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The mixing of Rydberg manifolds, induced by a ramped electric field F(t)=Ft, is modeled by interac-
tions among two intersecting groups of parallel energy levels. The levels form a grid, each node of which
is treated as an isolated two-level Landau-Zener anticrossing, characterized by probabilities
D =exp(—27y) and A4 =1— D for diabatic and adiabatic transitions, respectively. The model assumes a
core with one nonvanishing quantum defect u, and with extremal Stark-level slopes, so that
y=1pol?/3Fn'° for all anticrossings, where the manifolds have principal quantum numbers n and n + 1.
Interference effects are ignored, which allows analytical treatment of the system’s evolution using path
statistics or recursion relations. An initially populated edge state leads to a single-humped distribution
of level populations. Analytical expressions are found for the probability distribution as a function of
time, as well as its average and standard deviation. Limiting forms of the distribution at large times and
in the diabatic (D—1) and adiabatic (D —0) limits are also given. These features are contrasted with
those of a random walk. The relevance of the model to selective-field ionization is discussed.

PACS number(s): 32.80.Bx, 32.60.+1i, 32.90.+a

I. INTRODUCTION

Atomic Rydberg levels split in the presence of elec-
tromagnetic fields and undergo shifts whose magnitudes
generally increase with field amplitude. Familiar exam-
ples include the Stark and diamagnetic Zeeman spectra in
static fields F and B and quasienergy spectra in mono-
chromatic ac fields [1]. It is common for entire manifolds
of levels to suffer such large shifts that, when atom-field
interactions exceed Rydberg-level spacings, manifolds
overlap (see Fig. 1). The coupling of states by the atomic
core plus the dynamical coupling induced by variations
of the fields in time may lead to complex behavior in the
time evolution of the system. The interaction of two or
even several manifolds—forming a grid of many avoided
crossings that may vary in size (some may even appear
vanishingly small) [2,3]—makes the prediction of time
evolution particularly vexing. Much work on time-
dependent forces has been inspired by the ubiquity of
multiple-level crossings in atomic and molecular collision
processes [4]. A more pertinent example to Rydberg-
atom physics is that of selective-field ionization [5] (SFI):
In response to rapid, monotonic variations in the ampli-
tude of an external electric field, the distribution of level
populations evolves in time, usually nonadiabatically,
leading eventually to ionization. The evolution of the
state of the system may be described as the collective
tracing in time of a set of pathways, each involving a
series of adiabatic and nonadiabatic transitions among
anticrossing levels.

In lieu of a brute-force numerical solution of the time-
dependent Schrddinger equation incorporating a large
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basis of Rydberg states, clues to basic features of the time
evolution can be obtained by considering simplified mod-
els. We take such an approach here in an initial attempt
to characterize the history of two coupled Rydberg mani-
folds under the influence of a linearly ramped electric
field F(t)=Ft. The two-manifold grid shown in Fig. 2 is
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FIG. 1. Stark map of m;=0 Rydberg levels vs. electric field
for manifolds n =14-16. Quantum defects chosen as p;=0.15,
{u; =0, 1 >0}, to illustrate individual avoided crossings. The
dotted lines indicate regions where nearly parallel diabatic lev-
els from the » =15 manifold cross only those of either adjacent
manifold. The classical ionization limit, curve at upper right.
(Figure courtesy K. B. MacAdam.)
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the model for the manifold-crossing regions indicated on
the Stark map of Fig. 1. We invoke the Landau-Zener
(LZ) approximation [6,7] and assume that (i) all transi-
tions between states of different manifolds occur at dis-
tinct, isolated pairwise anticrossings of adiabatic levels
and (ii) transitions do not occur between states of the
same manifold. The further assumption (iii) that in-
tramanifold levels are parallel is motivated by the obser-
vation that neighboring manifolds (Fig. 1) first encounter
one another through their few extremal levels, whose
slopes do not differ greatly in magnitude. Second-order
Stark shifts are small and in any case do not contribute to
the main features of the intermanifold interactions, so we
will neglect them and assume constant slopes. We also
make the ostensibly severe approximation of (iv) ignoring
interference effects among different paths. The purpose
here, however, is to allow us to identify average popula-
tion distributions upon traversing a great many avoided
crossings. The inclusion of interference in the model has
been investigated separately [8] and will be reported else-
where. The distribution we obtain for incoherent evolu-
tion will prove interesting in its own right as a new vari-
ant of the familiar random walk.

In a uniform electric field F(¢)=F(¢)Z, m; is a good
quantum number and an n manifold consists of n —|m,]
Rydberg levels. We consider here only m;=0. At small
fields, the high-/ (i.e., most) members of each manifold are
nearly degenerate, and the eigenstates composed of mix-
tures within this subset suffer linear energy shifts ( < F)
that form a pseudohydrogenic Stark fan [3]; the few low-/
states having appreciable quantum defects {y;} [9] shift
only quadratically. Let |u| be the largest value |u;(mod
1)| [9]. At larger fields, such that F > 2|u|n ~° all spheri-
cal states are ultimately mixed by the field into a linearly
split manifold whose eigenstates are closely approximated
by hydrogen-Stark eigenstates |nn,n,m;) [10]. State
mixing in the single-manifold regime has been studied in
some detail for the case of linearly ramped fields [11].

The rationale for our model of a LZ grid stems from
the structure of the atomic Hamiltonian in the crossing
regime, F > L(n+1)7°. Within the subspace of each man-
ifold of states, the Hamiltonian is similar to that of hy-
drogen. The linear hydrogenic Stark splitting,

EnnanO(F): —In 24+ 3Fn(n;—ny)+0(F,n®) (1)

(all quantities are in atomic units), becomes so large that
one manifold’s levels begin to cross with and couple
significantly to those of its neighbors (n’=n=+1). The
field-independent coupling, provided by the core, between
states of any manifolds »’ and »n (including n’=n) is given
by the Hamiltonian matrix elements [3,11]

v, =(n'n{n%0|H

n'n0,nn,0 [nn1n20>

core

— 22:“’ u(n 0) (n()) , (2)

~1/2 (nO)

where n and its primed partner are coefficients

of the linear transformatlon between zero-field hydrogen-
ic eigenstates (of the same manifold, for m;=0) of para-

bolic and spherical symmetry [12]. When the block of in-
tramanifold (n'=n, m;=0) elements (2) is dominated by
the diagonal atom-field interaction (1), the eigenstates
within each block are, to first order,

|ng0) = |nn n,0)

(n0), (n0)
n—1 nl u”’ll | )
nninj0
3Fn ngﬂ 2#1 n,—nj 2
ul |’
+o||EL | . (3)
Fn’
[Each eigenstate label ¢ =0,...,(n —1) may be
identified with the parabolic quantum number

n;=0,...,(n—1) of its dominant hydrogenic com-
ponent |nn;n,0).] Prediagonalization of the Hamiltoni-
an within each manifold via the basis (3) then leads to
adiabatic levels [10,11]

n—1

Ean(F): —1ip ’2+%Fn (”1_”2)_’1 —4 2 'ul[u’(l,l,?)]z
=0
Mk
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which, to first order, differ from the hydrogenic levels (1)
at large F only by constant shifts. The core coupling be-
tween prediagonalized states of different manifolds is now
given by Eq. (2) (with n'#n), plus terms of higher order
in 2|u|/3Fn> and 2|u| /3Fn".

The dynamical coupling among states of the same n
manifold, i.e., within the basis (3) and induced by the
time dependence of F(t), is shown in Ref. [11] to decrease
as F~2 when F >>2|u|/3n°. The ratio of its magnitude to
that of the core coupling

lv | ~lpln—*

n'n'IO,nnIO
[Eq. (2)] is then of the order of Fn*/|u|? or smaller,
which is negligible except in the limit of extraordinarily
high ramp rates F. The dynamical Stark coupling of hy-
drogenic levels of different manifolds is a few orders of
magnitude smaller than the core coupling and can also be
neglected [13].

As long as |u| is not close to 1, the atom’s adiabatic
Hamiltonian in the crossing region F>1(n+1)7°
reduces, therefore, to shifted hydrogenic levels for n and
n'=n +1, coupled to lowest order by the matrix ele-
ments of Eq. (2). The coupling between |nn,n,0) and

[n'nin50) produces an energy gap—an avoided
crossing—of width |21) . !~2|p|n [3,14]:
nyn
—(? 0) 0)
|2v";nll 2(n'n) Eu ul (n°0)y, (n (5)

(we have dropped from v the manifold indices #’ and n,
and m;=0). When F~1n ">, the gaps are a fraction
~2|u| of the splittings [15] 3Fn~n % so we must as-
sume that |u| <<1 in this model. Pairs of levels then mix
appreciably only when their energies differ by less than
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the intramanifold splitting, and it is in this sense that the
anticrossings may be considered “isolated.” The first and
subsequent avoided crossings at FX L(n +1)73 involve
the upward- and downward-going levels at the edges of
manifolds n (n;=n—1, n,=0) and n'=n+1 (n}=0,
nj=n'—1), respectively, and neighboring levels. Their
extremal diabatic slopes,

dE

nnyn,0 .
p=———=3n(n-1),
dE (6)
L n'n;n'zo_ 3F (n+1)
L7

are nearly equal and opposite, and serve to approximate
the slopes of all crossing diabatic levels. [“Diabatic”
refers here to the noninteracting, nonhydrogenic levels
(4).] These remarks justify the assumptions (i), (ii), and
(iil) made above.

The Landau-Zener problem [4,6,7] for each isolated
two-level interaction depends only on the gap sizes in Eq.
(5) and on the difference of the slopes in Eq. (6). (Note
that the condition 2|u| <<1 for small gaps also implies
that the time between successive avoided crossings is
sufficiently longer than the LZ transition time [16] for the
transition to be “complete.”) The probability of a diabat-
ic (i.e., nonadiabatic) transition in the LZ model is

|Un " IZ

D, (F)=exp(—27ry1 ) @)

nin, nyn " yn;nl_ 'P—P,! :
In keeping with a simple model, we will further take
v, =v to be the same for every intersection; this is
171

equivalent to assuming that u; =0 for [ >0, since the s
state couples all n, states equally [11]: u,‘,'l'g’ =1. Then

u=po and Egs. (5)-(7) evaluate to [20] =2|uoln 4,
lp —p'l=3Fn? and

o _ v ul
D(F)=exp(—2my), v p—p  3Em10’ (8)
which has the same value for every anticrossing, as does
the probability of an adiabatic transition, 4 =1—D.

In Sec. II we delineate the topology of the two-
manifold model, for which the time evolution is derived
statistically in Sec. III. We characterize the resulting
single-humped distribution of level populations in Sec. IV
by its average position and spread among the levels. In
Sec. V we present an alternative method for describing
the evolution, based on 2 X2 matrices. We conclude in
Sec. VI with a discussion of some refinements to the mod-
el.

II. THE TWO-MANIFOLD MODEL

Consider two intersecting manifolds of parallel energy
levels, E,, and E,,.. Within each manifold the levels vary
linearly in time with slope p =dE /dt or p’' <p [Eq. (6)]
and have constant separation e=3Fn or ¢’ =3Fn":

E, (t)=pt—me, E, (t)=p't+m'e . 9)

The upward-going levels E,, are numbered

m =0,1,2,. .. from the top down, while the downward-
going ones E, . are labeled m'=0',1',2',. . . from the bot-
tom up. (The indices m and m' should not be confused
with m;.) Since the addition of the same energy p’’t (any
p"’) to all levels makes no physical difference, we are free
to adjust the slopes so that p ~3Fn?>0and p’=—p <O0.
In the absence of interactions between the manifolds,
each pair of levels would intersect at the point

L =metme (10)
p—rp
g, =pfmetpme 1n
p—p

which we label [m,m']. The energy and times scales
[and hence the field F(#)=Ft] have been implicitly shift-
ed from those of Sec. I so that, as time increases, the first
such intersection, [0,0'], occurs at the origin of (¢,E).
Subsequent intersections at ¢z >0 form a grid that is
confined to the range —pt <E =< pt between levels 0 and
0’ and whose nodes are in general skewed in time.

Insofar as the levels evolve adiabatically between inter-
sections and undergo transitions from one manifold to
the other only in the vicinity of level (anti)crossings “at”
the intersections, the time evolution of the system de-
pends only on the topology of the network, i.e., on the
connections among the various intersections [m,m’']. We
may therefore assume that the levels of both manifolds
are equally spaced, ¢’=e~n ~*, so that the grid is sym-
metric about E =0:

E, (t)=pt—me, E,(t)=—pt+m'e . (12)

The Nth “generation” of N +1 level crossings [m,m'] is
then grouped according to

N=m+m’'=0,1,2,..., (13)

which serves to identify a particular manifold-interaction
time (10),

tM=1Ne/p , (14)

as well as to label that generation’s intersection energies
(11),

Eg =1m'—m)e, INeZEN.>—1INe. (15

We begin generation numbering at [0,0'] with N =0 in
order to associate the probability of arriving “at” inter-
section [m,m’] with the number N of prior intersections.
The adiabatic segment of level E, (¢) [or E,,.(¢)] spanning
intersection times 'Y ~! and 'V will be labeled m ‘Y [or
m (N )]'

We specify the initial condition that all population at
t <0 resides in the upward-going level 0. A ‘“path”
through the grid can then be represented in several ways:
(1) As a sequence of adjacent intersections for
N =0,1,2,...; (2) as a sequence of adiabatic segments
m'™ and m'™ for N =0,1,2,. . .; and (3) more simply, as
a string of arrows 1 and |, either {1:1---} or
{1:1 -+ -}, indicating successive steps up or down in en-
ergy; the string begins with “f:” for the initial step-up

approach to [0,0'], followed in turn by steps approaching
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intersections of generations N =1,2,. . ..
For example, one path leading to [3,5'] (N =8), shown
in Fig. 2, would be written as

frerlrrnding .

Were the initial level m >0 at t <1me/p (on the segment
m ™), the grid with vertex at [0,0'] would simply map
onto a new one with vertex at [m,0']; all paths would just
shift N =m generations to the right along constant-m’
levels. Indeed, any initially populated level segment
m™ N >m, leads to population distributions identical
to those produced by 0'©, if the grid vertex is shifted
from [0,0'] to [m,(N —m)']. Also note that initially po-
pulating the downward-going level 0’ is equivalent to us-
ing the initial level O, provided that labels m and m’ and
directions 1 and | are interchanged in all results.

As time and field increase, the probability of passing
through the grid along any one of a variety of possible
paths depends on the initial-state populations, the field
ramp rate, the levels’ slopes, and the strength of level
couplings at the intersections. A level m or m' arriving at
the intersection [m,m’] will, according to the LZ effect,
propagate through [m,m’] with a diabatic-transition
probability D [Eq. (8)] for remaining on the same level
(m—m or m'—m'), and an adiabatic-transition proba-
bility 4 =1—D for changing levels (m —m' or m'—m).
The latter case involves switching between upward- and
downward-going levels an hence switching manifolds. A
strict selection rule follows from this model and the uni-
directionality of F(¢) (with F >0): Levels can only follow
paths that lead to the same or higher m or m'. This rule
tends to discourage evolution along paths that diffuse
away from the center of the crossing region.
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FIG. 2. Landau-Zener grid of (identical) anticrossings

formed by two interacting manifolds of parallel energy levels.
Up- and down-going levels (no T and |) are labeled m =0, 1,. ..
and m’'=0,1',..., respectively. Generation  number
N=m +m’ is proportional to time [Eq. (14)] and field; vertical
scale p=m'—m is proportional to intersection energies (15).
Note sample path {1:11111{{1} to intersection [3,5'] of gen-
eration N =8. This is one of 20 paths that arrive at [3,5'] via
level segment 3'® with probability D* 4* [Eq. (16)].

IT1. PATH STATISTICS

The total probability of arriving at any given [m,m’]
by all possible paths can be calculated from the statistics
of path distributions if a value of D). is known for every
intersection [cf. Eq. (7)]. An arbitrary path to [m,m’]
can then be represented as an ordered sequence of D’s
and A4’s whose product indicates the total probability for
crossing successive intersections at N =0,1,2,. . . diabati-
cally or adiabatically. We consider the simplest case here:
Assume that D (and hence A) has the single value (8) for
all intersections of the grid. The above sample path (Fig.
2) occurs with probability {D-A4 ADDAD A}, indicating
an initial diabatic transition at [0,0'] (N =0) followed by
the seven intersections (N =1-7) leading up to [3,5']
(N =8). There are always two extreme cases: the purely
diabatic path {1:1111:-- 11}, from [0,0'] to [O,N'],
which occurs with probability D¥, and the purely adia-
batic path, {1:1111 -+ |1} from [0,0"] to [({N), ({N)']
for even Nor {1:1101 - 11} from [0,0"] to [({N + 1),
(LN —1)'] for odd n, which occurs with probability 4*.
When D =1 (A4 =0), the former path occurs with unit
probability, and the system persists in the upgoing level 0
at the top of the grid, with energy E (¢)=pt. When 4 =1
(D =0), only the latter path occurs, and the system
remains on one adiabatic level near the center of the grid,
with average energy —je. In the special case D = A4 =1,
the present model is equivalent to a one-dimensional
(symmetric) random walk; however, this is true in no oth-
er case, since the probabilities D and A refer not to up or
down steps but rather to whether consecutive steps change
direction.

The total probability for arriving at a given [m,m’]
after N =m +m’ steps equals the sum of probabilities for
arriving there via all possible paths. Divide these paths
into two classes: those paths whose last step to [m,m’] is
1 and those that end with |. Consider first the 7-ending
paths. After the initial step “1:” towards [0,0'], there
must be some permutation of m' upward steps and m
downward steps to arrive at [m,m’']. Any pair of adja-
cent steps { 1 T}or { ||} entails a diabatic-transition prob-
ability D, while any pair {Tl} or {|1}] entails an
adiabatic-transition probability A. Every path begins
with T, so to end with 1, it must have an even number 2k
of adiabatic turns (0 <2k =< N), and hence a total proba-
bility 4°*D" ~2*. How many such paths are there? Each
pair of adiabatic transitions arises from a sequence of one
or more consecutive |’s separating a sequence of one or
more consecutive 1’s from the next such sequence of 1’s.
There must be k such blocks of |’s to produce the k pairs
of adiabatic transitions. Given a total number of m avail-
able |’s, there are (J' ') ways to split them up into k
blocks of one or more |’s each. (The purely diabatic path
has m =0 and k =0, in which case we assign the value 1
to the binomial coefficient.) These blocks of |’s can then
be interposed between the initial T and the remaining m’
1’s in (') possible ways. The total probability for arriv-
ing at [m,m’] with an upward-going step—on the seg-
ment m ‘Y —is therefore [17,18]

’

m—1

k—1 AZkDN‘2k’ (16)

m
k

Pr(nAr]n)'T (D)zsm’,N—mz
k
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where A =1—D and the sum is over all k£ =0 such that
neither binomial coefficient vanishes. The derivation for
paths that end with a | is similar, but involves an odd
number 2k —1 of adiabatic transitions (1 <2k —1=N),
with pairs of A’s separated by k —1 blocks of |’s plus
one A preceding the final string of |’s ending at [m,m’].
The total probability for arriving at [m,m’] on the
downward-going segment m 'V is [18]

ml

k—1

m—1
k—1

Pr(nIer'l,(D)=8m,N—m’z AZk—IDN—2k+1 ,
k

17

with k > 1.

The distribution (16) generally does not exhibit any
particular symmetry at fixed N for arbitrary D. One can
only say that P}\,]X?T(D)=O always holds for N >0, since
level O' can only be reached by a |; similarly,

PN, 1(D)=0 for the purely diabatic path. However, the

][ e

where k =0 ranges over all nontrivial values, with the
proviso that (Z!)=1. It is assumed that the various
paths leading up to each [m,m’] have made transitions
through N previous intersections but have not yet under-
gone the LZ transition at [m,m’']. Equivalently, Eq. (19)
is the total (conserved) probability of passing through the

AZkDN—2k+

P;%'(D):Sm +m’,Nz
k

intersection [m,m’] onto the level segments m‘¥ ! and
m/ N+,
PN .(D)=PN..(D)+P{N). (D)
=P L(D)+PNAY. (D), (20)

which is perhaps a more apt operational definition. An
immediate consequence of Egs. (18) and (20) for a
midgrid intersection [m,m] is

PM.(D)=PN YD), m'=m . 1)

This result applies to adjacent intersections, for N —1
and N, that lie on the purely adiabatic path, with N even
and m =1N.

Table I shows the polynomials P\Y).; (D) and P\, (D)
as functions of D and 4 up to N =6. Note that the num-
ber of all paths arriving at [m,m'] with positive slope,
i.e., along m'™, is given by the sum (16) for D = 4 =1,

N-—1 (N—1)

Np(N) (1y— =Y =1r
2 Pmm'T(T) m m‘(m,_l)' ’

(22a)

the number of all paths arriving with negative slope

[along m'‘¥] is given by the sum (17),
N-—1 (N—1)!
Np(N) (1)— =_W=1F
2 Pmm'l(f) m' (m 1)im" ’ (22b)

and their total in Eq. (19) is, of course, N!/(m!m'!), just
as it would be for a random walk.

k—1

1937

distribution PN, (D) is always symmetric at fixed N
about the center of the subset of levels 1 <m < N:

PN (D)=P, | (D). (18)
This invariance follows from the joint substitution
{m—m'+1, m'—>m—1} in Eq. (17), which leaves
m +m’ unchanged. Neither P\N).; (D) nor P{Y). (D) is
invariant under the operation m<>m’ for N >0, so they
are not symmetric about the center of the grid.

The initial population P{Q); =1 will in time become
redistributed among m and m' levels over the breadth of
the grid according to PY)..(D) and P (D). To
characterize the distribution over energy as a function of
time, we consider the probability for arriving at Nth-
generation intersection points (t'V, E\Y).), Egs. (14)-(15),
along either adiabatic energy-level segment approaching
[m,m'], i.e., along m'™ or m'""™. This quantity is the
sum of Egs. (16)-(17):

’

A2k—1DN—'2k+1 , (19)

—

Figure 3 shows the total populations (19) as histograms
on a two-dimensional grid of m’ vs m for various values
of D between 1 and 0. These maps cover generations
N =0 through N =32; [0,0'] lies at the rear corner and
time sweeps forward in steps (14) marked by diagonals of
constant m +m’'=N. During the fastest ramps (y =0,
D =1), population leaks off to other levels but clings to
the original m =0 level with probability

D¥=exp(—2ryN)=exp _4_77213,]
2
=exp |— 2 t] , (23)
€
where we have set t'‘¥'=t¢ and where v = —pugn ~* is the

intermanifold level coupling (2) in Eq. (8). The initial lev-
el decays exponentially to a quasicontinuum of m’ levels,
as in Demkov’s model [19] for one level crossing many.
[Equation (23) results here even if interference between
paths is not ignored.] During the slowest ramps ( 4 = 1),
on the other hand, population tends to favor the purely
adiabatic path and paths near it, which remain near the
center of the interaction region, m =~m’. The random-
walk case D = A =1 leads to a distribution P}, (1) that
is precisely symmetric in m<m’ (cf. Table 1), converging
to a Gaussian at high N with full width V'N ¢ in energy.

IV. POPULATION AVERAGE AND SPREAD

The feature common to the distributions P.Y).(D)
shown in Fig. 3 is the appearance of a single hump at all
times (i.e., for all N) and for all values of D. The hump is,
moreover, almost always centered near m =~m'. Even for
fast ramps, when the population persists in being skewed
towards the initial m =0 level, P\)).(D) will eventually
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shift its center towards the grid’s center at high enough
N. The width of the hump scales with D as expected: It
is narrower the more nearly adiabatic is the evolution
(A—1, D—0), and broad for predominantly nonadia-
batic evolution (D > A4). Because the redistribution of
probability for any one time step is a Markovian
process—independent of all previous time steps—the po-
sition and width of the hump are easily calculated as fol-
lows.

The upward-going level 1 approaching any one avoid-
ed crossing [m,m’] has probability D (or A) of passing
through to the next 1 (or down to the next |), thereby in-
creasing (or decreasing) its energy (15) by +1& (or —1¢)
at the next intersection. A downward-going level | has

TABLE I. Up- and down-going level populations [Egs. (16)
and (17)] for initially populated 1 level 0'” vs. intersections
[m,m’] for N =0-6. The sum of the two columns is P\¥).(D),
Eq. (19). Note A =1—Dand m +m’=N.

[m,m'] PN .1 (D) PN, (D)
N=0

[0,0'] 1 0
N:

[0,1'] D 0

[1,0'] 0 A
N=2

[0,2'] D? 0

[1,1] A? DA

[2,0] 0 D4
N=3

[0,3'] D3 0

[1,2] 2DA? D*4

[2,1] D4? D*4+ A3

[3,0] 0 D*4
N=4

[0,4'] D* 0

[1,3] 3D24? D34

[2,2'] 2D2A4%*+ A4* D34+2DA4°

[3,1'] D*4? D*A+2D4*

[4,0'] 0 D34
N=5

[0,5'] D® 0

[1,4'] 4D*A? D*4

[2,3'] 3D34%+3D4* D*A4+3D*4°

[3,2'] 2D34%+2DA4* D*A4+4D%*4%+ 4°

[4,1'] D34? D*A+3D%*4°

[5,0] 0 D*4
N=6

[0,6'] D¢ 0

[1,5] 5D*4? D4

[2,4'] 4D*A4%+6D%*4* D34 +4D343

(3,3] 3D*A%*+6D% 4%+ A4° D’A+6D>A%+3DA4°

[4,2'] 2D*A*+3D%*4* D’A4+6D*A4%+3D4°

[5,1] D*4? DA +4D%4°3

[6,0'] 0 D4
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instead probability A (or D) for changing its energy by
+1e (or —1e). The average energy shift per intersection
is thus (D — A4)1e for initial levels with slope £p.

It is convenient to introduce the index

p=m'—m=EN). /ie 24)

which is an intersection energy in units of Je. This re-
scales the time-energy grid coordinates (14)-(15) to

(N,u)=(m'+m,m'—m)

by rotating the axes by 45°—parallel to the lattice. Note
that u ranges from — N to N in steps of 2.

Consider now the 1 level segment m ‘¥ approaching an
arbitrary intersection [m,(N —m)']. Suppose that, after
passing through I subsequent intersections (I > 1), the
rescaled energy shifts on the average by some amount j;
relative to the initial value u=N —2m. An initial | level
segment m’'Y) approaching some [(N—m’'),m’'] will
likewise suffer an equal and opposite average shift —g;
after I subsequent intersections, due to the up-down sym-
metry of the grid. In particular, the 1 level 0'" will suffer
an average shift iy _,, relative to the value u=-+1 at
[0,1'], after passing through I =N —1 more anticross-
ings at times t'", ..., ¢V 7D; the | level 0" will suffer
an average shift —fiy_, relative to the value uy=—1 at
[1,0']. With respect to the 1 level 0'°’ approaching the
very first intersection, the average u shift after N intersec-
tions is

By=D[1+ay ]+ A[—1—py_]
=8[1+pmy_,]1, (25)
where

80=D—A=2D—-1, —1=56=1 (26)

measures the average size of the u step. Since E =E ()
and =0 at [0,0'], one seeds the recursion relation (25)
with fi;=0. The average value of u after N generations
then equals [17]

8(1—28%)

s = @7

N N
An(8)= 3 Pih.(Dju=3 8=

p=-N j=1

where D =1(1+8). The average energy at t'V is
E™(D)=Lemy(2D —1) .

To obtain the standard deviation of u, one needs to find
p%. If one knows both i; and p? for an initial 1 that
passes through I intersections, then shifting all values of
u by +1 yields a new average,

(p+12=p2+2a+1 . (28)

An initial |, with p shifted down by — 1, again yields the
right-hand side of Eq. (28), since (—u—1)2=(u+1)>%
Now repeat the steps leading to Eq. (25): approach [0,0']
on the 1 level 0/, and branch off to [0,1'] and [1,0’]
with probabilities D and A, respectively. There follows
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FIG. 3. (Continued).

the recursion relation

py=D[1+2uy_+py 1+ A1+2uy  +py ]

N-1
=1+23 &+uk_,, (29)
j=1
where we have used D + 4 =1 and Eq. (27). Seed Egq.
(29) with uz=0 to obtain

N—-1 j
pi(d=N+23 3 &

j=1k=1
ks |, 2
= | os [V TR - (30)

Finally, the standard deviation (half width) in u at gen-
eration N is
172

1+8 2 )

Mun(®)= | | 1= [N =5 Bn(®)— (An(8))

1+8 12
=1 1=s [V

85(1—8M)(2+8—8VT1)
(1—8)?

(31)
In energy units, the full width of P\N).(D) at t'V is just
r'M(D)=eAuy(2D —1) .

The average value of m’—m for the distribution
PN.(D), Eq. (27), is not simply proportional to N. This
stands in contrast to a generic one-dimensional random
walk, where the average displacement from the starting
point varies linearly with the number of steps taken if the
probabilities of stepping up and down are not equal. On
the other hand, the standard deviation, Eq. (31), does
scale like V'N at large N. If and only if D = 4 (6=0) do
we recover precisely the random-walk results

Ex(0)=0 and Apy(0)=V'N (32)

at all N.
To evaluate fiy(8) and Auy(8) in various other limits,
note first that if 4 > D, then 8 <0 and we must replace &

by —|8| in the above formulas. Terms |8 will be much
smaller than unity unless [8|~1, i.., unless
8=1—24<1 when A=O0 (diabatic limit) or
8=2D —12 —1 when D =0 (adiabatic limit). The condi-
tion |8%| << 1 is then satisfied for N >>1/2 4 when D — 1
and for N >>1/2D when 4 — 1. Similarly, neglecting the
second term under the square root on the second line of
Eq. (31) requires

26 1 1
N> |l——=|=|——=< 33
1—8? 24 2D |’ 33
the same constraint for “large N.” )
In the limit (33), the single hump of P\Y).(D) is thus
characterized by
172

) 1+8
7 + (8)—>——=+|—=N
AN(8)EAuN(8) =5 =5
D—4A4 D 2
24,12 Y
3 N , fixed & (34)

Note that fzy(8) and Auy(8) approach the limiting
values (34) exponentially. In the large-N adiabatic limit
1>>D >>1/2N, the width becomes very narrow in ener-

gy:

r'"(D) — eV'DN .
D—0
The high probability of paths following adiabatic turns at
most intersections works against diffusion in energy and
thus provides a kind of stabilization of the energy. How-
ever, the width in the large-N diabatic limit
1>> A >>1/2N can be quite broad:
r'"(D) — eV'N/A4 .
40
This results from the tendency of paths dominated by di-
abatic transitions to continue unidirectionally in energy
and thereby remain diffuse over many generations.
The average level position fiy(8) is also lopsided in its
adiabatic vs. diabatic behavior. Faster ramps (§—1)
lead to the asymptotic shift §/(1—8)—1/24, which
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may be large but is ultimately constant. Thus, the out-
come of a fast ramp applied to the m =0 level is leakage
off the initial path along E(¢)=pt, according to Eq. (23),
to a mean asymptotic energy E=E ¥(D) —1e/4, ac-
companied by a severe broadening about this energy.
Slower ramps (—1 =<8 <0), on the other hand, attain dis-
tributions shifted to positions

an(8)=—181/(1+18])

which always lie between 4= —1 and 0, and sport widths
smaller than V'N. In fact, the purely adiabatic path
(8= —1) oscillates between u=—1 and O as N alternates
between odd and even values, respectively: Compare the
average value obtained from Eq. (34) in the extreme adia-
batic case, iy(—1)=—3 [ie, EWM(0)= —4€], to the
random-walk result, i, (0)=0 [i.e., EM(L 2)=0].

At fixed N—however large—the width vanishes in
both limits §—~1 (4 —0) and §—>—1 (D—0), and
En(8) lands on either the purely diabatic or adiabatic
path. Evaluation of Egs. (27) and (31) to lowest order in
2 AN yields, for the diabatic limit,

An(8)£Auy(8) > N~ AN(N +1)

+1/ZAN(N+DQ2N+1), fixed N

(35)

in analogy to Eq. (34). [Note that u=N corresponds to
E=Eyt"™M)] At 6<0, one must distinguish between
even and odd N; to lowest order in 2DN, the adiabatic
limit yields

0—DN=+V2DN , fixed N even
—1+D(N+DEV2D(N +1),

fixed N odd .  (36)

An()tAuy(d) —

The average position for successive odd-even generations
isindeed iy(—1)=—1

In all cases, therefore, the concentration of population
P‘N (D) eventuates somewhere near the center of the in-
teraction region and broadens slowly with T'V(D) = V'N .
The fact that paths tend, on the average, to steer towards
the center rather than the edges of the grid contributes to
the stabilization of the average energy at large N. Only in
the extreme diabatic limit A <<1/2N is there any
significant departure from a quasisymmetric distribution
centered at some energy closer to E =0 than the
distribution’s width. All adiabatic cases —1=<86=<0
(0=D =) are essentially narrow versions of a random
walk centered just below E =0.

V. GENERATING FUNCTION

The statistically derived probability expressions
(16)—(20) of Sec. III are exact for the two-manifold,

|
1|1 1
2 (1 —1

x O
0 x!

1 1

PM(D;x)=(1 0) 1 —1

10
06

parallel-level model. However, an alternative treatment
based on recursion relations leads to more compact ver-
sions of these expressions in terms of 2 X2 matrices. The
generating function derived here for PY).(D) is computa-
tionally convenient and may prove useful in studies in-
volving interference between paths.

The populations of any pair of up- and down-going lev-
el segments m Y and m 'Y mix in the vicinity of their LZ

anticrossing [m,m’'] and emerge onto m‘*! and
m' VD with probabilities:
PN 1 (D)=DP{N)..(D)+ AP} (D), (37a)
PNHD . (D)= AP (D)+DPN). (D) . (37b)

the value of u=m'—m increases by 1 in Eq. (37a) and de-
creases by 1 in Eq. (37b). One can keep track of different
u values by multiplying each probability by x™ ™,
where x is an expansion parameter. The distributions of
probabilities for approaching any intersection at t =¢‘)
on one manifold or the other is then provided by a
coefficient in either polynomial

PNM(D;x) 2 P,‘,,’Y,ZT (D)x™ ™8 (38a)

m',N—m »
or

N
S P (DIX™ "8 N . (38D)

m =0

?)(1N)(D ;X)E

The recursion relations (37) can then be cast into the ma-
trix form [20]

?(TN-H)(D;X)
PVTI(D;x) =

Dx Ax
Ax~! Dx~

P(TN)(D;X)
PNV(D;x)

(39)

If we define ZY(D;x)=PM(D; x)+?‘lN)(D x), seed Eq.
(39) with the initial values PPY(D;x)=1 and
PY(D;x)=0, and iterate, we obtain a polynom1a1 whose
coeiﬁcxents represent the total probability distribution at
generation N:

N
PYD;x)= 3 PN.(D)X™ "8y
m =0
o |[p a|]"n
7’(11\' (D;x) and ?’( (D;x) can be obtained by replacing

the row vector in Eq (40) with (1 0) and (0 1), respec-
tively. Note that PN(D ;1)=1 for any D and N, a state-
ment of normalization at all times.

To calculate the average fiy(8) [Egs. (26)-(27)] with
the generating function (40), one must apply 3/dx to
P'N(D;x) and evaluate at x =1. It is convenient first to
substitute the diagonalized form of the matrix (57 ) into

Eq. (40):

M

. (41)
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Application of d/0x and the chain rule to the product of N matrices in Eq. (41), each including a factor

x 0
X= 0 x*l ’
yields
PN (D;x)
(8= ;
Ay(8) Ox o
, N-1—j
N—1 10 0O 1}]]j1 0 10
PR (U 1o|los||los
0 &8 |1 0 1 N
(1011 ¢ o1 1| | T2
0o |S s i=
j=0

the same result as Eq. (27).

J

i

(42)

A calculation of the standard deviation Auy(8) requires here only the verification of the form (30) for p%(8). The

second moment of (m’—m) in Eq. (41) is given by

2N 1y Nip.
T(6)= L (ZD,x)+67)( (D;x)
x dx =1
Ne2—j—k
N—2 N—2—j 10 046|110
=2 > (10015 5 10ollos
=0 k=0
N—1—j
N—-1 10 1 —1 01
T X0 5 -1 1| o
=

The two bracketed terms in the single sum come from
second and first derivatives of the matrix X; this whole
series reduces to just N. The double sum in Eq. (43)
stems from the cross terms in 3’P'Y /3x2. Evaluation
and reindexing of the double sum leads directly to the re-
sults (30) for u%(8) and the half-width (31).

The statistical results of Sec. III, Egs. (16)-(21), also
follow from suitable manipulations of Eq. (40) or Eq. (41).
The binomial coefficients in Eq. (19) arise from deriva-
tives d*/0x* applied to the N factors X, evaluated at
x =0.

VI. DISCUSSION

The present model of incoherent evolution on a
Landau-Zener grid of two interacting manifolds yields
analytical results for the redistribution of population
throughout the levels of both manifolds when only one
state is initially populated. The assumption of parallel en-
ergy levels at high n and the neglect of interference effects
are not critical to general features of the distribution,
such as the concentration of population near the center of
the interaction region and the ramp dependence of the
distribution’s width after long times. Since SFI experi-
ments can resolve only bands of states within each mani-
fold anyway [5], it is important to be able to characterize
at least the grossest features of the mixing before attend-
ing to substructures that may appear in the ionization
signals.

i

o8|t o1
1ollos| |1
1ol
o 5 - 43)

The simple model considered here should, however, be
modified in several ways to better represent an atom sub-
jected to a field F(¢). True manifolds of Rydberg levels
are not parallel, nor is the LZ parameter yn,]n] given just

by v [Egs. (7) and (8)]: The couplingsv , .
10,

the slope differences |[p —p’| vary from one anticrossing
to another. (Note, however, that as long as one invokes
the LZ approximation, the fanning out of each manifold’s
levels would not alter the topology of the network.) For a
pure-s core, although

as well as
n, 0

— __'uo(n:n)fz

Un'n'IO,nnIO_

for all pairs of levels, the fact that the slopes of midmani-
fold levels are smaller than for edge states implies that
adiabatic transitions for n,=m >0 or nj=m’'>0 are
more probable than in the present model. In that case,
nonedge slopes dE,,,,‘nzo/dt and dEn'n’n;o/dt obtained

1
from Eq. (4) have a difference

lp —p'|=3Fn*(1—N/n)
common to all intersections of generation N (assuming
n>>1and N =n,+n} <n). Then the LZ exponent y .
11

in Eq. (7) would be larger than the value |uo|2/3Fn'° [Eq.
(8)] by the factor (1—N/n)"!, reducing the diabatic-
transition probability for that generation from D to
DNZD"/("’M. The analytical results of Secs. III, IV,
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and V could then be modified using the various values
{8y =2Dy—1}, e.g., the average level position in Eq. (27)
would become

'L_LN:80+8081+808182+ M +(80."8N~‘1) N (44)

yielding a “more adiabatic” result than that for all §’s
equal to 8,. Furthermore, the spreading of level distribu-
tions would not go on as ~V'N but instead “freeze out”
at early times ¢V, for a given ramp rate, because the dia-
batic transitions that give rise to diffusion in energy
would be less likely to occur. The inclusion of non-
negligible quantum defects for /=1 would further
enhance adiabatic transitions involving midmanifold
states when |m;|~/ while enhancing diabatic transitions
involving edge states [15] (but have the opposite effect
when />1 and |m,| <<I) due to the behavior of the
squared coefficients [12] in Eq. (2).

Additional modifications would, however, change the
model qualitatively. Interference between the different
paths leading to each [m,m’] has been found to produce
resonance series in P\)).(D) rather than a single-humped
distribution [8]. Completely abandoning the LZ approxi-
mation and allowing simultaneous multilevel interference
among two entire manifolds [17], then including a third
manifold, etc., would constitute the most liberal version
of the model—one closer to SFI. While more general
analytical results are possible under certain assumptions
[21], their interpretation may, however, be far from
transparent.

In an SFI experiment, a band of levels may be initially
excited rather than just one. To represent this most sim-
ply within the present model of parallel levels and in-
coherent evolution, one might, for example, equally pop-
ulate all levels m "™ (m =0,1,. ..) of one manifold. The
probability at intersection [m,m’] (m +m’'=N) would
then be expressible in terms of the result (19) for one ini-

tial state:

(N+1)7! _zopf,,”:j{'),,,u)) . (45)
i=

In the diabatic limit all levels of generation N become
equally populated, whereas in the adiabatic limit the lev-
els in the lower half of the grid become equally populated
(e, T level segments m'Y with m >IN, | segments
m'™ with m’ < 1N) while those in the upper half remain
unpopulated. For generic intermediate cases, one finds
that the population distribution rises from relatively
small values for intersections at E >0 (i.e., with m <m’)
to a plateau for levels at lower energies (i.e., m >m’).
The step at midgrid (m =m') is steeper the smaller is D.
The plateau at time ¢V attains its maximum value,
(2—DY)/(N +1), at the lowest intersection, [N,0'].

A physical system that realizes the redistribution of
population for the LZ grid is an analogous grid of partial-
ly silvered mirrors, one per [m,m’], with flat surfaces
oriented parallel to the time axis of Fig. 2. A light beam
of intensity I, impinging on the first mirror in the same
way that level O approaches [0,0'] would branch and ar-
rive at subsequent mirrors with intensity P.N).(D)I,,
where D is now each mirror’s transmission probability.
Interference could be avoided or exploited by preventing
or allowing mixing of the beams at each mirror.

ACKNOWLEDGMENTS

The authors would like to thank Dr. M. J. Cavagnero
and Dr. K. B. MacAdam for many helpful discussions.
This work is supported by the U.S. Department of Ener-
gy, Division of Chemical Sciences, Office of Basic Energy
Sciences, Offices of Energy Research, under Grant No.
DE-FGO05-92ER 14267.

[1] Atoms in Strong Fields, edited by C. A. Nicolaides, C. W.
Clark, and M. H. Nayfeh (Plenum, New York, 1990).

[2] M. L. Zimmerman, M. G. Littman, M. M. Kash, and D.
Kleppner, Phys. Rev. A 20, 2251 (1979).

[3] D. A. Harmin, Phys. Rev. A 30, 2413 (1984).

[4] H. Nakamura, Int. Rev. Phys. Chem. 10, 123 (1991).

[5] Rydberg States of Atoms and Molecules, edited by R. F.
Stebbings and F. B. Dunning (Cambridge University
Press, New York, 1983), Chaps. 3 and 9; K. B. MacAdam,
L. G. Gray, and R. G. Rolfes, Phys. Rev. A 42, 5269
(1990).

[6] L. Landau, Phys. Z. Sowjun 2, 46 (1932); C. Zener, Proc.
R. Soc. London, Ser. A 137, 696 (1932); E. C. G. Stueckel-
berg, Helv. Phys. Acta 5, 369 (1932).

[71L. D. Landau and E. M. Lifshitz, Quantum Mechanics of
One- and Two-Electron Atoms (Non-Relativistic Theory)
(Pergamon, Oxford, 1976); see, especially, Sec. 90.

(8] D. A. Harmin, Bull. Am. Phys. Soc. 38, 1096 (1993); D. A.
Harmin (unpublished).

[9] We assume, following Ref. [3], that all quantum defects
are expresssd modulo 1 and lie in the range
— 3 <m(mod 1)< 1.

[10] See, e.g., H. A. Bethe and E. E. Salpeter, Quantum
Mechanics of One- and Two-Electron Atoms (Springer,
Berlin, 1957). One of the parabolic quantum numbers
describing the state |nn,n,m,; ) is actually redundant since
n=n,+n,+|m|+1.

[11] D. A. Harmin, Phys. Rev. A 44, 433 (1991).

[12] The notation here differs from that in Ref. [11] by the rela-
beling of the state index from a subscript “p” (which
equals n; —n,) to “n,” to avoid confusion with the partic-
ular slopes defined here in Eq. (6). Table III of Ref. [11]
gives explicit transformation coefficients for / =0— 3; note
the normalization ﬁl_éou,‘,’]'(,”u,‘,']'?" =nd,. See also D. A.

Harmin, in Ref. 1], p. 61, Sec. IITE.

[13] By way of comparison, multiphoton excitation and ioniza-
tion of hydrogen (n ~28) can be accomplished via mi-
crowave fields F(t)=F, cos(wt) at frequencies w/2m~ 10
GHz and amplitudes F,~ 100 V/cm. The peak derivative
oFy~5X10'" (V/cm)/s is much larger than typical linear
rates 5 10° (V/cm)/s used for SFI, which would not be
able to drive intermanifold transitions efficiently. For mi-
crowave ionization, see D. R. Mariani, W. van de Water,
P. M. Koch, and T. Bergeman, Phys. Rev. Lett. 50, 1261



1944 DAVID A. HARMIN AND PHILLIP N. PRICE 49

(1983); W. van de Water et al.,, Phys. Rev. A 42, 572
(1990). For SFI, see Ref. [5].

[14] 1. V. Komarov, T. P. Grozdanov, and R. K. Janev, J.
Phys. B 13, L573 (1980); W. van de Water, D. R. Mariani,
and P. M. Koch, Phys. Rev. A 30, 2399 (1984).

[15] These remarks apply to m;=0; the gaps are smaller for
m,;#0. For m; 20 and a single quantum defect for [ =m,,
the edge states (n, —n or 0) have lu,(,':’,'")é,m[lz’vO(n 1y

+m[

, 1.e., smaller than the Stark
-m
1

and gap size |2v| ~2|ul /n
splitting by a further factor n

[16] M. R. Spalburg, J. Los, and A. Z. Devdariani, Chem.
Phys. 103, 253 (1986); K. Mullen, E. Ben-Jacob, Y. Gefen,
and Z. Schuss, Phys. Rev. Lett. 62, 2543 (1989).

[17] Several key results in Secs. III and IV, particularly Egs.
(16), (17), (27), and (31), were also derived in Phillip N.
Price, Ph.D. dissertation, University of Kentucky, 1992.

[18] Equations (16) and (17) can also be expressed as hyper-
geometric functions (for m-0):

PN, (D)=D"F(—m,—m’";1; 4*/D?)
—F(1—m,—m’;1; A*/D%)],

PN, (D)= ADN"'F(1—m,—m’';1; 4*/D?) .

[19] Yu. N. Demkov, Dokl. Acad. Nauk SSSR 166, 1076 (1966)
[Sov. Phys.—Dokl. 11, 138 (1966)]; Yu. N. Demkov and
V. 1. Osherov, Zh. Eksp. Teor. Fiz. §3, 1589 (1967) [Sov.
Phys.—JETP 26, 916 (1968)]. See also Y. Kayanuma and
S. Fukuchi, J. Phys. B 18, 4089 (1985).

[20] Equations (37a)—(37b) can be combined to yield recursion
relations for either up- or down-going levels alone:

PNYY 1 (D)=DPN¥AY . 1 (D)+DPNEY, (D)
—(D— AP (D),

plus an identical relation for P.Y. (D). Replacing
differences by derivatives in m and m’ then leads to the
differential  equation 3P /dm +0P/dm’'+(1/A)3*P/
dmdm'=0, where P stands for either P.;(D) or
PN\, (D). However, superposing solutions of this equa-
tion to obtain an analytical form for P{Y).(D) is less practi-
cal than direct use of Eq. (19) or Eq. (40).

[21] See, e.g., R. K. Janev and P. S. Krsti¢, J. Phys. B 19, 3695
(1986).



