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We solve numerically the one-dimensional Schrddinger equation with a model potential for the case of
excitation by two commensurate (the fundamental and third harmonic) intense laser fields and find a
strong dependence of the atomic evolution and high-harmonic generation on the relative phase between
the two fields. Our method employs the Kramers-Henneberger frame to exploit the insights gained from
emphasizing the wave-packet dynamics of an electron oscillating under the influence of the strong laser

fields.

PACS number(s): 32.80.Wr

The excitation of an atom by a very strong laser field
continues to attract attention from experimentalists and
theorists [1,2]. The application of a single laser frequency
has led to the discovery of above-threshold ionization [3]
(ATI), high-harmonic generation [4], and the ejection of
electrons by very strong fields in a tunneling process [5].
Recently, attention has been focused on the issue of sta-
bilization [1,2,6] and suppression of ionization in strong
fields. Theoretical concepts such as the production of
dressed wave packets [7], the use of the Kramers-
Henneberger frame [8] to describe strongly perturbed
atomic electrons, the adoption of Floquet methods [9],
and the use of computationally intensive numerical
methods [10] have all contributed to our understanding
of strong-field atomic physics. Often, one-dimensional
models {11,12] have proved useful in developing theoreti-
cal insights which retain their utility in fully three-
dimensional (and therefore more complicated) models
[13].

When an atom is excited by two distinct frequencies,
phenomena related to the phase-dependent modification
of the electronic motion are produced [14]. Early work
on two-color excitation of atoms by the fundamental and
second harmonic of a laser field demonstrated how ATI
and ionization yields can be significantly changed by
phase-dependent interactions [15,16], suggesting that a
form of “coherent control” [17] over the multiphoton dy-
namics is possible. In the present paper, we extend these
considerations of two-color excitation to the intense-field
stabilization regime in which the ponderomotive quiver
motion dominates the dynamics. We address the prob-
lem of two-color excitation by a fundamental and its third
harmonic: For such a choice of frequencies, there is
direct competition between the two fields to access near-
resonant states [18,19] so that phase dependence is ex-
pected to be significant even at modest intensities. At
higher intensities the tunneling followed by a quiver pic-
ture of ionization and high-harmonic generation [20-22]
can be modified in a phase-dependent way by such a com-
bination of frequencies. These interfere to enhance or di-
minish that part of the quiver close to the nucleus, as we
shall show.

The nonperturbative results we present here have been
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obtained by solving numerically the one-dimensional
Schrodinger equation using a finite-difference approach
[10] which exploits the intensity-dependent deformation
of the atomic potential. The Schrodinger equation is
transformed into the Kramers-Henneberger (KH) frame
[8] which oscillates with the laser frequency; it is given by
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where the effect of the laser electric field is contained in

aly=—(e/m) [* A(r)dr,

which is the classical displacement of the electron in the
electric field. The “Rochester potential,” in atomic units

(11],

Vix)=— !

V1+x?

is used as it is continuous across the origin and behaves
asymptotically like the Coulomb potential. It produces a
Rydberg-like series of high-lying bound states, and re-
tains parity as a good quantum number [11].

The electric field is taken to be classical and of the
form

E()=[E, sin(ot)+E, sin(30t +¢)1£ (1) , 3)

)

where E; and E; are the fundamental and third-
harmonic field amplitudes, o is the fundamental frequen-
cy, and ¢ the relative phase between them. The function
f(t) is an envelope function which is chosen to be either
a sine-squared pulse: f(t)= sin*(wt/7), where T is the
pulse length, or a sine-squared ramped turn-on:
f ()= sin*(mt /27) for t <7 and f(¢)=1 for ¢t >, where
T is the length of the turn-on. Because we consider two
fields, one of them is chosen to parametrize the length of
the pulse: For example, all the sine-squared pulses used
in this work are 50 fundamental periods long.

Once 1Py is obtained, it is used to calculate three main
quantities: the displacement of the electron wave packet
x (t), the probability of ionization (which is defined as

1945 ©1994 The American Physical Society



1946 M. PROTOPAPAS, P. L. KNIGHT, AND K. BURNETT 49

unity minus the bound-state populations), and the ac-
celeration of the electron wave packet, from which the
harmonic spectra can be calculated [25].

The results of the numerical integration and their in-
terpretation depend sensitively on the form of the KH
wave function, and it is informative to see how these
evolve under the influence of the pulse. Let us first exam-
ine the case of a smooth sine-squared pulse. In Fig. 1,
where we have equal intensities of fundamental and third
harmonic, we can clearly see that during the turn-on part
of the pulse the initial ground-state wave packet is quick-
ly ionized, producing outward-going ripples of ionization.
However, once this is over, the wave function quickly sta-
bilizes (by stabilization, we mean there is no further
significant ionization) [11,12]. In Fig. 1(a), where the rel-
ative phase ¢ is equal to zero, we observe a dichotomous
wave packet being formed and destroyed in a way which
follows the envelope function of the pulse. The peak sep-
aration is a maximum at the peak of the pulse. Although
not shown, if §=m/2, we obtain a similar evolution; the
initial wave packet bifurcates and then reforms; the bifur-
cation, however, is not as clearly developed as the =0
case, as more of the wave-packet density lies between the
two peaks, which as a consequence are smaller in magni-
tude. Figure 1(b) shows the evolution for ¢ =7. There is
a drastic difference in wave-packet shape; the dichotomy

J

—1

has now disappeared.

The difference in stabilized wave-packet shape can easi-
ly be explained by a simple extension of the one-color sta-
bilization theory [1]. In this case once the frequency and
intensity conditions for stabilization are satisfied:

and

ado>>1, (5

where Eyy is the Kramers-Henneberger frame binding
energy of the potential, ® the angular frequency, and «,
the amplitude of oscillation of a free electron in the field
in steady state, then the time-dependent KH frame poten-
tial V[x +a(t)] is dominated by its time average
Volag,x). This time-averaged dress potential is given by

_1 p1n2
Volagx)= Tf_mV[x +a(t))dt (6)

where T is the period. For a bichromatic field we have a
degree of ambiguity about how to obtain a time-averaged
potential. We investigate Vy(a,,a;,¢,x) which is ob-
tained from an average over the longest period; therefore,
in our case we take

Vola,as,é,x)=

dt . (7)

Here, a;, and a; are the amplitudes for the fundamental
and third harmonic in steady state, respectively; T is the
period of the fundamental; and ¢ is the relative phase be-
tween them. The result of this is shown in Fig. 2, in
which it is easily seen that for ¢=0 and ¢=m/2,
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Volay,as,é,x) is a double-well structure and would there-
fore be likely to support a dichotomous wave packet.
However, for ¢ =, Vy(a,,as,¢,x) is fairly flat with small
modulations, which we would expect to see support a
single-peaked wave packet, as is observed in the numeri-
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FIG. 1. This shows the spatial and temporal evolution of an atomic wave packet formed under strong-field excitation. We plot
|¥ku(x,2)|? in arbitrary units over a range of 400 atomic units for (w,3w) two-color excitation by a 50-cycle, sine-squared pulse with
equal intensities (E; = E;=18.49 in atomic units) of fundamental frequency (w=1 a.u.) and third-harmonic frequency for the relative
phases (a) $=0 and (b) ==. Each profile is separated from its predecessor by a time step of - of the full pulse duration of 50

cycles.
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FIG. 2. The time-averaged two-color Kramers-Henneberger
potentials as a function of x (in atomic units) for three choices
of relative phase with the same field parameters as in Fig. 1.

cal calculations using the full time-dependent dynamics.

By changing the phase, we are therefore able to alter
drastically the shape of the stabilized wave packet and by
doing so also change the stabilization characteristics. If
we plot the probability of ionization [P(t)] for the pa-
rameters of Fig. 2, the results shown in Fig. 3 are ob-
tained. Because ¢, is greater than a; by a factor of 9, we
expect the fundamental field to affect the dynamics of the
wave packet most and this is verified by the fact that the
number of oscillations in P (?) is about twice the number
of cycles in the pulse, as expected from a stabilization cal-
culation using the fundamental alone. In other words,
the electron quiver motion is dominated by the funda-
mental field. However, the degree of stabilization during
and at the end of the pulse depends on the relative phase
¢. By changing the phase, we find that the maximal
amount of stabilization (basically the lower extrema of
the oscillations) is greatest for ¢ =.

As mentioned previously, the main governing parame-
ter in the intense regime is a; therefore, the natural next
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FIG. 3. The probability of ionization as a function of time (in
atomic units) for three choices of relative phase (a) ¢=0, (b)
¢=m/2, and (c) =1 with the same field parameters as in Fig.
1.
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FIG. 4. Kramers-Henneberger frame wave packets taken
from the peak of a 50-cycle, sine-squared pulse for the case of
identical ponderomotive swing amplitudes a;=a;=6.16
(E,=6.16, E;=55.44 a.u., and fundamental frequency o=1
a.u.) for three choices of relative phase.

step is to arrange E|,E; such that a;=a;. In this case
we find that all three phases produce single-peaked
wave-packet evolutions. However, the magnitude of this
peak varies with phase; it is a minimum for =0 and a
maximum for ¢ =7 (Fig. 4), the $=0 wave packet being
consequently wider than the ¢=m wave packet. One
would expect the greatest stabilization for =1 and this
is confirmed in the probability of ionization plots of Fig.
5 where we can see that P(¢) during, and at the end of,
the pulse is smallest for ¢ = than for the other choices
of ¢.

Taking a closer look at the probability of ionization for
the two cases, equal intensities (case 1) and equal a’s (case
2) reveal interesting features. In Fig. 6(a) we have plotted
P(t) for case 1 over a small section in its time evolution.
It is clear that the position of the oscillations in time
change with choice of relative phase of the excitation

Time

FIG. 5. The probability of ionization as a function of time
for the field parameters of Fig. 4 with (a) $=0, (b) $=m/2, and
(c) p=mr.
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FIG. 6. (a) This is a magnification of a section of Fig. 3 with
the three phases shown simultaneously. (b) This is a
magnification of the probability of ionization for ¢=0, case 1
(equal intensities) for the parameters of Fig. 1 and case 2 (equal
a’s) for those of Fig. 4.

fields. In Fig. 6(b) we have plotted P(¢) for both case 1
and case 2, with =0, over the same period of time; we
can see that the wide single oscillation in case 1 (where
a7 a;) corresponds to three distinct oscillations in case
2. Both of these features can be explained by looking at
the laboratory frame displacement x (¢). At each turning
point in x (¢), the electron has zero kinetic energy, and
from the conservation of energy its total energy will be
negative. This means that the electron is quasibound and
harder to ionize, and so a minimum in P (¢) is observed.
Therefore, if it is possible to change the position in time
and number of turning points in x (¢), one should be able
to alter the position in time and number of oscillations in
P(t). This is possible by varying ¢ and a;. Figure 7
demonstrates this: In Fig. 7(a) the expectation value of
displacement x(t) is plotted for case 1 and all three
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FIG. 7. (a) Displacement as a function of time (in a.u.) for the
field parameters of Fig. 1, (b) displacement and the probability
of ionization as a function of time for the field parameters of
Fig. 1 with ¢=0, and (c) the same as (b) but for the field param-
eters of Fig. 4 with ¢ =.

M. PROTOPAPAS, P. L. KNIGHT, AND K. BURNETT 49

phases. It is easily seen that the shift observed in Fig.
6(a) is due to the shift in the turning points of x (¢). To
clarify this further, Fig. 7(b) shows x (¢) and P (t) for case
1 with =0, simultaneously. It is also worth noting that
the large width of the oscillations for =0 comes from
the long period of time that the electron velocity is close
to zero. Figure 7(c) shows a similar plot but for case 2
and ¢ =, from which it is clear that by changing a3, one
can change the number of turning points in x(¢) and
therefore the number of oscillations in P (?).

We have shown that by changing ¢, it is possible to
change the stabilization characteristics of the atom. As
we shall now show, this phase dependence of the quiver-
ing electron also has an effect on the harmonic spectra
produced. At this point, we change our excitation to that
of a smoothly turned on pulse which is then held constant
after 5.25 periods of the fundamental, so that we can
study the steady-state behavior. In Fig. 8 we show the
power spectra for ¢=0 and ¢ =1 in the case of equal in-
tensities. A common feature of both spectra is that both
odd and even harmonics are present. This happens when
atoms are driven by the fundamental and the second har-
monic and is explained by the emission of n fundamental
photons plus or minus m harmonic photons [23]. Here,
however, such a simple explanation does not suffice given
normal dipole selection rules, and the origin of the even
harmonics derives from the breaking of left-right symme-
try by the ionization in the initial stages of the short-
pulse excitation. It has also been shown theoretically
that intense laser stabilized states will radiate both odd
and even harmonics [24]. However, by changing the
phase from O to 7, we see a large change in spectral
shape; the cutoff where the highest harmonics diminish
into the background has moved to approximately half its
value for $=0. This phenomenon can be explained by
looking at the way the harmonic spectra are computed.
They are calculated by the method developed by Burnett
et al. [25] in which Ehrenfest’s theorem is used to find
the dipole acceleration and it is from this that the power
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FIG. 8. The harmonic power spectra calculated from the last
8 cycles of a 50-cycle, 5.25-cycle, sine-squared ramped turn-on
pulse with the field parameters of Fig. 1 (Q being the fundamen-
tal frequency) for the relative phases (a) $=0 and (b) ¢ =1.
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spectra of the harmonics is calculated. Following this
procedure, using the “Rochester” potential of Eq. (2)
yields the expression

x +alt)
{1+[x +a(2)]?}32

‘.i(t)=<¢KH

) ®)

for the acceleration in the laboratory frame. Therefore,
the function x /(1+x2)*/? sweeps through |yl and
acts as a measure of the rate of change in |ggyl|% So, if
|¥xgl? has many spatial components, there will be pro-
nounced high-frequency components in the power spec-
trum. Our results agree well with this idea; because of
the relatively short turn-on of the pulses used in the har-
monic analysis, the wave packet is not as clean as those
presented earlier in Fig. 1, but the same behavior is ob-
served: The wave packet for ¢=0 has more structure
than for the ¢=m case and so one would expect an ex-
tended harmonic spectrum, as is observed. We can say
that these high harmonics are mainly due to the
differences in |y |2 since a(¢) for both cases is very simi-

lar, as reflected in Fig. 7(a); however, because being near
the nucleus is important for harmonic generation, the
phase which makes x (¢) closest to the nucleus for longer
will produce more harmonics. This can also be seen from
Fig. 7(a) where x (¢) for ¢=0 is closer to x =0 for longer
than x (¢) for §=m. The effect of changing a(z) on the
harmonic spectra, together with an extended analysis of
the above results, will be published elsewhere.

We have shown that, by using two commensurate in-
tense fields, we are able to control the shape of the stabi-
lized wave packet and its ponderomotive motion. Using
this control, we are able to change the atomic response,
such as the degree of stabilization and the harmonic spec-
tra emitted.
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FIG. 5. The probability of ionization as a function of time
for the field parameters of Fig. 4 with (a) $=0, (b) ¢=m/2, and
(c) p=mr.



