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u, , =(n'n' n)z OIH„„ n lnn)z )0

)
—2 y u (n 0)u (n0)'

1=0
(2)

where n ' u„'"1' and its primed partner are coefficient
of the linear transformation between zero-field hydrogen-
ic eigenstates (of the same manifold, for m(=0) of para-

the model for the manifold-crossing regions indicated on
the Stark map of Fig. 1. We invoke the Landau-Zener
(LZ) approximation [6,7] and assume that (i) all transi-
tions between states of different manifolds occur at dis-
tinct, isolated pairwise anticrossings of adiabatic levels
and (ii) transitions do not occur between states of the
same manifold. The further assumption (iii) that in-
tramanifold levels are parallel is motivated by the obser-
vation that neighboring manifolds (Fig. 1) first encounter
one another through their few extremal levels, whose
slopes do not differ greatly in magnitude. Second-order
Stark shifts are sma11 and in any case do not contribute to
the main features of the intermanifold interactions, so we
will neglect them and assume constant slopes. We also
make the ostensibly severe approximation of (iv) ignoring
interference effects among different paths. The purpose
here, however, is to allow us to identify average popula-
tion distributions upon traversing a great many avoided
crossings. The inclusion of interference in the model has
been investigated separately [8] and will be reported else-
where. The distribution we obtain for incoherent evolu-
tion will prove interesting in its own right as a new vari-
ant of the familiar random walk.

In a uniform electric field F(t)=F(t)z, m( is a good
quantum number and an n manifold consists of n —Im(l
Rydberg levels. We consider here only m1=0. At small
fields, the high-/ (i.e., most) members of each manifold are
nearly degenerate, and the eigenstates composed of mix-
tures within this subset suffer linear energy shifts ( ~F)
that form a pseudohydrogenic Stark fan [3]; the few low-1
states having appreciable quantum defects [p(] [9] shift
only quadratically. Let lpl be the largest value l)M)(mod

1)l [9].At larger fields, such that F» —,'Ip n ' all spheri-
cal states are ultimately mixed by the field into a linearly
split manifold whose eigenstates are closely approximated
by hydrogen-Stark eigenstates Inn, n2mt ) [10]. State
mixing in the single-manifold regime has been studied in
some detail for the case of linearly ramped fields [11].

The rationale for our model of a LZ grid stems from
the structure of the atomic Hamiltonian in the crossing
regime, F» —,'(n+ —,

'
) . Within the subspace of each man-

ifold of states, the Hamiltonian is similar to that of hy-
drogen. The linear hydrogenic Stark splitting,

E„„„0(F)=—,'n + —,'—Fn(n i ni)+O(F—zn ) (1)
1 2

(all quantities are in atomic units), becomes so large that
one manifold's levels begin to cross with and couple
significantly to those of its neighbors (n'=n+1). The
field-independent coupling, provided by the core, between
states of any manifolds n

' and n (including n
' = n) is given

by the Hamiltonian matrix elements [3,11]

(no) (no)
1+, g g )M,

' lnn'n'0)
Fn ' l=o n1 n

n
1
&nl

Ip I

Fn'
(3)

[Each eigenstate label q =0, . . . , (n —1) may be
identified with the parabolic quantum number
n) =0, . . . , (n —1) of its dominant hydrogenic com-
ponent Inn(neo). ] Prediagonalization of the Hamiltoni-
an within each manifold via the basis (3) then leads to
adiabatic levels [10,11]

n —1

E„0(F)=—(n + ,'Fn (—n, n2) n ——g p([u„'"(']
1=0

+0
Fn' (4)

which, to first order, difFer from the hydrogenic levels (1)
at large F only by constant shifts. The core coupling be-
tween prediagonalized states of different manifolds is now
given by Eq. (2) (with n'An), plus terms of higher order
in 2lpl/3Fn and 2IpI/3Fn' .

The dynamical coupling among states of the same n

manifold, i.e., within the basis (3) and induced by the
time dependence of F(t), is shown in Ref. [11]to decrease
as F when F»2I(ul/3n . The ratio of its magnitude to
that of the core coupling

lu„,„,„„,l-l) In
'

[Eq. (2)] is then of the order of Fn /Ipl or smaller,
which is negligible except in the limit of extraordinarily
high ramp rates F. The dynamical Stark coupling of hy-
drogenic levels of different manifolds is a few orders of
magnitude smaller than the core coupling and can also be
neglected [13].

As long as Ipl is not close to —,', the atoin's adiabatic
Hamiltonian in the crossing region F» —,

'
( n + —,

'
)

reduces, therefore, to shifted hydrogenic levels for n and
n'=n+1, coupled to lowest order by the matrix ele-
ments of Eq. (2). The coupling between lnn, n20) and
ln'ntnzo) produces an energy gap —an avoided
crossing —of width I2u,

I
-2lpl n [3,14]:

n ln 1

I2u, I
=2(n'n) g p u'",

' 'u'" '
n'n 1 n'1

1 1 1=o

(we have dropped from u the manifold indices n
' and n,

and m(=0). When F= ,'n, the gaps are —a fraction
-2I((LI of the splittings [15] 3Fn =n, so we must as-
sume that l(MI « —,

' in this model. Pairs of levels then mix

appreciably only when their energies difFer by less than

bolic and spherical symmetry [12]. When the block of in-
tramanifold (n'=n, m(=0) elements (2) is dominated by
the diagonal atom-field interaction (1), the eigenstates
within each block are, to first order,

lnqo) = lnn, n, o)
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the intramanifold splitting, and it is in this sense that the
anticrossings may be considered "isolated. " The first and
subsequent avoided crossings at F~ —,'(n+ —,') involve

the upward- and downward-going levels at the edges of
manifolds n (n]=n —1, nz=0) and n'=n+1 (n'] =0,
n'2=n' 1—), respectively, and neighboring levels. Their
extremal diabatic slopes,

dEnn, n, o =
—,'Fn (n —1),

(6)
n n ]n20 = ——'Fn (n +1),2

are nearly equal and opposite, and serve to approximate
the slopes of all crossing diabatic levels. ["Diabatic"
refers here to the noninteracting, nonhydrogenic levels
(4).] These remarks justify the assumptions (i), (ii), and
(iii) made above.

The Landau-Zener problem [4,6,7] for each isolated
tmo-level interaction depends only on the gap sizes in Eq.
(5) and on the difference of the slopes in Eq. (6). (Note
that the condition 2~]M~ &&1 for small gaps also implies
that the time between successive avoided crossings is
sufficiently longer than the LZ transition time [16]for the
transition to be "complete. "}The probability of a diabat-
ic (i.e., nonadiabatic) transition in the LZ model is

II. THE TWO-MANIFOLD MODEL

Consider two intersecting manifolds of parallel energy
levels, E and E .. Within each manifold the levels vary
linearly in time with slope p =dE/dt or p' &p [Eq. (6)]
and have constant separation c=3Fn or c.'=3Fn':

E (t)=pt —me, E .(t)=p't+m'e' .

The upward-going levels E are numbered

D, (F )=exp( —2n.y, ), y,n ]]I] n ]]]] n n]]~p —p

In keeping with a simple model, we mill further take
v, =v to be the same for every intersection; this is

n&n&

equivalent to assuming that pI =0 for / &0, since the s
state couples all n] states equally [11]: u„'"t]]=1. Then

1

p, =pa and Eqs. (5)—(7) evaluate to ~2v~ =2~po~n

Ip
—p'1=3Fn, and

2 2

D(F)=exp( —2my), y=
I]v

—p'I 3Fn" '

which has the same value for every anticrossing, as does
the probability of an adiabatic transition, A =—1 —D.

In Sec. II we delineate the topology of the tmo-
manifold model, for which the time evolution is derived
statistically in Sec. III. We characterize the resulting
single-humped distribution of level populations in Sec. IV
by its average position and spread among the levels. In
Sec. V we present an alternative method for describing
the evolution, based on 2X2 matrices. We conclude in
Sec. VI with a discussion of some refinements to the mod-
el.

tmm
= m e.+m'c. '

p p
pm 'c'+p'm c

p p

which we label [m, m']. The energy and times scales
[and hence the field F(t)=Ft] have been implicitly shift-
ed from those of Sec. I so that, as time increases, the first
such intersection, [0,0'], occurs at the origin of (t, E).
Subsequent intersections at t )0 form a grid that is
confined to the range —pt &E +pt between levels 0 and
0' and whose nodes are in general skewed in time.

Insofar as the levels evolve adiabatically between inter-
sections and undergo transitions from one manifold to
the other only in the vicinity of level (anti)crossings "at"
the intersections, the time evolution of the system de-
pends only on the topology of the network, i.e., on the
connections among the various intersections [m, m']. We
may therefore assume that the levels of both manifolds
are equally spaced, c' =c=n, so that the grid is sym-
metric about E =0:

E (t)=pt —ms, E (t)= pt +m'e . — (12)

The ¹h"generation" of N +1 level crossings [m, m'] is
then grouped according to

N =m +m'=0, 1,2, . . . , (13)

which serves to identify a particular manifold-interaction
time (10),

(14)

as well as to label that generation's intersection energies
(11),

(15)

We begin generation numbering at [0,0'] with N =0 in
order to associate the probability of arriving "at" inter-
section [m, m'] with the number N of prior intersections.
The adiabatic segment of level E (r) [or E (r)] spanning
intersection times t' "and t' ' will be labeled m' ' [or

i(N)]

We specify the initial condition that all population at
t (0 resides in the upward-going level 0. A "path"
through the grid can then be represented in several ways:
(1) As a sequence of adjacent intersections for
N=0, 1,2, . . . ; (2} as a sequence of adiabatic segments
m ' ' and m ' ' for N =0, 1,2, . . .; and (3) more simply, as
a string of arrows 1 and $, either [ t:1 . .

] or
[1:l . ], indicating successive steps up or down in en-
ergy; the string begins with "1:"for the initial step-up
approach to [0,0'], followed in turn by steps approaching

m =0, 1,2, . . . from the top down, while the downward-
going ones E ~ are labeled m'=0', 1',2', . . . from the bot-
tom up. (The indices m and m' should not be confused
with m].) Since the addition of the same energy p "r (any
p") to all levels makes no physical difference, we are free
to adjust the slopes so that p =3Fn &0 and p'= —p (0.
In the absence of interactions between the manifolds,
each pair of levels would intersect at the point
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intersections of generations N = 1,2, . . . .
For example, one path leading to [3,5'] (N =8), shown

in Fig. 2, would be written as

{1':1llll ll 1 j .

15-

10--

5—
0'

0--

/

g/ 7
5'

4
/ 2

-10--

0
2 3 4 5

7

!-15
—2 0 2 4 6 8 10 12

FIG. 2. Landau-Zener grid of (identical) anticrossings
formed by two interacting manifolds of parallel energy levels.
Up- and down-going levels (no 7 and $) are labeled m =0, 1,. . .
and m ' =0', 1', . ~ . , respectively. Generation number
X=m +m' is proportional to time [Eq. (14)] and field; vertical
scale p=m' —m is proportional to intersection energies (15).
Note sample path {1:11 t 1 1 $ 1 1 ] to intersection [3,5'] of gen-
eration N =8. This is one of 20 paths that arrive at [3,5'] via
level segment 3' ' with probability D A [Eq. (16)].

Were the initial level m )0 at t & —,
' m e/p (on the segment

m' '), the grid with vertex at [0,0'] would simply map
onto a new one with vertex at [m, 0']; all paths would just
shift X=m generations to the right along constant-m'
levels. Indeed, any initially populated level segment
m' ', X m, leads to population distributions identical
to those produced by 0' ', if the grid vertex is shifted
from [0,0'] to [m, (N —m)']. Also note that initially po-
pulating the downward-going level 0' is equivalent to us-
ing the initial level 0, provided that labels m and m' and
directions 1 and 1 are interchanged in all results.

As time and field increase, the probability of passing
through the grid along any one of a variety of possible
paths depends on the initial-state populations, the field
ramp rate, the levels' slopes, and the strength of level
couplings at the intersections. A level m or m' arriving at
the intersection [m, m'] will, according to the LZ e6'ect,
propagate through [m, m ] with a diabatic-transition
probability D [Eq. (8)] for remaining on the same level
(m ~m or m'~m'), and an adiabatic-transition proba-
bility 3 = 1 D for cha—nging levels (m ~m' or m'~m).
The latter case involves switching between upward- and
downward-going levels an hence switching manifolds. A
strict selection rule follows from this model and the uni-
directionality of F(t) (with F)0): Leuels can only follow
paths that lead to the same or higher m or rn'. This rule
tends to discourage evolution along paths that diffuse
away from the center of the crossing region.

III. PATH STATISTICS

The total probability of arriving at any given [m, m']
by all possible paths can be calculated from the statistics
of path distributions if a value of D' '. is known for every
intersection [cf. Eq. (7)]. An arbitrary path to [m, m']
can then be represented as an ordered sequence of D's
and A's whose product indicates the total probability for
crossing successive intersections at N =0, 1,2, . . . diabati-
cally or adiabatically. We consider the simplest case here:
Assume that D (and hence A) has the single value (8) for
all intersections of the grid. The above sample path (Fig.
2) occurs with probability {D AADDADA ], indicating
an initial diabatic transition at [0,0'] (N =0) followed by
the seven intersections (N= 1 —7) leading up to [3,5']
(N =8). There are always two extreme cases: the purely
diabatic path {1:1111 1'tj, from [0,0'] to [O,N'],
which occurs with probability D, and the purely adia-
batic path, {1:11'1 1 1$ j from [0,0'] to [(—,'N), ( —,'N)']
for even Nor {1:1]J,1 1$] from [0,0'] to [(—,'N+ —,'),
( ,'N —

—,
' )'—]for odd n, which occurs with probability A

When D =1 ( A =0), the former path occurs with unit
probability, and the system persists in the upgoing level 0
at the top of the grid, with energy E ( t) =pt. When A = 1

(D =0), only the latter path occurs, and the system
remains on one adiabatic level near the center of the grid,
with average energy —

—,'c. In the special case D = 3 =
—,',

the present model is equivalent to a one-dimensional
(symmetric) random walk; however, this is true in no oth-
er case, since the probabilities D and 3 refer not to up or
down steps but rather to whether consecutiue steps change
di rection.

The total probability for arriving at a given (m, m'j
after N =m +m ' steps equals the sum of probabilities for
arriving there via all possible paths. Divide these paths
into two classes: those paths whose last step to [m, m'] is
1 and those that end with $. Consider first the 1-ending
paths. After the initial step "1:"towards [0,0'], there
must be some permutation of m' upward steps and m
downward steps to arrive at [m, m']. Any pair of adja-
cent steps [ 11 j or [ 1 1] entails a diabatic-transition prob-
ability D, while any pair {T 1] or { 11 j entails an
adiabatic-transition probability A. Every path begins
with 1, so to end with 1, it must have an even number 2k
of adiabatic turns (0 ~ 2k N), and hence a total proba-
bility 3 D . How many such paths are there? Each
pair of adiabatic transitions arises from a sequence of one
or more consecutive $'s separating a sequence of one or
more consecutive t's from the next such sequence of 't's.
There must be k such blocks of J's to produce the k pairs
of adiabatic transitions. Given a tota1 number of m avail-
able 1's, there are (k:,') ways to split them up into k
blocks of one or more 4's each. (The purely diabatic path
has m =0 and k =0, in which case we assign the value 1

to the binomial coefficient. ) These blocks of 1's can then
be interposed between the initial 1 and the remaining m
1's in (k ) possible ways. The total probability for arriv-
ing at [m, m'] with an upward-going step —on the seg-
ment m ' ' —is therefore [17,18]

m 1

k
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where A =1—D and the sum is over all k ~0 such that
neither binomial coefficient vanishes. The derivation for
paths that end with a $ is similar, but involves an odd
number 2k —1 of adiabatic transitions (1~2k —1~N),
with pairs of A's separated by k —1 blocks of 1's plus
one A preceding the final string of 1's ending at [m, m'].
The total probability for arriving at [m, m'] on the
downward-going segment m ' ' is [18]

(17}

with k & 1.
The distribution (16) generally does not exhibit any

particular symmetry at fixed N for arbitrary D. One can
only say that P&z'&(D) =0 always holds for N )0, since
level 0' can only be reached by a J, ; similarly,
Po'~'&(D)=0 for the purely diabatic path. However, the

I

distribution P'~ ~(D) is always symmetric at fixed N
about the center of the subset of levels 1 m N:

P(N) (D)—P(jv) (D) (18)

This invariance follows from the joint substitution

[m ~m'+ 1, m'~m —1] in Eq. (17), which leaves
m+m' unchanged. Neither P' '&(D) nor P' j.&(D} is

invariant under the operation mm' for N & 0, so they
are not symmetric about the center of the grid.

The initial population P00'& =1 will in time become
redistributed among m and m' levels over the breadth of
the grid according to P' I

&
(D) and P' '

&
(D). To

characterize the distribution over energy as a function of
time, we consider the probability for arriving at Nth-
generation intersection points (t' ', E' '. ), Eqs. (14)—(15),
along either adiabatic energy-level segment approaching
[m, m'], i.e., along m' ' or m' '. This quantity is the
sum of Eqs. (16)—(17):

m 1
P' ' (D)=5

k

m' 777

A 2kDE —2k+ A 2k —1DN —2k+1
k k —1

(19)

where k ~0 ranges over all nontrivial values, with the
proviso that (:,')—:l. It is assumed that the various
paths leading up to each [m, m'] have made transitions
through N previous intersections but have not yet under-
gone the LZ transition at [m, m']. Equivalently, Eq. (19)
is the total (conserved) probability of passing through the
intersection [m, m'] onto the level segments m' +" and

t(N+1).

P(Nj (D) —P(Nj (D)+P(tvj (D)

Figure 3 shows the total populations (19) as histograms
on a two-dimensional grid of m' vs m for various values
of D between 1 and 0. These maps cover generations
N =0 through N =32; [0,0'] lies at the rear corner and
time sweeps forward in steps (14) marked by diagonals of
constant m+m'=N. During the fastest ramps (y=0,
D =1), population leaks off to other levels but clings to
the original m =0 level with probability

4mypD =exp( —2m.yN) =exp — t—P(%+1 j (D)+P(N+ j) (D) (20)

which is perhaps a more apt operational definition. An
immediate consequence of Eqs. (18) and (20) for a
midgrid intersection [m, m] is

P' ' (D)=P' ",(D), m'=m .
7

(21)

This result applies to adjacent intersections, for N —1

and N, that lie on the purely adiabatic path, with N even
and m =

—,'N.
Table I shows the polynomials P' '

~ (D) and P' '.
& (D)

as functions of D and A up to N =6. Note that the num-
ber of all paths arriving at [m, m'] with positive slope,
i.e., along m' ', is given by the sum (16) for D = A =

—,',

2NP(Nj (
&

)??l f?l

(N —1)!
m!(m' —1)! ' (22a)

the number of all paths arriving with negative slope
[along m ' '] is given by the sum (17),

2'(jvj ( —')= (N —1).X —1

(m —1)!m '! (22b)

and their total in Eq. (19) is, of course, N!/(m!m '!), just
as it would be for a random walk.

2&v=exp — t (23)

where we have set t' '=t and where v = —pan is the
intermanifold level coupling (2) in Eq. (8). The initial lev-
el decays exponentially to a quasicontinuum of m' levels,
as in Demkov's model [19] for one level crossing many.
[Equation (23) results here even if interference between
paths is not ignored. ] During the slowest ramps ( A =1),
on the other hand, population tends to favor the purely
adiabatic path and paths near it, which remain near the
center of the interaction region, m =m'. The random-
walk case D = A =

—,
' leads to a distribution P' '

( —,
'

) that
is precisely symmetric in m~m (cf. Table 1), converging
to a Gaussian at high N with full width j/N E in energy.

IV. POPULATION AVERAGE AND SPREAD

The feature common to the distributions P' '. (D)
shown in Fig. 3 is the appearance of a single hump at all
times (i.e., for all N) and for all values of D. The hump is,
moreover, almost always centered near m =m'. Even for
fast ramps, when the population persists in being skewed
towards the initial m =0 level, P'+', (D) will eventually
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TABLE I. Up- and down-going level populations [Eqs. (16)
and (17)] for initially populated t level 0'0' vs. intersections
[m, m'] for N=0-6. The sum of the two columns is P' ' (D),
Eq. (19). Note A = 1 Dand m—+ m '=N

[m, m'] P(N) (D) p(N)

[0,0']

[o 1'l

[1,0']
D
0

N=1
0
A

N=2

shift its center towards the grid's center at high enough
N. The width of the hump scales with D as expected: It
is narrower the more nearly adiabatic is the evolution
(A~1, D~O), and broad for predominantly nonadia-
batic evolution (D ) A). Because the redistribution of
probability for any one time step is a Markovian
process —independent of all previous time steps —the po-
sition and width of the hump are easily calculated as fol-
lows.

The upward-going level 1 approaching any one avoid-
ed crossing [m, m'] has probability D (or A) of passing
through to the next 1 (or down to the next 1), thereby in-
creasing (or decreasing) its energy (15) by + —,'e (or —

—,'e)
at the next intersection. A downward-going level 1 has

instead probability A (or D) for changing its energy by
+—,'c, (or —

—,'e). The average energy shift per intersection
is thus +(D —A ) —,'E for initial levels with slope +p.

It is convenient to introduce the index

(24)

which is an intersection energy in units of —,c. This re-

scales the time-energy grid coordinates (14)—(15) to

(N, p)=(m'+m, m' —m)

by rotating the axes by 45'—parallel to the lattice. Note
that p ranges from —N to N in steps of 2.

Consider now the 1 level segment m' ' approaching an
arbitrary intersection [m, (N —m)']. Suppose that, after
passing through I subsequent intersections (I) 1), the
rescaled energy shifts on the average by some amount pl
relative to the initial value p=N —2m. An initial 1 level
segment m' ' approaching some [(N —m'), m'] w&11

likewise suffer an equal and opposite average shift —
pz

after I subsequent intersections, due to the up-down sym-
metry of the grid. In particular, the 1 level 0"' will suffer
an average shift pz, , relative to the value p=+1 at
[0, 1'], after passing through I =N —1 more anticross-
ings at times t"', . . . , t' ", the 1 level 0'" will suffer
an average shift —p~, relative to the value p = —1 at
[1,0']. With respect to the 1 level 0' ' approaching the
very first intersection, the average p shift after N intersec-
tions is

[0»']
[ 1, 1']
[2,0']

D~

A

0

N=3

0
DA
DA

where

=~[1+P~-i] (25)

[0,3']
[1,2']
[2, 1']

[3,0']

[0,4']
[ 1 3'1

[2,2']
[3, 1']
[4,0']

[1,4']
[2,3']
[3 2']
[4, 1']
[5,0']

D
2DA
DA

0

N=4
Dg

3D~A 2

2D2A2g A4

D A

0

N=5
D5

4D A

3D A +3DA
2D A +2DA

D A

0

0
D A

D A+A
D A

0
D A

D A+2DA
D A+2DA

D A

0
D A

D4A ~3D'A'
D4A +4D2A3+ A5

D A+3D A

D A

5=D —A =2D——1, —1~6~1 (26)

measures the average size of the p step. Since E =Eoo'
and p, =0 at [0,0'], one seeds the recursion relation (25)
with p0=0. The average value of p after N generations
then equals [17]

P&(&)= g P'"' (D)p= g&'=
N E g(1 f Jv)

p= —1V j=1

where D =
—,'(1+5). The average energy at t ' ' is

(27)

E' '(D)= —,'Ep~(2D —1) .

To obtain the standard deviation of p, one needs to find

p&. If one knows both pi and pi for an initial f that
passes through I intersections, then shifting all values of
p by + 1 yields a new average,

[0,6']
[1,5']
[»4'l

[4,2']
[» 1']
[6,0']

D6

5D A

4D A +6D A

3D A+6D A+A
2D A /3D

D4A'
0

0
D A

D A+4D A

D A+6D A +3DA
D A +6D A +3DA

D'A +4D'A '
D A

(p+1) =p +2P+I . (2&)

An initial 5, with p shifted down by —1, again yields the
right-hand side of Eq. (28), since (

—p —1) =(p+1) .
Now repeat the steps leading to Eq. (25): approach [0,0']
on the 1 level 0' ', and branch off to [0, 1'] and [1,0']
with probabilities D and A, respectively. There follows
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(a) D = 0.95 (b) D = 0.80

0
0

50 50

(c) D = 0.70 (d) D = 0. 60

30

(e) D = 0. 50 (f) D = 0.35

0
0

30 30

FICx. 3. Probability P' '. (D) [from Eq. (19) or Eq. (40)] of arriving at intersection [m, m'] on either an 1 or 1 level, on a Landau-
Zener grid with N =rn +m'=0 —32. Time values t' ' marked by diagonals of constant N =m +m' [t' '=0 lies at rear corner]. The
initial level is t, m =0; the histogram at [0,0'] has unit height. The values of diabatic-transition probabilities D used are as follows:
(a) 0.95, (b) 0.80, (c) 0.70, (d) 0.60, (e) 0.50, (f) 0.35, (g) 0.20, and (h) 0.05. Note exponential leakage [Eq. (23)] from initial m =0 for
large D in (a) and (b), narrower large-N widths for smaller D, and dominance of the purely adiabatic path for D =0 in (h). Case (e)
alone is equivalent to a random walk.
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( ) D = 0.20 (hj D = 0. 05

30

FIG. 3. (Continued).

30

N —1

=1+2 X 5'+Viv-i
j=1

(29)

where we have used D+A =1 and Eq. (27). Seed Eq.
(29) with @0

=0 to obtain

the recursion relation

p~~ D[1+2—piv i+@~ i]+ A [I+2@~ i+p~ i]

by —
~5~ in the above formulas. Terms ~5~ will be much

smaller than unity unless 5
~

= 1, i.e., unless
5 = 1 —2 A & 1 when A =0 (diabatic limit) or
5 =2D —1 & —1 when D =0 (adiabatic limit). The condi-
tion ~5

~
&& 1 is then satisfied for N &&1/2A when D ~1

and for N » 1/2D when A ~1. Similarly, neglecting the
second term under the square root on the second line of
Eq. (31) requires

N» 26

1 —6

1

2A
1

2D
(33)

N — p~(5) .
1+5 2

(30)
the same constraint for "large E."

In the limit (33), the single hump of P' ' (D) is thus
characterized by

1+5 2

5
PN(5) —tPx(5)]'

1/2

Finally, the standard deviation (half width) in p at gen-
eration X is

P ~(5)+~a~(5) +5 1+5
1 —5 1 —5

D —A D
2A A

1/2

1/2

fixed 5 . (34)

(31)

In energy units, the full width of P ' (D) at r ' ' is just

I' '(D)=Earp (2D —1) .

The average value of m ' —m for the distribution
P' ' (D), Eq. (27), is not simply proportional to N. This
stands in contrast to a generic one-dimensional random
walk, where the average displacement from the starting
point varies linearly with the number of steps taken if the
probabilities of stepping up and down are not equal. On
the other hand, the standard deviation, Eq. (31), does
scale like v N at large N. If and only if D = A (5=0) do
we recover precisely the random-walk results

p~(0)=0 and hp~(0)=v N (32)

at all ¹

To evaluate pN(5) and DAN(5) in various other limits,
note erst that if A )D, then 5 (0 and we must replace 6

Note that pz(5) and Ape(5) approach the limiting

values (34) exponentially. In the large-N adiabatic limit
1 »D »1/2N, the width becomes very narrow in ener-

gy:

The high probability of paths following adiabatic turns at
most intersections works against diffusion in energy and
thus provides a kind of stabilization of the energy. How-
ever, the width in the large-N diabatic limit
1))A ))1/2N can be quite broad:

I' I(D) e&N/A .
3~0

This results from the tendency of paths dominated by di-

abatic transitions to continue unidirectionally in energy
and thereby remain diffuse over many generations.

The average level position pz(5) is also lopsided in its
adiabatic vs. diabatic behavior. Faster ramps (5~1)
lead to the asymptotic shift 5/(1 —5)~1/2A, which
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may be large but is ultimately constant. Thus, the out-
come of a fast ramp applied to the m =0 level is leakage
off the initial path along Eo(t) =pt, according to Eq. (23),
to a mean asymptotic energy E=E' '(D) ~—,'e/A, ac-
companied by a severe broadening about this energy.
Slower ramps ( —1 & 5 & 0), on the other hand, attain dis-
tributions shifted to positions

p„(5}=—/5//(1+ /5/),

which always lie between p = —
—,
' and 0, and sport widths

smaller than v'N In . fact, the purely adiabatic path
(5= —1) oscillates between p= —1 and 0 as N alternates
between odd and even values, respectively: Compare the
average value obtained from Eq. (34) in the extreme adia-
batic case, pN(

—1)=—
—,
' [i.e., E' '(0)= —

—,'s], to the
random-walk result, pN(0) =0 [i.e., E' '( —,

'
) =0].

At fixed N —however large —the width vanishes in
both limits 5~1 (A ~0} and 5~ —1 (D~O), and
pN(5) lands on either the purely diabatic or adiabatic
path. Evaluation of Eqs. (27) and (31) to lowest order in
2AN yields, for the diabatic limit,

pN(5)+ApN(5) ~ N —AN(N+1)
A~0

+Q ', AN(N+—1}(2N+1), fixed N

parallel-level model. However, an alternative treatment
based on recursion relations leads to more compact ver-
sions of these expressions in terms of 2 X 2 matrices. The
generating function derived here for P' ' (D) is computa-
tionally convenient and may prove useful in studies in-
volving interference between paths.

The populations of any pair of up- and down-going lev-
el segments m ' ' and I ' ' mix in the vicinity of their LZ
anticrossing [m, m'] and emerge onto m' +" and
m' +"with probabilities:

P'N+, +11(D)=DP' ).1(D)+AP' '1(D),
P' ++1" g(D)=AP' ).1(D)+DP' 'g(D) .

(37a)

(37b)

N
p(N)(D .

)
—y P(N) (D)

m' —
m5

m=0
(38a)

or

the value of (((, = m
' —m increases by 1 in Eq. (37a) and de-

creases by 1 in Eq. (37b). One can keep track of different

p values by multiplying each probability by xm™,
where x is an expansion parameter. The distributions of
probabilities for approaching any intersection at t =t'
on one manifold or the other is then provided by a
coefficient in either polynomial

(35)
N

Pt '(D;x)—= g P' ).&(D)x 5 (38b)

in analogy to Eq. (34). [Note that p=N corresponds to
E=Eo(t' ').] At 5&0, one must distinguish between
even and odd N; to lowest order in 2DN, the adiabatic
limit yields

0 DN+V2DN— , fixed N even

1+D (N + I—)+v'2D (N +1),
fixed N odd . (36)

The average position for successive odd-even generations
is indeed PN( —1)= —

—,'.
In all cases, therefore, the concentration of population

P' ' (D) eventuates someu)here near the center of the in
teraction region and broadens slowly with I' '(D) ~ v N.
The fact that paths tend, on the average, to steer towards
the center rather than the edges of the grid contributes to
the stabilization of the average energy at large N. Only in
the extreme diabatic limit A « 1/2N is there any
significant departure from a quasisymmetric distribution
centered at some energy closer to E =0 than the
distribution s width. All adiabatic cases —1 & 5 ~ 0
(0 & D &

—,
'

) are essentially narrow versions of a random
walk centered just below E =0.

V. GENERATING FUNCTION

The statistically derived probability expressions
(16)—(20) of Sec. III are exact for the two-manifold,

I

m=0

The recursion relations (37) can then be cast into the ma-
trix form [20]

p(N+ 1)(D . '

p(N+1)(D .
Dx Ax P'i '(D;x)

Ax ' Dx ' P'"'(D x)

x 0
=(1 1)

0 x
D A 1

A D 0 (40)

pt '(D;x) and P1 '(D;x) can be obtained by replacing
the row vector in Eq. (40) with (1 0) and (0 1), respec-
tively. Note that P '(D;1)=1 for any D and N, a state-
ment of normalization at all times.

To calculate the average pN(5) [Eqs. (26)—(27)] with
the generating function (40), one must apply (}/(}x to
P' '(D;x) and evaluate at x = 1. It is convenient first to
substitute the diagonalized form of the matrix („D) into
Eq. (40):

(39}

If we define P '(D;x) =
P& '(D;x)+P'—t(D;x), seed Eq.

(39) with the initial values Pt )(D;x)= 1 and
P't )(D;x)=0, and iterate, we obtain a polynomial whose
coefficients represent the total probability distribution at
generation N:

N
P' '(D;x)= g P' ' (D)x 5

m=0

1 1
P )(D;x)=(1 0)

1 —1

x 0
0 x

1 1 1 0 1

1 —1 0 5 1
(41)
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Application of 8/Bx and the chain rule to the product of N matrices in Eq. (41), each including a factor

x 0

0

yields

dP '(D; )

x=1
N —

1
—j

1 0 0 1 1 0=&" 0'o5 1 o o5J='=0

1 0 1

0 5 1

0 5 1
=(1 0)

0
N —1

j=0

N= +52
1

(42)

the same result as Eq. (27).
A calculation of the standard deviation DIM~(5) requires here only the verification of the form (30) for ptt(5). The

second moment of (tn ' —m) in Eq. (41) is given by

a'P' '(D;x) aP'"'(D;x)
x=1

N —2 —j —k
0 5 1 0
10 05

N —2 N —2 —j 1 0
=2 g g (1 0)

j=0 k=0
'N —1 —j

N —1 1 0
+ g(1 0)

j=0

1 —1 0 1

—1 1 1 0

0 5 1 0 1

1 0 0 5 1

' j+1
1 0 1

0 5 1
(43)

The two bracketed terms in the single sum come from
second and first derivatives of the matrix X; this whole
series reduces to just ¹ The double sum in Eq. (43)
stems from the cross terms in 0 P' '/Bx . Evaluation
and reindexin~of the double sum leads directly to the re-
sults (30) for pz(5) and the half-width (31).

The statistical results of Sec. III, Eqs. (16)—(21), also
follow from suitable manipulations of Eq. (40) or Eq. (41).
The binomial coefficients in Eq. (19) arise from deriva-
tives 8"/Bx" applied to the N factors X, evaluated at
x =0.

The simple model considered here should, however, be
modified in several ways to better represent an atom sub-
jected to a field F(t). True manifolds of Rydberg levels
are not parallel, nor is the LZ parameter y, given just

Tl lll l

by y [Eqs. (7}and (8)]: The couplings v, , as well as

the slope differences ~p
—p'~ vary from one anticrossing

to another. (Note, however, that as long as one invokes
the LZ approximation, the fanning out of each manifold's
levels would not alter the topology of the network. ) For a
pure-s core, although

VI. DISCUSSION

The present model of incoherent evolution on a
Landau-Zener grid of two interacting manifolds yields
analytical results for the redistribution of population
throughout the levels of both manifolds when only one
state is initially populated. The assumption of parallel en-
ergy levels at high n and the neglect of interference effects
are not critical to general features of the distribution,
such as the concentration of population near the center of
the interaction region and the ramp dependence of the
distribution s width after long times. Since SFI experi-
ments can resolve only bands of states within each mani-
fold anyway [5], it is important to be able to characterize
at least the grossest features of the mixing before attend-
ing to substructures that may appear in the ionization
signals.

for all pairs of levels, the fact that the slopes of midmani-
fold levels are smaller than for edge states implies that
adiabatic transitions for n2=m &0 or n', =m'&0 are
more probable than in the present model. In that case,
nonedge slopes dE„„„0/dt and dE. . . /dt obtained

I 2 n n ln2

from Eq. (4) have a difference

~p
—p'~ =3Fn (1 N/n)—

common to all intersections of generation N (assuming
n » 1 and N =n&+ n ', (n). Then the LZ exponent y,

I I

in Eq. (7}would be larger than the value ~po~ /3Fn ' [Eq.
(8)] by the factor (1 N/n) ', reducing —the diabatic-
transition probability for that generation from D to
DN=D" '" '. The analytical results of Secs. III, IV,
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and V could then be modified using the various values

[5tt =2D& —1 [, e.g. , the average level position in Eq. (27)
would become

tial state:

(N+1) ' g P':J' (D) . (45)

PN 50+5051+505152+ +(50 5N —1} &
(44)

yielding a "more adiabatic" result than that for all 5&'s
equal to 5O. Furthermore, the spreading of level distribu-
tions would not go on as -&N but instead "freeze out"
at early times t ' ', for a given ramp rate, because the dia-
batic transitions that give rise to diffusion in energy
would be less likely to occur. The inclusion of non-
negligible quantum defects for I ~ 1 would further
enhance adiabatic transitions involving midmanifold
states when ~mi ~

=I while enhancing diabatic transitions
involving edge states [15] (but have the opposite effect
when I ) 1 and ~mt~ &&I} due to the behavior of the
squared coefficients [12] in Eq. (2).

Additional modifications would, however, change the
model qualitatively. Interference between the different
paths leading to each [m, m'] has been found to produce
resonance series in P' '. (D) rather than a single-humped
distribution [8]. Completely abandoning the LZ approxi-
mation and allowing simultaneous multilevel interference
among two entire manifolds [17], then including a third
manifold, etc. , would constitute the most liberal version
of the model —one closer to SFI. While more general
analytical results are possible under certain assumptions
[21], their interpretation may, however, be far from
transparent.

In an SFI experiment, a band of levels may be initially
excited rather than just one. To represent this most sim-

ply within the present model of parallel levels and in-
coherent evolution, one might, for example, equally pop-
ulate all levels m' ' (m =0, 1, . . . ) of one manifold. The
probability at intersection [m, m'] (m +m'=N) would
then be expressible in terms of the result (19) for one ini-

j=0

In the diabatic limit a11 levels of generation N become
equally populated, whereas in the adiabatic limit the lev-
els in the lower half of the grid become equally populated
(i.e., f level segments m' ' with m ~

—,'N, $ segments
m' ' with m' & —,'N) while those in the upper half remain
unpopulated. For generic intermediate cases, one finds
that the population distribution rises from relatively
small values for intersections at E )0 (i.e., with m & m')
to a plateau for levels at lower energies (i.e., m )m'}.
The step at midgrid (m =m') is steeper the smaller is D.
The plateau at time t attains its maximum value,
(2 D~)/—(N+ I ), at the lowest intersection, [N, O'].

A physical system that realizes the redistribution of
population for the LZ grid is an analogous grid of partial-
ly silvered mirrors, one per [m, m'], with fiat surfaces
oriented parallel to the time axis of Fig. 2. A light beam
of intensity Io impinging on the first mirror in the same
way that level 0 approaches [0,0'] would branch and ar-
rive at subsequent mirrors with intensity P' '. (D)Io,
where D is now each mirror's transmission probability.
Interference could be avoided or exploited by preventing
or allowing mixing of the beams at each mirror.
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