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Cold cluster ferromagnetism

G. F. Bertsch
Institute for Nuclear Theory and Department of Physics FM-15,
University of Washington, Seattle, Washington 98195

K. Yabana
Department of Physics, Niigata University, Niigata 950-21, Japan
(Received 1 November 1993)

We examine the magnetic-moment distribution of ferromagnetic clusters under conditions where the
magnetic moment is aligned with the internal cluster axis. Analytic expressions are obtained for the mo-
ment distribution and the adiabatic average moment induced in low fields. The result differs from the

low-field Langevin function by a factor %

PACS number(s): 36.40.+d, 75.20.—g

Interest has arisen in cluster magnetism with the ex-
perimental demonstration of ferromagnetism and super-
paramagnetism in clusters of several tens or hundreds of
atoms [1-5]. In clusters of magnetic elements such as
iron, there is a large magnetic moment, which may or
may not be frozen into the cluster geometry. At high
temperatures, the moment is free to reorient, and the
behavior of the system is called superparamagnetic. In
this work we examine the opposite limit, where the mo-
ment is aligned along an internal axis. This should be ap-
propriate at low temperatures, and especially for ele-
ments that are magnetically “hard,” i.e., have high ac-
tivation energies for reorientation. Parenthetically, we
note that the measured behavior of clusters may be more
complicated than either of these two limits, with the rota-
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We shall be concerned here with the distribution of
magnetic moments in clusters prepared in molecular
beams and measured by deflection in an inhomogeneous
magnetic field. We assume that the clusters are produced
in a statistical ensemble characterized by a rotational
temperature 7. The magnetic moments change as the
cluster enters the magnetic field, but this process is adia-
batic. We thus use a canonical ensemble of spins weight-
ed by the zero-field Boltzmann factors. The magnetic-
moment distribution in a field B is then given by
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with
u;(B)=dE;/dB . (4)

Here the eigenstates are labeled by i, their energies by E;,
and the z component of the magnetic moment by y;. The
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tional motion possibly having a dynamic role [5].

We consider a simple model of a spin frozen into a rig-
id rotor. We also assume that the cluster has equal mo-
ments of inertia along all three internal axes. Then the
Hamiltonian in an external field B=2B is given by

=3 iuB, (1)

where I is the moment of inertia and g is the magnetic-
moment vector of the cluster. We denote the magnitude
of the moment by u, The eigenstates of rotational
motion are labeled by the usual J, K, and M, and the ma-
trix elements of the Hamiltonian in this basis are
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J; is the angular momentum of the state specified by adia-
batically removing the magnetic field in state i. It may be
noted that the usual canonical ensemble with Boltzmann
factors exp(—E;/T) leads in the classical limit to the
Langevin formula for the induced moment [6].

Under typical conditions, the angular momentum is
large compared to 1. For example, for an iron cluster
with 50 atoms at a temperature of 15 K, the rms angular
momentum is about (J?)!/2=200. Thus one can safely
evaluate Eq. (3), treating J as a continuous variable and
replacing the sum by an integral. That is,
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This is straightforward to carry out in the limit of zero
field, where the magnetic moment is given by
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The result is

1
P(u,0)~—In(u,/|ul) . (5)
u 20tg Ko/ |u

This has a singularity at u=0 which is an artifact of the
continuum approximation. The probability distribution
is shown in Fig. 1, both in the continuum limit and for an
actual sum displayed as a histogram.

We next consider the effect of a weak field on the sys-
tem, and evaluate the expectation of the moment to first
order in the magnetic-field strength. We may still label
the states by J, K, and M, using perturbation theory to in-
clude the effect of the magnetic field. The first-order con-
tribution to the moment is given by
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where the sum has two terms, J'=J+*1. The needed

Clebsch-Gordon coefficients are given by
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The average of the moment of states with a given value of
J is then found to be
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Putting this in the adiabatic statistical ensemble, Eq. (2),
and replacing the sum over J by an integral, we obtain for
the thermal expectation of the moment the expression
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This may be compared with the Langevin formula for the
expectation of a classical spin in a thermal bath,
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FIG. 1. Distribution of magnetic moments for a rigid rotor
coupled to an intrinsic spin. The dot-dash line is the limiting
formula for the zero magnetic field, Eq. (5). The histogram
shows numerical results for the canonical ensemble of states
with J,,,x <40, and a temperature satisfying T=100/1,.
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FIG. 2. The numerical results for the distribution of magnet-
ic moments for the ensemble of Eq. (3), with the same parame-
ters as in Fig. 1 except for the magnetic field, which has the
value B=T=100/1,.
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The low-temperature limit of this formula is {u);
~Bu3/3T, which differs from Eq. (7) by a factor of 3. In
fact, we can obtain the Langevin result if we modify the
Boltzmann factor in Eq. (2), replacing the rotational ener-
gy by the full energy of the state in the magnetic field. Of
course, this is unphysical for moments induced in isolated
clusters because there is no way for the cluster to re-
equilibrate with a thermal bath in the magnetic-field re-
gion.

For higher magnetic fields, we have not been able to
find an analytic expression for the moment distribution or
its expectation value. We thus turn to the numerical
solution of the Hamiltonian to see the behavior of the
system. We truncate the matrix at some angular momen-
tum J_,., and diagonalize it to find the eigenstates and
their magnetic moments. It is not necessary to go as high
in angular momentum as is found in the physical systems

coth . (8)
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FIG. 3. The distribution of magnetic moments in a high field.
Parameters are the same as in Fig. 1 except for the magnetic
moment, which is given by B=4T=400/I,.
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because the quantization of J does not place an important
role when T1,>>1. We present results in Figs. 2—4 with
TI,=100, truncating the Hamiltonian matrix at
J max —40. Fig. 2 shows the probability distribution for a
moderate field, poB /T =1 and Fig. 3 shows the results in
a high field, uoB /T =4. The dependence of {u) on the
field strength parameter is shown in Fig. 4.

From these results, we see that the Langevin formula
has a qualitative validity for this Hamiltonian, although
it is not quantitatively correct. The very complicated
behavior of the moment deduced by de Heer thus re-
quires a more complex Hamiltonian. Undoubtedly, it is
necessary to treat the spin as an independent dynamic
variable, having a coupling to the cluster axis that is nei-
ther very strong nor very weak. A purely classical treat-
ment has been made in Ref. [7]; it would be interesting to
see what minimum assumptions about the quantum
mechanical Hamiltonian are necessary to describe the
behavior.

The sharp peak at =0 in the low-field distribution
persists to moderate fields, uoB /T =1. Most experiments
to date have not had the resolution to see this feature. In
Ref. [4], a structure is seen in the distribution of Gd clus-
ters that has this behavior. However, the peak is not seen
in all clusters, whereas theory requires that it be a univer-
sal feature of the distribution in the low-field limit.
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FIG. 4. The average magnetic moment as a function of field
strength. The solid line shows the Langevin formula, Eq. (8),
and the dots show the numerical results with J, =40 and
T=100/1,.
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