close to the nucleus, as we
shall show.

The nonperturbative results we present here have been

where the effect of the laser electric field is contained in

a(t)= (elm—)f A (r)dr,

which is the classical displacement of the electron in the
electric field. The "Rochester potential, " in atomic units
[11],

V(x) =— 1

+1+x (2)

is used as it is continuous across the origin and behaves
asymptotically like the Coulomb potential. It produces a
Rydberg-like series of high-lying bound states, and re-
tains parity as a good quantum number [11].

The electric field is taken to be classical and of the
form

E(t)= [E, sin(tot)+E3 sin(3tot +P)]f(t), (3)

where E, and E3 are the fundamental and third-
harmonic field amplitudes, co is the fundamental frequen-
cy, and P the relative phase between them. The function
f (t) is an envelope function which is chosen to be either
a sine-squared pulse: f (t)= sin (m.tie), where r is the
pulse length, or a sine-squared ramped turn-on:
f (t)= sin (~t/2r) for t (r and f (t)=l for t &r, where
~ is the length of the turn-on. Because we consider two
fields, one of them is chosen to parametrize the length of
the pulse: For example, a11 the sine-squared pulses used
in this work are 50fundamenta/ periods long.

Once /AH is obtained, it is used to calculate three main
quantities: the displacement of the electron wave packet
x(t), the probability of ionization (which is defined as

obtained by solving numerically the one-dimensional
Schrodinger equation using a finite-difference approach
[10] which exploits the intensity-dependent deformation
of the atomic potential. The Schrodinger equation is
transformed into the Kramers-Henneberger (KH) frame
[8] which oscillates with the laser frequency; it is given byae„„&a'
iA (x, t) = —

2 (x, t)+ V(x+a(t))QKH(x, t),t 2m
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spectra of the harmonics is calculated. Following this
procedure, using the "Rochester" potential of Eq. (2)
yields the expression

x +a(t)
KH I)~t ~ ( )I2jly2 KH)

for the acceleration in the laboratory frame. Therefore,
the function x/(1+x ) sweeps through ~f~H~ and
acts as a measure of the rate of change in

~ gttH ~
. So, if

has many spatial components, there will be pro-
nounced high-frequency components in the power spec-
trum. Our results agree well with this idea; because of
the relatively short turn-on of the pulses used in the har-
monic analysis, the wave packet is not as clean as those
presented earlier in Fig. 1, but the same behavior is ob-
served: The wave packet for /=0 has more structure
than for the P=n case and so one would expect an ex-
tended harmonic spectrum, as is observed. We can say
that these high harmonics are mainly due to the
differences in ~|i~H~ since a(t) for both cases is very simi-

lar, as reflected in Fig. 7(a); however, because being near
the nucleus is important for harmonic generation, the
phase which makes x (t) closest to the nucleus for longer
will produce more harmonics. This can also be seen from
Fig. 7(a) where x (t) for /=0 is closer to x =0 for longer
than x(t) for P=n. . The effect of changing a(t) on the
harmonic spectra, together with an extended analysis of
the above results, will be published elsewhere.

We have shown that, by using two commensurate in-
tense fields, we are able to control the shape of the stabi-
lized wave packet and its ponderomotive motion. Using
this control, we are able to change the atomic response,
such as the degree of stabilization and the harmonic spec-
tra emitted.
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