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Relativistic corrections to the Zeeman effect in h3rdrogenlike atoms and positronium
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An approximately relativistic theory of bound states which ensures Poincare invariance of the atomic
system to relative order (u/c) developed by one of us [K. J. Sebastian, Phys. Rev. A 23, 2810 (1981}]is
used to derive the Zeeman interaction Hamiltonian for a two-body system. This Hamiltonian is correct
to order a(Za) and to all orders of m, /mz and includes contributions from previously neglected radia-
tive and recoil corrections. Explicit analytic expressions for the gJ and gi factors are given and verify
the results of Grotch and Kashuba [Phys. Rev. A 7, 78 (1973}]. This interaction Hamiltonian in con-
junction with the zero-field relativistic interaction correct to order a(Za) is used to analyze the Zeeman
structure of the n =1, 2, and 3 levels of hydrogen and positronium. In the case of hydrogen, corrections
for the Lamb shift which include the most recent radiative recoil and pure recoil corrections have also
been included to yield an extremely precise analysis for hydrogen in the inFmF JL ) representation. The
Hamiltonian, g factors, and Zeeman splittings are compared with previously obtained results and experi-
mental results. The results of these comparisons are discussed at length.

PACS number(s): 32.60.+ i, 36.10.Dr

I. INTRODUCTION

The past two decades have witnessed significant ad-
vances in the experimental determination of the energy
levels of one-electron atoms and positronium. The mea-
surement of the fine structure and the hyperfine structure
of atomic hydrogen [1] and positronium [2—5] and the
measurement of the Lamb shifts in atomic hydrogen
[6—8] all require the use of a constant external magnetic
field for their determination. To interpret these results a
precise understanding of the Zeeman effect in hydrogen-
like atoms and positronium is essential. Attempts in this
direction have been made in the past [9—14]. In Ref. [10]
the minimally substituted Breit equation was reduced to a
Schrodinger-Pauli form to obtain the linear Zeeman
Hamiltonian which is almost correct to order a(Za) and
to all orders in m, /mz for hydrogenlike atoms, where a
is the fine-structure constant, Z is the atomic number,
and m, and m~ are the electronic and nuclear masses, re-
spectively. In Refs. [9] and [12] the minimally substitut-
ed Breit equation was reduced to a Schrodinger-Pauli
form to obtain the linear Zeeman Hamiltonian which is
correct to order a for positronium. The results of Refs.
[9—12] are correct only for neutral systems. Faustov [13]
used a different approach to obtain the g factors of
hydrogen correct to order a(Za) (m, /m~ ) and
a(Za) (m, /m&}. Close and Osborn [14] utilized an ap-
proach which ensures Poincare invariance of the atomic
system to order (v/c) to obtain the g factors for the 1S
state of hydrogen correct to order a(Za) and to all or-
ders in m, /m~.

However, their approach is distinctly different from
the approach used here. The authors of all of
the above works neglected radiative corrections of
order a(Za) (m, /mtv }~ (q =0, 1, . . . , co ) and recoil cor-
rections of order a(Za) (m, /mN )q (q = 1, . . . , ~ ).

We will calculate the relativistic corrections to the Zee-
man effect in hydrogenlike atoms and positronium using
an approximately relativistic theory of bound states
which was developed by one of us (K.J.S.) [15—18] and is
based upon the work of Foldy [19],Bakamjian and Tho-
mas [20], and others [21]. The basic idea here is to make
the Hilbert space of the composite system a reducible
representation of the Poincare group to relative order
(1/c) . The results presented here are correct to a(Za)
and to all orders in m, /miv.

In Sec. II we derive the linear Zeeman Hamiltonians
for hydrogenlike atoms of arbitrary atomic number and
positronium. The Hamiltonian for hydrogenlike atoms
contains previously neglected radiative contributions
which were first obtained by Grotch and Kashuba [9] and
recoil corrections resulting from the exchange of a single
transverse photon between the electron and the nucleus
when the atom is in a constant external magnetic field.
These corrections are proportional to L, and are of minor
importance for the LAO states. However, they do not
contribute to the positronium Hamiltonian. For neutral
systems our Hamiltonian, which describes a composite
system in an external uniform magnetic field (8), can be
obtained by a unitary transformation of the Hamiltonian
of Grotch and Hegstrom [10] [Eq. (40} of Ref. [10]] to
first order in 8. For systems with a net electric charge
(Z&1) there are additional contributions of order
(Za) m, /mz and a(Za) m, /mz in our Hamiltonian
beyond those in the Hamiltonians of Grotch and Kashu-
ba [9] and of Grotch and Hegstrom [10].

In Sec. III the gr and gz factors for hydrogenlike atoms
with nuclear spin —,

' are obtained. When an expansion is

made in terms of a, m, /m~, and s (the nonrelativistic
binding energy) the results of Grotch and Kashuba [9] for
the gi and gJ factors for hydrogenlike atoms of nuclear
spin 1/2 are verified. Our gJ factor includes a contribu-
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tion (gz) from the previously neglected radiative and

recoil corrections.
In Sec. IV a g factor for the ground state of positroni-

um is obtained. This g factor agrees exactly with the g
factor obtained by Grotch and Kashuba [9] and Lewis
and Hughes [12].

In Sec. V the linear Zeeman Hamiltonian, the relativis-
tic internal Hamiltonian correct to order a(Za), and the
lowest-order quadratic Zeeman Hamiltonian are used in
degenerate perturbation theory to solve for the energy ei-
genvalues as a function of the magnetic field for the n = 1,
2, and 3, levels of hydrogen and positronium. A concise
summary of the paper is presented in Sec. VI.

II. THE INTERACTION HAMII. TONIAN

The total Harniltonian for the isolated composite sys-
tem of two constituent particles can be written to order
1/c as

2 2 P4
H = y " —,", +U'"+U'", (1)

p=1 p2m Sm cp

where p is the constituent momentum of the pth particle
and U' ' and U'" are the internal interactions of the
zeroth and second order in v/c, respectively. For two-
body atomic systems U' ' is the Coulomb interaction be-
tween the two particles and U'" is given primarily by the
Fermi-Breit interaction [21,22]

U» =
~ p, —p, +p, q, q p, —2(1+a, }s, Xp,

Ze 1 1 q
2m 1 mzc q

q m1 q m2 q+2(1+a2)s2 3 Xp&
— (1+2a2)s2

3 Xp2 + (1+2a&)s&
3 Xp,

m2 m 1 q

m1 mz
(1+2a, )+ (1+2a, ) n5"'(q)

m1

s]'s2 3(8$'q)(s2'q) g (3—(1+a, }(1+a&} 3
— ——m.(s s )5' '(q) (2)

where s„s2, p„p2,' and a„a2 are the spins, momenta, and anomalous magnetic moment parameters of the two parti-
cles, respectively. With the position vectors of the two particles are denoted as r, and rz, and q = ~r, —r2~. With the ex-
ception of the terms which give rise to Hz3 and 814 below, the additional terms in U beyond the Fermi-Breit interac-
tion do not contribute to the Zeeman efFect (to order a ). These terms are used and described in Sec. V.

In a previous paper [15] one of us (K.J.S.) has shown that the interaction of an arbitrary composite system with an
external electromagnetic field can be written as the sum of two terms:

a11+aiZ

Here Hl, is the interaction resulting from a minimal substitution in the total Hamiltonian of the isolated composite sys-
tem:

2

a» i y "[[r„,a] A„+A„[r„,a]]
1

2C

1 g e&e I[r&«, [r JH]]A&«A &+A&«A„J[rz«[r„JH]]],
p=1 v=1 k=1 j=1

(4)

where e„and r„are the charge and constituent position
vector of particle p, respectively, the vector potential A„
is taken as —,'SXr„ for the case of a constant external
magnetic field, and we set Pi= 1 throughout this paper.
The second term H12 includes the sum of spin-dependent
terms resulting from the Foldy-Wouthuysen reduction of
single Dirac particles with anomalous magnetic moments
in an external electromagnetic field. For the case of a
constant external magnetic field and no electric field we
have

2 2

H12= —g " (1+a„)s„B„+g " [p„,s„B„]+
=1 mpc p p p =14m3c3 p p p

2

I ( A„.p„+p„A„)s„.B„+H.c. ]4m pc
2

Q 8
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7

H+Hl= g H„,
n=0

H H
Ho= +

2me 2mN

Ze

q

(6)

Hi=—
II'

e II4N

Sm c 8mNc

H2= (1+2a, )5 (q) — (I+2a&)5 (q),
2m c 2m c

Ze qXII,
H3 = (1+2a, )cr,

(9)

Ze qX IIN
2

( I+2a~ )cr~.
4mNC

(10)

H =—
4

Ze (1+a, )cr, ~

2m mNc

qX IIN

q

Ze+ ( I+a~)o~
2m, mNc

qXII,

q

H5=
2mec

0, B
II,1—

2me

+a, o .B—(o, II, }(II,.B}
2m

where p„, s„, m„, and a„are the momenta, spins, masses,
and anomalous magnetic moment parameters of the con-
stituent particles, respectively.

The above Hamiltonians [Eqs. (4) and (5)] contain
terms which are both linear and quadratic in the external
magnetic field. The lowest-order quadratic contributions
that come from HI, are used in Sec. V below and are
found to be small although not completely negligible for
the precision of the analysis presented here. The quadra-
tic terms of Hiz are seen to be of order a relative to the
lowest-order quadratic terms in Hl& and are completely
negligible.

For hydrogenlike atoms, if we set e&
= —e, ez=Ze,

s, =o, /2, s2=cr~/2, r, =r„r2=r~, q=r, —r~, a, =a„
az=aN, m& =m„mz=m&, P&=P„and Pz=PN in Eqs.
(1), (4), and (5) we can write

ZeH7= (1+a, )(1+a~)
4m, mNc

(cr, cr~)5 (q)
3

3(o, .q)(o„q)—(o, o~)q'
+

q5

where o, and eN are Pauli matrices and

e ZeII, =p, + BXr„ IIN=pN — BXrN .
2c " 2c

(14)

(15)

The equality expressed in Eq. (6) is correct up to but not
including terms of the order a (ps } . We have expressed
H+HI through Eqs. (6)—(15) in order to clearly show
the relationship between the results which we will obtain
in this paper and the results of Refs. [9—12]. Equations
(6)—(14) are exactly the same as Eq. (40) of Grotch and
Hegstrom [10]. The mechanical momenta (II, and II&)
are quite different. Grotch and Hegstrom [10] would
have mechanical momenta given by our Eq. (15) had they
not made their unitary transformation [Eqs. (24) —(27) of
Ref. [10]]and kept their Hamiltonian expressed in terms
of the constituent variables. That is to say that Eqs.
(6)—(15) above are equivalent to the Chraplyvy-Barker-
Glover [10] reduction of the extended Breit equation ex-
pressed in terms of the constituent variables. This is
clear from Ref. [10]. We would like to make it clear that
our starting point is the same as that of Grotch and
Hegstrom [10] and also of Refs. [9], [11],and [12]. We
will take Eqs. (6)—(15) as our starting point. Grotch and
Hegstrom would have obtained the same results [Eqs.
(40) and (41) of Ref. [10]]if they had made their unitary
transformation after the Chraplyvy-Barker-Glover reduc-
tion of the extended Breit equation expressed in terms of
the constituent variables.

There are additional radiative and recoil corrections
which must be added to HI. Systematic and comprehen-
sive analyses of the radiative effects of bound particles
have been given by Erickson and Yennie [23] and Brod-
sky and Erickson [24]. It is well known and has been
shown elsewhere [10] that there is no lowest-order energy
shift due to vacuum polarization in a constant external
magnetic field. Therefore, in lowest order we only need
to consider the self-energy of the bound electron and
recoil corrections. Following Brodsky and Erickson [24]
we can decompose the lowest-order self-energy of a
bound particle of mass m charge e and in state ~n ) into
the sum of three parts:

Ze
2mNc

IIN
cr N. B 1—

2mN

(o II )(II .B)
+ON CTN 8

2mN

(12)

AE„=hE„(L)+6E„(M)+DE„(R),

where

b,E„(L)= n II„ ln
37rm c 2

(16)

H6= —(II, II~)+q 3 II, .II~, (13)
2m mNc q q

+ qjrr, g] ),11
24
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SE„(M)= ', (nl-,'a„„F&"ln &,
2mc

(18)

and b,E„(R} contains terms quadratic in I'"" (the
electromagnetic-field tensor) and terms which modify the
operators in Eqs. (17) and (18) at small distances. The
terms in bE„(R) do not contribute any terms of order
a or larger to the Zeeman shifts [24]. Above,
H E„—=(1/2m)(m —8 ), IP=p" eA—I', and 0
=y"II„. The Pauli interaction b,E„(M) accounts for the
lowest-order contributions to the anomalous magnetic
moment of the bound particle. In addition to b,E„(M}
we must also include the contributions from hE„(L) as
first recognized by Grotch and Kashuba [9]. For the case
of an electron of charge e Grotch and Kashuba have
shown that b,E„(L}yields the following contribution to
the Zeeman interaction [9]:

aei ~ dk

3m, c 0 1+2k/m, c

(nip, ln') x(n'lp, ln )
k +hE„.„

(19)

where EE„.„ is the nonrelativistic energy difference
E„—E„ofthe unperturbed bound states. This contribu-
tion must be evaluated numerically for any given state
l
n ) and has not been included in any of the previous

work. The analogous term coming from the self-energy
of the proton is of order (m, /mN ) relative to H13 and is
completely negligible.

arne pe
' X n' p~ )l

x dkBQ
0 n' n'n

(20)

where M m +mN and p=m mN
Now we use the relativistic (to order 1/c ) relations of

Krajcik and Foldy [21] to express the Hamiltonian
H +HI H+HI1+HI2+H13+H14 in terms of the
center of mass and internal variables. The Krajcik-Foldy
relations are [21]

It is well known that the Fermi-Breit interaction ac-
counts for single-photon exchange only approximately in
the sense that in a nonrelativistic perturbative approach
it neglects recoil in the intermediate states [25]. There-
fore, in addition to the terms resulting from a minimal
substitution in the Fermi-Breit interaction implicit in Hl,
we must include recoil corrections to single-phonon ex-
change in the presence of a constant external magnetic
field. Salpeter [25] evaluated all the a(Za) m, /mN
recoil corrections to the Fermi-Breit interaction. It is
clear from the latter work that to lowest order,
a(Za) (m, /mN )~ (q =1,2, . . . , a& ), we only need to con-
sider the exchange of a single transverse photon between
the electron and the nucleus in a constant external mag-
netic field using nonrelativistic perturbation theory. This
is easily achieved by making a minima1 substitution in
Eq. (45) of Ref. [25]. The derivation of this term is
presented in the Appendix and the result is

2aei(m, —
mN )

H
3M2p2c 2

1r =p+R-
P P 2 2

U V

m
p„=~„+ "P+

pp'P 77p p
M m 2M

X XP XX' XXP 1
'

p

2 2m„nUn&' 'p'
(21)

(22)

X„X(nqXP)
s =X-

2m„Mc' f dp W"',r„ (23)

where r„, p„, and s„are the constituent position, momen-
ta, and spin variables, respectively, and p„, m„, and X„
are the internal position, momenta, and spin variables.
The position and momentum variables of the center of
mass are denoted by R and P. The interaction-dependent
part of the Lorentz boost operator (W"') for the two-
body case was found by Sebastian and Yun [16] to be

~(1) 1 2 P1 P2
(24)2c' I},—p21

The matrix elements of the resulting interaction Ham-
iltonian contains factors of R and P. Matrix elements of
R in states of definite momenta are ambiguous. There-
fore, before we get to the P~O limit we must take the ex-

pectation values of these operators using a symmetric
normalized wave packet:

1
e

—R /2A, (25)

which in the A, —+ ao limit is equivalent to the p=O plane
wave. Once this is done we get an unambiguous operator
(H +HI ) in the P =0 frame. It is important to note that
we can use this procedure because the use of the
Krajcik-Foldy relations ensure that the generators of the
Poincare group (in particular the Hamiltonian and the
Lorentz boost operator) can be written in their single par-
ticle form [21]. Consequently, the atomic wave functions
of definite total momentum P can be written as the prod-
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uct of a plane wave and the internal wave functions.
For the case of hydrogenlike atoms of nuclear spin

I and electronic spin S, we set X,=S, =o., /2,
Xz=I=crN/2, n&=n, m'z= —m, p&=(mN/M)q, and
pz= —(m, /M)q, where q=p, —p~. Equations (6)—(14)
retain their same form and now Eq. (15) becomes

Ze me 1 2IIp= —m. — BX ~ q —
2 2

m q2c mN 4M c

+H. c.

mN

e mN 1 2
m

II, =++ BX ~ q- m- q2c m 4M c m m,
I Xw

1
S, —

2Mm, c mN

+H. c. Ze+ (m~ —m, )2c2 q
(27)

me I Xm+ 1
S, —

2Mm, c mN

Ze+ (m~ —m, )+
2M2 2

q
(26)

After some algebra the linear Zeeman Hamiltonian can
be extracted from Eqs. (6)—(14), (26), (27), (19), and (20).
Choosing the z axis along the direction of the magnetic
field, we obtain

r/LBL, +risBS„+rilBI,+ri Bq, +re~ +y B, (28)

e
IL

mN

Zm, me
1 — +(Z —1)

M

772

2M c

mN

me

me

mN

me
1 —Z

mN

mN me
+M —Z

m, mN

Ze~ 1 2(1 —Z)m,

2cg[M (29)

e
Qs

meC 4c m, NM, M 4qc

2Z(1+a, ) + [2Z —1+2(Z —1)a, ]
mN

(30)

—Ze m 2Z Z 1 e
II '

N
mNc 4Zc mN mNM m, M 4qc m,mN

Z(1+2a~) 2(1+a~)
+ [2—Z+2(1 —Z)a~]

e
q m, c

Ze~ 1 (1+2a, ) 2Z(1+a, )
(S, q) + [2Z —1+2(Z —1)a, ]

4C q me mN M

(31)

Ze 1 m,+ (I q)
4C2 q3 memN

Z(1+2az) 2(1+a&)
+ [2—Z+2(1 —Z)a„] (32)

e 1 Z 1
(S,.m) +

m c 4c
' mNM, M

2Qe

m e

me
(I m)

4c mN

Z 1-.M+-, M

2ZQN

2 7

mN
(33)

hei dk
xz

4m, c Jo 1+2k/m, c

& n/n-„/n') & n'fm, /n )
k +DE„„

2aei (m, —mz )+ dkg
3M p c o ~ k+~E C. C. (34)

In Eqs. (28)—(34) L=q Xm. The evaluation of HI3
+HI4=g, B is outlined in the Appendix. This interac-
tion turns out to be proportional to L, . This is to be ex-
pected since it must be proportional to the z component

I

of a vector operator and it is a spin-independent interac-
tion acting in the LmL subspace. Using these results we

can write
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Hr3+Hr4 Bg, =a(n, L, mr )L, ,

where
a(n, L, —mr )= —a(n, L, mr )

and the coef5cients are
a (2, 1, 1)=2.3203 X 10 MHz/G,

a(3, 1, 1)=5.5292X10 MHz/G,

a (3,2, 1)= 1.9964 X 10 MHz/G,

a (3,2, 2)= 1.9965 X 10 MHz/G,

(35a)

(35b)

(35c)

for hydrogen. Positronium has no orbital magnetic mo-
ment and y, vanishes in this case.

For neutral systems Eqs. (28)—(33) (neglecting the g,
term} are in agreement with the interaction Hamiltonian
of Grotch and Hegstrom [10] to order a(Za) and all or-
ders in m, /m~. In fact, for neutral systems we can ob-
tain Eqs. (6)—(14) with (26) and (27) [and consequently
(28)—(33)] by making a unitary transformation of the
Hamiltonian of Grotch and Hegstrom [10] [Eqs. (40} and
(41) of Ref. [10]]with the following unitary operator:

ie m~
U=exp —(r, —rN) BX n q4 4Mc

me
+H. c.

1 e8—
Mm, c'

m
I Xn+ (mrs —m, ) +H. c.

2M c
(36)

It is well known that two Hamiltonians which are uni-

tarily equivalent have the same energy eigen values.
Thus, as we shall see below, for neutral systems, we ob-
tain the same results as Grotch and Kashuba [9] for the

gJ and gz factors of hydrogenlike atoms of nuclear spin —,
'

and we obtain the same results as Lewis and Hughes [12]
for the energy eigenvalues of positronium.

The results of Grotch and Kashuba [9] and of Grotch
and Hegstrom [10] are strictly only correct for neutral
systems or for Z=1. For charged systems Grotch and
co-workers point out that there are additional "small
corrections" to their results [10]. This is true because the
unitary transformation which they use to eliminate the
center-of-mass dependence of the Hamiltonian is only
correct for neutral systems. The additional terms that
are introduced for Z+1 in our linear Zeeman Hamiltoni-
an [Eqs. (28)—(34)] beyond those in the aforementioned
work are as large as (Za) m, &

and a(Za) m, /m& and

are found in r1L, g„gr, and g~ [compare with Eq. (43) of
Ref. [10] and Eq. (1) of Ref. [9]]. However, when the ex-
pectation values of the mand 1/q .operators are taken us-

ing the reduced mass, fortuitous algebraic cancellations
eliminate the contribution of these terms to the g factors
such that the g factors obtained here agree with those ob-
tained by Grotch and Kashuba [9] to at least order
a(Za) m, /mrs for all atoms. This seems to support the
claim of Ref. [10] that the e8'ect of these additional terms
for hydrogenlike ions are small [10].

Setting mN=m, and a&=a, in Eqs. (28)—(33) we can
write the linear Zeeman Hamiltonian for positronium as

an of Grotch and Kashuba [9] and of Lewis and Hughes
[12]with the unitary operator of Eq. (36) with m, =m~.

III. THE gq AND g~ FACTORS

where J=S,+L is the total electronic angular momen-
tum and F=J+I is the total angular momentum of the
atom. The g~ and gz factors will be independent of mF.
Therefore, we may evaluate Eq. (38) with mF=F. Ex-
panding Eq. (38) for the gr factor we can write

—Ze F(F+1)+I(I+1)—J(J+1)
2m~c 2(F+1)

= (nFFJL~qrI, +rr~q, +g'm; ~nFFJL ), (39)

where g' consists of only those terms in g [Eq. (32)]
which contain the (I q) factor and g'„consists of only
those terms in g [Eq. (33)] which contain the (I n ) fac-
tor. The terms in H~ which contribute to gJ act only in a
(J,m J ) representation and gr can be evaluated in this rep-
resentation such that

Taking the same approach as Grotch and Kashuba [9]
we can use the projection theorem to define the gz and gJ
factors in the ~nFmr; JL ) representation:

(nFmFJL ~Hr ~nFmFJL )

e ZeF r L gJ grI B nFm~JL
2m, c 2mzc

eBH =
m, c gJJ=(nJJLS, ~gr L, +g,S, +vjq,

2mec

e 1 3(1+a, ) — ———
~ (S„I,)—mc q 4mc

e 1+ [(S,—I) qq, ]
8m, q

1
z (2a, —1)[(S,—I).n.m; ] . .

4m c
(37)

We can obtain Eq. (37) from the positronium Hamiltoni-

+q'„'mz+a(n, L, mr )Lz~nJJLS, ), (40)

where gz' consists of only those terms in g~ [Eq. (32}]
which contain the (S, .q) factor and g'„' consists of only
those terms in g [Eq. (33)] which contain the (S, .m. ) fac-
tor.

Since mL is not a good quantum number in the
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~JmJLS ) = g g ~LmLSm, )(Lmi Sm„JmJ ) . (41)

~nJmzLS, ) representation the a (n, L, mL )L, terms in Eq.
(38) require special treatment. Setting S =S, we write
the expansion

(nFFJL~(l. n )m, ~nFFJL )

n
I I~ ~ I~

n I(F+1)
mL m

We can express these contributions to the gJ factor as

gz= g g ~( JJ;Lml S,m, )
~ mi a (n, L, mL ),1

J

(42)

where ps is the Bohr magneton. The a (n, L, mL)

coefficients were given by Eqs. (35b) and (35c). The ma-
trix elements of other operators which act only in either
the (I,mi ) space or the (J,m J ) space can easily be evalu-
ated to get

The matrix elements of (I q) implicit in Eq. (46) do not
have explicit expressions for arbitrary I. Therefore, we
must choose a specific value for the nuclear spin.
For nuclear spin —', (I.q)(q. F)= —'+(I.q)(q. S, ) and

(I n)(m"F)=n. /4+(I m)(m"S, ). The last two terms in

these expressions are scalar products of vector operators
which act in separate spaces [(Jmj), (I,mi)]. Using 6j
symbols they can be evaluated to get

FPJL PPJL
)(F +1)q

(nJJLS, ~Lz~nJJLS, )

( nJJLS, /S, /n JJLS, )

J(J+1)+L(L+1)—S,(S, +1)
2(J+1}

Z 2 J I F' " +( —1)'+'"
4(F+1) I J 1

X&I~~I~~I& F',
J(J + 1) L(L + 1—)+S,(S,+ 1)

2(J+1) (43) (
FPLL nFFJL)(F+1)

nJJLS, ~
nJJLS,

q

(pZac/n) +( 1)1+I+p
2 J I F

4(F+1) I J 1

(S, q)(q J)
nJJLS,

(J+1)

&nJJLS, I(S, ~)~, lnJJLS, &

nJJLS,
cpZa/n
4(J+1)

&«Jll'llJ &&IIIIIII & F+,

where (J~~s~~J), (I~~I~~I) and (J~~s'~~J) are reduced ma-
trix elements obtained from q(S, q)/q, I, and m(S, m),

respectively. The reduced matrix elements are found to
be

(nJJLS, ~(S, n)(n J) nJJLS, ) (c&Za/n)2
(J+1) 4(J+1)

(44)

F(F+1)+I(I+1)—J(J+1)
2(F+1)

where use is made the fact that

Z 2

(J(~s[~J)= (2J+1)'/ [J(J+1)]
4

(J((s'([J)= (2J+1)' [J(J+1)]
4

( I ~~I ~~I ) = [(2I +1)I(I + 1 }]'

(48)

1
(m ) ={cpZa/n}, —=cpZa/n (45)

The 6j symbols can be found in Ref. [26].
Using Eqs. (38), (39), (32), (42), (43}, (47), and (48) the

linear Zeeman Hamiltonian for hydrogenlike atoms of
nuclear spin —,

' can be written as

We also have

2m, c '
F(F+1)+J(J+1) I(I+1)—

2F(F +1)
nFFJL nFFJL

and

FPJL ~ ~ FFJL)(F+1)q (46)

Ze F(F+1)—J(J+1)+I(I+1)
2m~c 2F(F +1)

XF-B,

with gJ and gi given by

(49)



49 RELATIVISTIC CORRECTIONS TO THE ZEEMAN EFFECT IN. . . 199

J(J+1)+L(L +1)—S,(S,+1)
2J(J+1)

Zme m,+(Z —1) +
m~ me

me me
1 —Z

m~

+M
mz m,2—Z

2 3m, m&

2(1—Z)m,+f
M

J(J + 1) L(—L + 1)+S,($, + 1)

J(J+1)

me

pK 2 Z + 1

2 m, m~M mM

(1+2a, ) 2Z(1+a, ) + [2Z —1+2(Z —1)a, ]
2 M

4J(J+1}
(1+2a, )

me

2Z(1+a ) 1 Z 1 2a,+ [2Z —1+2(Z —1)a, ] —p +
m~ M ' m~M mM m,

.+gJ, (50)

gt =2(1+a~)+ + +op, 2Z Z 1

mN mN me

Z (1+2atv ) 2(1+a~ ) + [2—Z+2(1 —Z)a&]
2 m~ m, M

+ F(F+1}+J(J+1} I(I+1—)

4J(J+1)Z F(F+1)+I(I+1)—J(J+1)
Z(1+2az) 2(1+a&) Z 1

X + [2—Z+2(1 —Z}a~] —p +
m, M m~M m, M

2ZQg
2m~

(51)

where s= p/2(Za—/n) is the nonrelativistic binding
energy. To be consistent to order a we must use

a, =a/2m for the value of the anomalous magnetic mo-

ment parameter in the relativistic part of the interaction
Hamiltonian and a, =a/2m —0.328478965(a/n )

+ l. 176 11(a/m ) for the corresponding value in the non-
relativistic part. This last value for a, (to order a ) is the
latest CODATA [27] recommended value. The most re-
cent CODATA recommended values for the fundamental
constants were used for all of the numerical calculations
of this paper [28] including the calculation of the results
of other work for comparison. We have no other choice
than to use the experimental value for the nuclear anoma-
lous magnetic moment parameter. The above g factors
for hydrogenlike atoms of atomic number Z and nuclear
spin —,

' are correct to order a(Za) and all orders in

m, /m&. The results of Grotch and Kashuba [9] are
verified after expanding the above g factors in terms of
the small parameters m, /m~, s/m„s/mz, a„and a~
and keeping terms only of the first order in m, /mz.

In Table I the numerical values for the gJ and gr fac-
tors for all of the n=1, 2, and 3 states of hydrogen using
Eqs. (50) and (51) above are compared with the expres-
sions for the g factors to order a m, /mN given by
Grotch and Kashuba [9]. Excluding the efi'ect of gJ the
results presented here are in agreement with the work of
Grotch and Kashuba [9] to within one part in 10"—10' .
This is to be expected since Grotch and Kashuba have
expanded their g factors to terms of order
a m, /m& = 10 " and our g factors are correct to all or-
ders in m, /m&. The effect of gj is small and is seen to
manifest itself at the 10 7 and 10 levels for the LAO

n =2 and 3 states, respectively.
There are two experimental quantities which are of

principal interest. These are the ratio of the electronic to
nuclear g factors for the ground state of hydrogen and
the ratio of the electronic g factor of the 1S state of hy-
drogen to that of the 1S state of deuterium. These quan-
tities are listed in Table II and are compared with previ-
ous works. All the results presented in Table II are in ex-
cellent agreement with the results of Hughes and Robin-
son [29], who experimentally determined the hydrogen-
deuterium g-factor ratio to be 1+(7.2+1.2) X10 . They
are in slight disagreement with the results of Larson, Val-
berg, and Ramsey [30], who obtained 1+(9.4+1.4)
X10 . The electron-proton g factor ratio in Table II
can be used as a theoretical correction to the measured
value of gzmz/gtm, . Moreover Winkler et al. [31]have
measured this to be 658.210706(6). We are in excellent
agreement with this result and obtain g~mtt /gzm,
=658.210 710.

IV. THE POSITRONIUM g FACTOR

The Zeeman Hamiltonian for positronium [Eq. (37)] is
a function of the difference between the spins of the elec-
tron and of the positron. The representation chosen for
positronium is usually the ~Fm~LS ) representation,
where S is the total spin angular momentum and
F=L+S is the total angular momentum. In this repre-
sentation the total Hamiltonian (nonrelativistic and rela-
tivistic corrections and the linear Zeeman Hamiltonian}
is diagonal in mF which is a "good" quantum number.
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TABLE I. The gJ and gi factors for hydrogen. The first row of each entry is the result of this work.
The second row of each entry is the result of Ref. [9].

State

1S&/2 F=O

1S)/2 F=1

2S)/2 F=O

2S)/2 F=1

2Pi/2 F=o

2P)/2 F=1

2P3/q F= 1

2P3/2 F=2

3S~/z F=O

3S)/2 F=1

3P&/z F=O

3P]rz F=1

3P3/2 F=1

3P3/2 F=2

3D3/2 F= 1

3D3/2 F=2

3D5/z F=2

3D5/2 F= 3

2.002 283 8S2 451
2.002 283 852 483
2.002 283 852 451
2.002 283 852 483
2.002 310440 943
2.002 310440 951
2.002 310440 943
2.002 310440 951
0.665 158 751 846
0.665 158 530 813
0.665 158 751 846
0.665 158 530 813
1.333 736 376 777
1.333 736 266 263
1.333 736 376 777
1.333 736 266 263
2.002 315 364 738
2.002 315 364 741
2.002 315 364 738
2.002 315 364 741
0.665 163 468 623
0.665 163 463 358
0.665 163 468 623
0.665 163 463 358
1.333 740 207 961
1.333 740 205 331
1.333 740 207 961
1.333 740 205 331
0.798 879 446 106
0.798 879 444 777
0.798 879 446 106
0.798 879 444 777
1.200025 129 371
1.200 025 128 232
1.200 025 129 371
1.200025 128 232

5.585 546 196562
5.585 546 196659
5.585 595 721 693
5.585 595 721 773
5.585 657 628 141
5.585 657 628 165
5.585 670 009 423
5.585 650009 443
5.585 657 628 140
5.585 657 628 164
5.585 670 009 423
5.585 650 009 443
5.585 645 246 858
5.585 645 246 886
5.585 665 056 910
5.585 665 056 931
5.585 678 263 618
5.585 678 263 628
5.585 683 766 410
5.585 683 766 419
5.585 678 263 618
5.585 678 263 628
5.585 683 766 410
5.585 683 766 419
5.585 672 760 826
5.585 672 760 838
5.585 681 565 293
5.585 681 565 303
5.585 672 760 826
5.585 672 760 838
5.585 681 565 293
5.585 681 565 303
5.585 674 961 942
5.585 674 961 954
5.585 657 628 140
5.585 657 628 164

2.21040

2.21040

1.105 20

1.105 20

0.052 67

0.052 67

0.026 33

0.026 33

0.013 31

0.013 31

0.011 41

0.011 41

The linear Zeeman Hamiltonian connects states with
hS =+1, AL =0,+2. Therefore, we can define a g factor
for the ground state as

5o,
g =2 1+a~

24

a2

24
(53)

(1 S,m =O~H ~1'S m =0)

=pqg (1'S,mF =0~(S, —I) B~ 1 'SomF=0) . (52)

Using H of Eq. (37) we get the same results as Grotch
and Kashuba [9] and Lewis and Hughes [12]:

This g factor is needed by experimentalists to determine
the hyperfine-structure separation in the ground state of
positronium. The separation v = S&

—'So is measured

by inducing a transition between the mF =0 and +1 lev-

els of orthopositronium. The frequency of this transition
is given from degenerate perturbation theory as [9]

TABLE II. g-factor ratios of experimental interest. f =
—,'u{[1+(4p~B g /u )]'~2 —1] . (S4)

Author(s)

This work
Grotch and Kashuba'
Faustov
Close and Osborn'

'Reference [9].
Reference [13].

'Reference [14].

gJ(H, 1s) g~

gr(H, ls) g

2.7724 x 10-'
2.7726 x 10-'
2.7820 X 10
2.7791 x 10-'

gJ(H, 1s) —1
gJ(D, 1s)

7.2209 x 10-'
7.2328x 10 '
7.2324 x 10-'
7.2211 x 10-'

The experimentalists determine u by measuring f and B
and correcting for f due to annihilation [32]. The most
recent experiments use the g factor of Eq. (53) to obtain a
measured value of u =203.38910(74) GHz with one ex-

perimental standard deviation being 3.6 ppm of the deter-
mined value [32].

V. THE ZEEMAN SPI.ITTINGS

The nonrelativistic internal Hamiltonian h' ' and its
first-order relativistic correction h ' "are given by
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n

P
(0) —y & + U(0)

2m'

n

I (()— y + U())
i 8m„c3 2

P=0

(55)

where U' ' is simply the Coulomb interactions between
the constituent particles. %e shall take U"' to be pri-
marily given by the well-known Fermi-Breit interaction
[21,22]. The Fermi-Breit interaction includes all of the
(Za) contributions to the zero-field energy-level split-
tings and with the phenomenological introduction of the
anomalous magnetic moments of the constituent particles
it also includes some of the a(Za) contributions and
even terms of order a (Za) coming from terms which
contain the product of the two anomalous magnetic mo-
ment parameters. All the bound-state corrections of or-
der a have not been evaluated at this time and the
a (Za) terms will not be retained. All of the a(Za)
contributions for the n = 1 and 2 levels of a two-body sys-
tem have been computed by Fulton and Martin [33]. It is
a simple matter to generalize their results for n=3 and
add these corrections to the Fermi-Breit interaction with
anomalous magnetic moments so that we are correct to
order a(Za) inclusive for the first three levels of hydro-
gen and positronium. The results of Fulton and Martin,
however, are not correct for n%2 S states [34]. The
correct results can be obtained from Eq. (3.9) of Gupta,
Repko, and Suchyta [34]. The numerical values of the
corrections of order a(Za) which must be added to the
Fermi-Breit interaction with anomalous magnetic mo-
ments are listed in Table III.

Furthermore, if a proper analysis of hydrogen in the
inFm+JL ) representation is to be presented we must ac-
count for the Lamb shift. Comprehensive analyses of the
Lamb shift have been given by Erickson and Yennie [23]
and Brodsky and Erickson [24). The a(Za) contribu-
tions of Fulton and Martin [33] and Gupta, Repko, and
Suchyta [34] contain some of the relativistic and recoil
corrections to the Lamb shift. In addition there are vacu-
um polarization corrections, reduced mass corrections,
higher-order radiative corrections, and finite nuclear
charge distribution corrections [23]. Additionally, Bhatt
and Grotch [35] have worked out the radiative recoil
corrections of order a(Za) m, /m)v. More recently Don-

U„"'= (S) 5 (q) .
e

(56)

The linear Zeeman Hamiltonians were presented in
Eqs. (28)—(34} and (37). The lowest-order nonrelativistic
quadratic Zeeman Hamiltonian for hydrogen (we will call
it Hp) can also be obtained from Eqs. (6)—(14), (26), and
(27}:

Hg =
2 q —', &4m I'(g — —I'20g

8m c ' &5
(57}

where Yoo and Y20 are spherical harmonics. The quadra-
tic interaction for positronium is Hp/2.

Here we use h'"+HI +HI~ in degenerate perturbation
theory to remove the degeneracy among the eigenstates
of h ' '. The evaluation of the matrix elements of
h'"+HI +Hi~ is straightforward and the Hamiltonian
matrix is diagonalized with the method of Jacobi rota-
tions [37].

Figure 1 displays the Zeeman splittings for the N=2,
J=

—,
' levels of hydrogen. The energy eigenvalues for the

m+=0, F=0,1, 2 S&i2 and 2 P&i2 states of hydrogen are
listed for incremental values of the magnetic field in
Table V. The results that are presented here to eight
significant digits are extremely accurate. The n=2 Lamb
shift calculated here is 1057.845(11) MHz, in excellent
agreement with the measured value of 1057.845(9) MHz
of Lundeen and Pipkin [38]. Likewise the fine structure
(2P3i2-2P(1&=10968.679 MHz) and the 1S hyperfine
structure given by 1420.474 MHz are accurate to order
(z(Za) . Similar tables listing all of the states of hydro-
gen up to n=3 have been deposited with the Physics
Auxiliary Publication Service (PAPS) [39].

Figure 2 displays the Zeeman structure of the n =2 lev-

cheski, Grotch, and Erickson [36] have calculated all the
pure recoil corrections to order (Za) m, /m)v. All of
these corrections to the zero-field splittings of hydrogen
will be included to reAect the current knowledge of the
hydrogen spectrum. The numerical corrections which
must be added to the Fermi-Breit interaction with anom-
alous magnetic moments and a(Za) corrections of Table
III are listed in Table IV. Finally, we must include the
lowest-order annihilation interaction in the case of posi-
tronium:

State
Hydrogen

AE (MHz)
Positronium

State hE (MHz)

TABLE III. The a(Za) corrections to the Fermi-Breit in-

teraction with anomalous magnetic moments.

State hE (MHz)

TABLE IV. Lamb-shift corrections for hydrogen not includ-
ed in Table III and the Fermi-Breit interaction with anomalous
magnetic moments.

1S]/2 F=0
1S,/2 F=1
2S]/2 F=0
2SIn F=1
2P
3SI /2 F=0
3Si/2 F=1
3P
3D

8117.4516
8117.4371
1037.9762
1037.9744

4.0519
309.3229
309.3223

1.2005
1.2057

1SO

1SI
2SO

2SI
2P
3SO

3S,
3P
3D

2840.3741
1563.5894
370.0832
210.4851
—2.9075
110.7449
63.4566

—0.8615
0.3108

1S I/2
2S l /2

2P I /2

2P3/2
3S1/2
3P I /2

3P3/2
3D
3D5/2

712.474 981
89.084 398
44.110156
14.470 424
26.385 697
13.071 087
4.288 216
6.606 627
0.472 626
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el positronium. The Zeeman shifts for the 2'P, and
2 Po states of positronium are presented in Table VI for
comparison with the works of Grotch and Kashuba [9]
and of Lewis and Hughes [12]. When comparing the re-
sults presented in Table VI with the work of Grotch and
Kashuba [9] it is important to remember that the latter
authors determined the zero-field splittings only to order
a while Lewis and Hughes [12] determined the zero-field
splittings to order a, as was done here. The results
presented here are in exact agreement with the results of
Lewis and Hughes [12], but are presented to three more
significant digits. We note that the eigenvalue tables of
Lewis and Hughes [12] are not precise enough to display
the relativistic corrections to the Zeeman e6'ect. Tables
similar to Table VI for all of the n= 1, 2, and 3 states of
positronium can also be found in the PAPS deposit [39].

VI. SUMMARY

The linear Zeeman Hamiltonian for hydro genlike
atoms derived here and presented in Eqs. (28)—(34) are
correct to order a(Za) and correct to all orders in
m, /mN. This Hamiltonian includes previously neglected
radiative corrections of order a(Za) (m, /m~)~
(q =0, 1, . . . , ~ ) and recoil corrections of order
a(Zu) (m, /mz)~ (q =1, . . . , ~ ). These additional con-
tributions are seen to be important only for hydrogenlike
atoms, most notably for the 2P states in which they are of
the order of 10 MHz/G. Neglecting these new contri-
butions we find that our Hamiltonian for neutral atoms in
the presence of a uniform magnetic field (8) is unitarily
equivalent to the Hamiltonian of Grotch and Hegstrom
[10] to first order in 8. In addition, there are contribu-

TABLE V. Zeeman levels for the mF=O, F=0.1; 2 S]/& and 2'P]/& states of hydrogen. Energy list-
ed in 10 Hz.

2S]/2
2P] /2

0
200
400
600
800

1 000
1 200
1 400
1 600
1 800
2 000
2 200
2 400
2 600
2 800
3 000
3 200
3 400
3 600
3 800
4000
4 200
4400
4 600
4 800
5 000
5 500
6000
6 500
7 000
7 500
8 000
8 500
9 000
9 500

10000

—12.635 948
—12.841 548
—13.115493
—13.393 856
—13.673 366
—13.953 339
—14.233 545
—14.513 883
—14.794 304
—15.074 780
—15.355 295
—15.635 838
—15.916402
—16.196982
—16.477 574
—16.758 176
—17.038 787
—17.319404
—17.600 026
—17.880 653
—18.161 283
—18.441 917
—18.722 553
—19.003 192
—19.283 833
—19.564 475
—20.266 087
—20.967 706
—21.669 329
—22.370 955
—23.072 583
—23.774 212
—24.475 842
—25.177 472
—25.879 102
—26.580 731

—12.458 389
—12.252 788
—11.978 842
—11.700 477
—11.420 965
—11.140 989
—10.860 780
—10.580 437
—10.300 011
—10.019 529
—9.739 008
—9.458 458
—9.177 886
—8.897 298
—8.616697
—8.336 085
—8.055 463
—7.774 836
—7.494 202
—7.213 563
—6.932 920
—6.652 272
—6.371 622
—6.090 968
—5.810312
—5.529 653
—4.827 997
—4.126 331
—3.424 656
—2.722 973
—2.021 285
—1.319591
—0.617 892

0.083 811
0.785 518
1.487 229

—13.693 792
—13.763 851
—13.859 954
—13.960 884
—14.065 624
—14.174 014
—14.286 039
—14.401 726
—14.521 107
—14.644 218
—14.771 090
—14.901 749
—15.036 213
—15.174 494
—15.316 595
—15.462 511
—15.612 229
—15.765 728
—15.922 979
—16.083 944
—16.248 581
—16.416 837
—16.588 655
—16.763 974
—16.942 723
—17.124 830
—17.594 275
—18.082 932
—18.589 438
—19.112407
—19.650 466
—20.202 289
—20.766 621
—21.342 290
—21.928 213
—22.523 402

—13.634 629
—13.567 766
—13.481 248
—13.396 284
—13.313 877
—13.234 167
—13.157 142
—13.082 747
—13.010908
—12.941 547
—12.874 583
—12.809 933
—12.747 514
—12.687 246
—12.629 049
—12.572 844
—12.518 557
—12.466 112
—12.415 439
—12.366 468
—12.319 131
—12.273 364
—12.229 105
—12.186 294
—12.144 872
—12.104 784
—12.010056
—11.922 565
—11.841 613
—11.766 577
—11.696 897
—1.632 074

—11.571 662
—11.515 261
—11.462 514
—11.413 101
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FIG. 1. Zeeman structure of the n=2, J=
—,
' states of hydro-

gen. The numbers in parentheses are the quantum numbers

(F,mr ). Nondegenerate traces which appear as one are labeled
with the higher-energy state above the lower energy state.

tions for hydrogenlike ions (Z%1) of order a m, /mz
and a m, /mN which are not included in the previous
work [10]. However, when we take the matrix elements
of these terms using the reduced mass, these contribu-
tions are seen to result in negligible corrections to the re-
sults of previous work which are smaller than a m, /m~.

Setting m, =m& and a, =a& the linear Zeeman in-
teraction for positronium is obtained and is seen to be un-
itarily equivalent to the positronium Zeeman Hamiltoni-
an obtained by Grotch and Kashuba [9] and by Lewis
and Hughes [12].

The g factors presented in Sec. III are correct for all
states of a two-body system of spin- —,

' particles with arbi-
trary atomic number Z. Excluding the effect of gJ, the g
factors presented here agree with the g factors of Grotch
and Kashuba [9] to one part in 10"—10' . The
electronic-nuclear g-factor ratio for the ground state of
hydrogen and the hydrogen-deuterium electronic g-factor
ratio are consistently found to be =(1+2.8) X 10 and
=(1+7.2)X10, respectively, in any theoretical work
on the Zeeman effect.

The tabulated results of the Zeernan shifts presented in
Sec. V are extremely precise and are correct to order
a(Za) and to all orders in m, /m&. It is the first time
that such results have been computed for the n= 3 states

FIG. 2. Zeeman structure of the n=2 states of positronium.
The mF quantum numbers are indicated.

of hydrogen and positronium as far as we know. These
results reQect the current knowledge of the zero-field
structure of both hydrogen and positronium which is
correct to order a(Za) and further utilizes the current
theoretical knowledge of the Lamb shift in the case of hy-
drogen.

APPENDIX

pi

me

P&

1 e
P, +—BXre

m 2

p~ BXI'N
e

(A 1)

After retaining terms linear in the magnetic field, using
the relations

In this appendix we show how we obtained the recoil
correction in Eq. (20) and outline the evaluation of y,8
from the sum of HI3+HI4. The reader is referred to Ref.
[25] to see that we only need to consider the exchange of
a single transverse photon between the electron and the
nucleus in the presence of a constant external magnetic
field to obtain the recoil correction for single-photon ex-
change. Introducing the magnetic field in the analysis of
Ref. [25] is simply achieved by making the following sub-
stitution in Eq. (45) of Ref. [25]:



JOHN M. ANTHONY AND KUNNAT J. SEBASTIAN 49

&nlBXr, ln'&=
b &nlBXp, ln'&

m, hE„.„ n'

&nlvr„ln'&&n'le ln &

k +AF.„.„
—c.c.

m~hE„„

summing over the polarization index (i), and integrating
over the photon wave-vector direction we obtain Eq. (20).

To evaluate the radiative and recoil corrections of Eq.
(34) we first make use of the commutation relations be-
tween r, and h' ' and rz and h' ' implicit in the deriva-
tion of Eq. (A2). We then get

p'bE„', „&nlq„ln'&&n'q, ln &

khE„„
—c.c. . (A3)

Expressing q and q in terms of the spherical com-
ponents of q and using the Wigner-Eckart theorem the
right-hand side of Eq. (A3) becomes

ip bE„.„—lnLm, =Olq, ln'L'm, =0&
l

k +bE„,„&L'0;10LO&&LO; 10L'0&
1

X(&L'mI', 11Lm& &+&L'm &, 1 —1Lm& &)
' . (A4)

TABLE VI. Zeeman levels for the 2 'P& and 2 'Po states of positronium. Energy listed in 10 Hz.

B (G)

0
200
400
600
800

1 000
1 200
1 400
1 600
1 800
2 000
2 200
2 400
2 600
2 800
3 000
3 200
3 400
3 600
3 800
4 000
4 200
4 400
4 600
4 800
5 000
5 500
6 000
6 500
7 000
7 500
8 000
8 500
9 000
9 500

10000

'P, MF= —1

—3.538 612
—3.515 649
—3.461 755
—3.402 207
—3.351 026
—3.311 343

3.281 706
—3.259 720
—3.243 286
—3.230 837
—3.221 258
—3.213 770
—3.207 829
—3.203 048
—3.199 151

3.195 935
—3 ~ 193254
—3 ~ 190995
—3.189075
—3.187 429
—3.186006
—3.184 769
—3.183 684
—3.182 728
—3.181 880
—3.181 124
—3.179 552
—3 ~ 178 320
—3.177 328
—3.176 508
—3.175 816
—3.175 219
—3.174 694
—3.174 224
—3.173 796
—3.173 400

'P, MF=O

—3.538 612
—3.603 977
—3.778 712
—4.020 549
—4.294 163
—4.576 953
—4.855 340
—5.121 143
—5.369 471
—5.597 618
—5.804436
—5.989 927
—6.154 914
—6.300 769
—6.429 177
—6.541 951
—6.640 898
—6.727 728
—6.804 011
—6.871 148
—6.930 371
—6.982 751
—7.029 211
—7.070 544
—7.107 427
—7.140439
—7.209 110
—7.262 480
—7.304 648
—7.338 466
—7.365 951
—7.388 555
—7.407 341
—7.423 101
—7.436 433
—7.447 793

'P) MF =+1
—3.538 612
—3.515 649
—3.461 755
—3.402 207
—3.351 026
—3.311 343
—3.281 706
—3.259 720
—3.243 286
—3.230 837
—3.221 258
—3.213 770
—3.207 829
—3.203 048
—3.199 151
—3.195 935
—3.193254
—3.190995
—3.189075
—3.187 429
—3.186006
—3.184 769
—3.183 684
—3.182 728
—3.181 880
—3.181 124
—3.179 552
—3.178 320
—3.177 328
—3.176 508
—3.175 816
—3.175 219
—3.174 694
—3.174 224
—3.173 796
—3.173 400

Po MF=O

—10.850 855
—10.865 188
—10.908 346
—10.908 775
—11.083 133
—11.216 160
—11.380 520
—11.576 624
—11.804 464
—12.063 505
—12.352 644
—12.670 256
—13.014 304
—12.382 485
—13.772 380
—14.181 592
—14.607 833
—15.048 998
—15.503 189
—15.968 724
—16.444 135
—16.928 147
—17.419 661
—17.917733
—18.421 551
—18.930418
—20.220 953
—21.532 218
—22.859 114
—24.198019
—25.546 315
—26.902 073
—28.263 845
—29.630 527
—31.001 267
—32.475 394
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Using q, =q(4'/3)' 1', p, splitting the sum over states into its discrete and continuous parts, using Eq. (5.1.7) of Ref.
[40], using the hydrogen wave functions in the coordinate representation, and integrating over all space we obtain for
the bound states

1&nLm, =Olq, ln L m', =0) I'

=(L'0;10LO) (LO;10L'0)
3 3(n'+L')! (n +L)!4n'n

n —L —1 n' —L' —1

o=0 p=0
X g g ( —1)'+P (n+L)! (n'+L)! (L+L'+o+p+3)!

(n L ——1 —o)!(n' —L' —1 —p)!o!p!(2L'+1+p)!(2L+ 1+o)!

. —tL+L+4+o+p)-
n

X —+
2 2n

L'+p 2
l n'
4n' (A5)

2nz/k mz/k ~ L

f '
xq( + k)l. +iz/k( k)1. iz/kd-

(2k) I (L+1) 2 —ik
it'. ,l, (q i) 0)= I'L.

,
(ii 4)

L Z2
2 Zg 1+

i=1 l E,

The most convenient form of the hydrogen wave functions for the unbound states is given in Ref. [41]:
1/2

(A6)

where k =&a and the product is replaced by unity for
I.=O. These wave functions are normalized such that

E2 ~1
= E1 62 (Aj)

2n /k

48m

1/2 ~/k

2

The sum over n' is now replaced by an integral over
the energy parameter c.=k =2E. Integration over
the angular coordinates produces the factor
(L'0;10LO) (2LO;10L'0) as in Eq. (A5). A typical ra-
dial integral is

f, A, 4„q'dq

Modifying the contour to pass around the barrier line
connecting the branch points x =haik in the positive
sense we pick up a factor of (1—e2 '/

) and can legiti-
mately interchange the order of integration. Integrating
over dq and enclosing the resulting poles in the negative
sense we get

f ~l I

p
+2P +&z

[48( 1
—2z/k)

]
i/2

(x +ik)' "(x ik)—
XRes

(0.5 —x)'

(A9)
X f "dq f '

dx q e (P. s —x)q(x+ik)' "
0 —ik

X (x ik)— (A8)
Evaluating the residue at x=0.5 and after a little algebra
we finally obtain

—2a/&c

f $2Pp„q'dq = „.. . I(2—22E)cos(48)+(16—8)cos(28)+6(1+a)
p P zz

[48( 1 e 2w/k)]1/2 s2(0 25+a)2

+ i/a[12(1 —E)sin(48) —24 sin(28)] ], (A 10)

where 8=tan '(2V s). After evaluating the necessary radial integrals it is then possible to evaluate Eq. (A4) for any
state

l
n ). It is easier to integrate over the photon energy k before summing over the intermediate states. The integrals

can be found in tables of integrals and numerical integration is not necessary. A computer program was used to evalu-
ate the contribution from the sum over the bound states. The factorials in Eq. (A5) led to an extremely slow conver-
gence of the results and it also limited the number of intermediate states that could be included to n & 90 before reach-
ing an overflow condition. However, from the definition of oscillator strengths [f (nl, n ') ]

l (nile„ln') l

=
—,'m, (E„..—E„)f(nl, n'), (A11)

the known asymptotic 1/(n') dependence of oscillator strengths, gqp
3 [1/(n ') ]=0.076 996 and

g„' =3[1/(n') ]=0.077056, we are confident that the coefficients [o (n, L, mL )] in Eq. (35) are correct to five significant
digits.
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