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Pathologies in three-body molecular clusters when using 5-shell potentials
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In this work the calculation of the binding energy of three He atoms is carried out using 5-shell

binary potential models, hyperspherical harmonic expansions, and adiabatic approximations. The re-

sults obtained with a one 5-shell potential are well within the range of those obtained by other workers

using different techniques. The ones with the two 6-shell potentials are not. We show that attractive 5-

shells lead to pathologies in calculations of the eigenpotentials, and in the resulting binding energies-
and that those effects are expected to become more important for the two 5-shell binary potentials.

PACS number(s): 36.40.+d

I. INTRODUCTION

Noble-gas clusters have been observed experimentally
in the cases of helium [1], argon [2], and xenon [3]. Re-
cently even the very weakly bound helium dimer [4] has
been observed experimentally. Many workers have tried
to calculate the binding energies of two, three, and four
helium atom clusters using a variety of methods. Among
these have been the Green*s-function Monte Carlo
method, the variational Monte Carlo method [5], varia-
tional wave functions [5], amalgamation of two-body
correlations into the multiple-scattering process [6],
Faddeev-Yakubovsky theory [7,8], and separable approx-
imations [9] to the two-body t matrix —all of these using
various potentials [10—12]. In addition, Pandharipande,
Zabolitzky, Pieper, Wiringa, and Helmbrecht (PZPWH)
[5] and Pandharipande, Pieper, and Wiringa [13] have
used a droplet model for a number of particles 3 )4 to
calculate the binding energies per atom E!3 using the
Hartree-Fock-dispersion He-He interatomic potential
(HFDHE2) [14].

A hyperspherical harmonic (HH) approach [15—17]
has been used with considerable success in the study of
the few-body problem. We note, in the work of some of
our collaborators, the study of bound-state problems in

nuclear physics by Das, Coelho, and Fabre de la Ripelle
(DCF) [18], by Ballot, Fabre de la Ripelle, and Levinger
(BFL) [19], and by Fabre de la Ripelle, Jee, Klemm, and
Larsen (FJKL) [20], as well as selected scattering prob-
lems [21,23,24].

With respect to tke use of 5 functions, a number of cal-
culations in one dimension have been reported. In partic-
ular, McGuire [25], Yang [26], and Yang and Yang [27]
used equal-strength 5 functions for an N-body system;
they also were used by Dodd [28] for three particles. Hy-
perspherical harmonic and adiabatic results were ob-
tained by Gibson, Larsen, and Popiel (GLP) [29] for the
binding energy of the three-body system, and Popiel [30]
and Popiel and Larsen [31] showed that the first three
coefficients in an expansion of the three-body S matrix

V(r; )= Var&5(r; ro) —V—tr, 5(r; r, ) . —(2)

It should be noted that all of these 5 functions are located
off the origin.

To determine suitable values for the parameters V& and

r, in the one 5-shell case, and Vp V] rp and r, in the
two 6-shell case, we adopt the well-known Mason-Rice 1

(MR1) interatomic binary potential [33], already used by
Blatt, Lyness, and Larsen (BLL) [12] to obtain three-body
energies, which has one bound state of 0.034 K for the
two helium-atom cluster [36]. We then obtain the param-
eters for the one and two 5-shell cases, by fitting to the
wave function and the binding energy of the Mason-Rice
potential —sometimes also using details of the potential
itself —using a procedure which is described in detail in
the following section.

The fitted 6-shell potentials are then used to obtain the
binding energy of a three- He-atom cluster. To do this,
we use HH expansions to -transform the Schrodinger
equation for a cluster of three helium atoms, interacting

could be obtained exactly by an extension of these hyper-
spherical harmonic and adiabatic techniques.

Since the latter authors were able to do much of their
investigation analytically, it appears to be highly desir-
able to investigate the binding energy of clusters of He
atoms as a function of the number of He atoms by the
use of the hyperspherical harmonics method and 5-shell
interatomic potentials. It was anticipated that the 5
shells might yield, in three dimensions, the "separability"
of the matrix elements without the divergences associated
with 5 functions at the origin [32]. To set the stage for
the sections that follow, we conclude this Introduction
with a brief outline of our model and our methods of cal-
culation.

The one 5-shell model consists of a single attractive 5
function of the form for the interatomic binary potential:

V(r, )= —V, r, 5(r, r, ), —

whereas the two 6-shell model consists of two 6 func-
tions, one attractive and one repulsive:
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II. THE 5-SHELL POTENTIAL MODEL

In our approach the one 5-shell potential for a two-
body interaction is given by Eq. (1}. From the
Schrodinger equation, Hip =Ep@', the two-body equation
for the s-wave bound state is

d + V(r) Ep u—(r) =0,~ dr
(3)

where r =rp and iP = u (r)/r. Hence, if we let the binding
energy be Ep= —fi k /m, and define x =kr, we —obtain
the following reduced equation:

r

1

z
+ V(x/k)+1 u(x)=0 .dx' IEp I

(4)

Integrating this equation twice, we find that the solution
of Eq. (4) will have the form

via the 5-shell potentials, into a set of coupled differential
equations. We decouple these equations using the adia-
batic approximations (an extreme adiabatic approxima-
tion yields a lower bound to the binding energy and an
uncoupled adiabatic approximation yields an upper
bound) to obtain diagonal eigenpotentials. After carrying
out extensive analytical and numerical calculations of
these eigenpotentials, we use them to obtain binding ener-
gies by integrating the resulting uncoupled radial equa-
tions.

defines the Mason-Rice 1 potential.
We choose x

&
in such a way that the mean squared ra-

dius a, which is defined by

f [u(x)] r dr

Q x dr
0

(9)

u (x)=sinhx +8sinh(x —xp ) . (10)

By integrating Eq. (4) between xp+e, where e is very
small, we obtain the coefficient 8 so that

V0
u(x)=sinhx+ x sinhx sinh(x —x )p p p

for x0 ~ x +x I. From

has the same value for the one 5-shell potential as it has
for the Mason-Rice 1 potential. [For the 5-shell potential
the mean square radius a is a function of r, since the in-

tegration of u (x) depends on ri.] Once x& is determined
from Eq. (9) in this way, the value of V, can be deter-
mined from Eq. (6). Our one 5-shell potential is then
completely determined.

The two 5-shell binary potential, as defined by Eq. (2},
includes a repulsive 5-shell term in addition to the attrac-
tive one. In the same way as for the one 5-shell potential,
we have for the solution of Eq. (4): u(x)=sinhx for
x (xp, and u (x)=Ce "for x )xi, as in Eq. (5). In the
region between the 5 shells, xp (x ~ xi, one can write

sinhx, x +xi
u(x)= '

Ce, x~x, . (5) u(xi+e)=u(xt e) (12)

e 6
V(r, )= —e

1 —6/cz a (7)

where the constant e is the depth of the potential
minimum, r is the value of r at the minimum, and a
determines the hardness of the repulsive core. As dis-
cussed by MR, the choice of values

a=12.4, —=9.16 K, r =3.135 A,

At x=x,(:kr, )u(x)—is continuous and C=e 'sinhx, .
xlForx &x„therefore, u(x)=e 'sinhx&e

At the point x, the wave function undergoes a change
of slope. Integrating Eq. (4) between x, +e, where e is
infinitesimally small, we obtain a relation between V, and
x I of the form

V, x, coshx,=1+
I Ep I

sinhx,

We can then determine Vi, given x &, if the energy IEp I

is known. Different values have been proposed for this
binding energy. See, for example, BLL [12],Poulat, Lar-
sen, and Novaro [34], and Uang and Stwalley [35]. Here
we will adopt the value 0.034 K from the calculation of
the binding energy of two He atoms using the Mason
Rice 1 potential. The general Mason-Rice potential has
the form

at x =x I, we obtain the coefficient C so that

V0 . . -( -x)u(x)= sinhx, + xpsinhxpsinh(x —x ) e
IE I

(13)

fer x &x, .
Integrating Eq. (4) between x&+e, we get the relation

between VI and V0

V)xl

V0
coshx, +

I I

x sinhxpcosh(x, —xp)
0

Vp
sinhx, + xpsinhxpsinh(x, —xp)

Epi

(14)

The binding energy, Ep= —(A /m)k, which deter-
mines the wave number k, is to be the same as that given
by the Mason-Rice 1 potential. We can then obtain x0
(or rp} by choosing it so that for the Mason-Rice 1 poten-
tial V(xp)=0 [or V(rp)=0]. The position of x, (or r, ) is
determined in such a way that r, is Axed as the position
of the minimum of the Mason-Rice 1 potential.

As before, we have to choose V0 in such a way that the
mean squared radius a has the same value for our two
6-shell potential as for the Mason-Rice 1 potential, using
the definition, Eq. (9}. The two 5-shell potential is then
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completely defined, the continuity condition at x, , Eq.
(14), determining the value of V(.

III. HYPERSPHERICAL HARMONICS

The hyperspherical formalism [15—17,20,21,22,37j pro-
vides a method for solving the Schrodinger equation to
obtain the binding energies of the three-body system, or
for that matter any A-body system. In our work we will

use Fabre de la Ripelle's hyperspherical formalism [22] to
obtain the coupled equations and the matrix elements.

The Schrodinger equation for a system of A identical
particles can be expressed as

and

D=3(A —1), K=0, 1,2, 3, . . . .

The potential matrix in Eq. (16) is given by

VK (r)=fKfK &&2K(Q;, )l V(";, )I&2K(Q;, ))

with the normalized symmetrical basis,

&K'=CK X &2K(Q, »
i, j&1

where

(18)

(19)

(20)
g2

g '|)'„+ g V(rj ) E+—(x)=0,
i=1 i, j&i

2n

n+1 n=l, . . . , N

where N= A —l, one can eliminate the center of mass.
The Schrodinger equation, in the center of mass system,
is then

where x stands for the set of coordinates x,. of the parti-
cles and V(r,j) is a two-body interaction potential. Using
Jacobi coordinates

1/2

The potential matrix is symmetric under exchanges be-
tween K and K'. The quantity fK is given by the follow-
ing formula in which C2K+, ( —,

'
) is the Gegenbauer poly-

nomial with D =3N =3( A —1), as before:

fr' ("2r(O—»( X 'Rr(O;, ()
i, j&i

= 1+4(N 1) — ' '
C ( —')

(2K+D —4)'

+ (N —1)(N —2)22K+1 g 1

r

——V + V(g) E(P(g)=—0I

T—
i, g&1

(x, —x, )

gIvIng us

In our formalism, we expand the wave function of the
ground state in a potential hyperspherical harmonics
basis with the hyperradius,

1/2

I ((D —3)/2)
f'(K+ (D —3) /2)

For the calculation of the matrix in Eq. (18), we use

+2K(Qij ) YO(~ij ) P2K(NN ) YO(D

where

1/2

cospN =,YO(D —3)= 1 ((D —3)/2)
r 21T'

(21)

(22)

(23)

where CK is a normalization constant determined by Eqs.
(19) and (20), and where

@2K(Qij ) YO(~ij ) P2K(NN ) YO(D

and ' 'P2K((t(N ) and YO(D —3) will be defined shortly by
Eqs. (27) and (23), respectively. This is an approximation
to an expansion using a full basis, but it is much simpler
and preserves one and two-body correlations. It gives
rise to the coupled equations

with the surface element given by

dQ=2 (1—z)' ' (1+z)' dzd(0 jdQN

where

2

z=cos PN=2 —1, 0&r,, &r .2 V

r

(24)

(25)

d' &K«K+1}+
dT r 2

where

E.u (r)—K

+ g VK (r)uK.(r)=0, (16)

The potential matrix can now be written as

VK'( )
—f f 2 D/2 f ( 1 )(D —s}/2(1+—)(/

X ' P2K((t(N ) P2K ( PN ) V(rij )dz

X f lYOl d(o;.f lYO(D —3)l dQN, , (26)

XK =2K+ (17)
where
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(N)POO
2K

22K+ ' I- E+ ' K!
2 2

I E+ I E+—
2 2

1/2

P (D 5 )/2y 1 /2( cos2!r) ) (27}

with PK ' ' denoting a Jacobi polynomial. It may also be expressed as an integral over r,-.
' (D —5)/2

V»i( ) g r CNCN "
1

~J
V( )

' p(D —5)/, 1/2 2
'

1 p(D —5)/2 1/2
K r JK& K' K K' rij 3 K K' 2 ij'

r r r r
with

(28)

( N
K

(2»+ 1)I'(L» —K+ —,
' )K!

I (X» K)l'—(K+—', )
(29)

For the case of the 5-shell potential, i.e., the two 5-shell potential V(r, )= V"prp5(r, "—rp) —V, r, 5(r," r)), the —poten-

tial matrix then becomes

V»'=f»f» ~»'
where ' (D —5)/2

qP»(r) CN( N 1 f"d 2

X I Vprp5(r J rp) V)r, 5(r J r))J—
r2 r2

p(D —5)/2, 1/2 2 &
1 p(D —5)/2, 1/2

K r 2 K'
r 2

(30)

(31)

W»»'=CNCN- y ( —1)"e -" Vr' 1—
n=0 1

r 2 r 2

XP '"2 —1 p "2- —1K 2 K' 2r r

C
rn

r 2

(32)

and where 0 r; ~r Using . fg(x}5(x—xp)dx=f(xp)
for 0 & x & r, and letting x =r J Ir, we obtain

V (x) f gNx 3/2( 1 x 2)a/2pa 1/2(2x 2
1 ) (37)

Now let us consider three atoms of He (A =3) with
the one and two 5-shell potentials. In the case of one at-
tractive 5-shell potential, the potential matrix becomes
Eq. (38), consisting of a product of a function of K times
a function of K'. (This "separability" will become very
important in the following work. )

where r& r1V'= —VV —V ~K 1 K r
K'

r
(38)

and

(33) where

(x ) f C2x 3/2(1 —x2 )1/4p1/2, 1/2(2x2 1 ) (39)

D —5 3A na= —4, x=
2 2

Thus, in this case, the potential matrix becomes

V» (x} f»f» &»C»—
X g ( —1)"e(x)V„x

n =0, 1

X(1 x) P ' (2x —1)—
XP»". / (2x 1) . —

(34)

(35}

and

—sin (K+1)4 . 2m

3 3

2(K+1)!

r r+—3

2

1/2

(40}

Consequently, the potential matrix can be written in the
form

V»'(r) = g ( —1)"V„V» V».
n =0, 1

r r

where

Using the Jacobi polynomial

)/2. )/2 — T~ . sin(K+ 1)p2(K+ —')!
Vn(K+1)! sing

where cosp=2x) —1, and similarly for P» ', the po-
tential matrix becomes
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VK = —
V&

— sin(K+ 1)/sin(K'+ 1)P
4
~ p&l —(1/p')

1/2

X 1+
sin (K+1)4 . 2m.

3 3

K+1

—sin (K'+ 1)
4 . 2m.

3
(41)

with the use of the notation

1 rp= =, 2x, —1 =cosg .
X1 r1

Similarly, for the case of the two 5-shell potential the potential matrix VK' becomes

VK =—,Vo sin(K+1)P sin(K'+1)P —
V& sin(K+1)8sin(K'+1)8 .

4 1

p&1 —(1/p') p Q 1 —(1/p )

1/2

(42)

X 1+
sin (K+ 1)

4 . 2m

3
sin (K'+ 1)

4 . 2a
3

(43)

with

rp rl 1
Xp — X1 — p—pr Xp

and

1
0 P1

1

(44)

we can then obtain a set of uncoupled equations

P"+[q I—A(p)]/=0,

where

Q=Uijf, A(p) =U M(p)U .

(49)

(50)

2xo —1 =cosp, 2x, —1 =cos8 .

IV. DIAGONALIZATION OF THE MATRIX

(45) What we have here are uncoupled equations with a ma-
trix A(p) which is a diagonal set of eigenpotentials.

Dropping the tilde on P, and writing the A, for the
lowest eigenpotential, we can write

A technique for the diagonalization of the set of cou-
pled equations of the type given by Eq. (16) was proposed
and used by several workers, and is referred to as the ex-
treme adiabatic approximation (EAA) [19,20,29]; in addi-
tion, there exists an improved adiabatic approximation,
the uncoupled adiabatic approximation (UAA). See, for
example, DCF [18], Larsen and Zhen [38], and FJKL
[20].

Using the first approach [24], we try to decouple our
differential equations by first writing Eq. (16) in a vector
and matrix form

d2
+[q I—M(p)]/=0, (46)

dp

where P is a vector and M(p) is the sum of the centrifugal
term and the potential matrix. Its matrix elements take
the form of

1=PAL
i

where

(51)

where now P is a normal wave function.
GLP [29] obtained the eigenpotentials by obtaining the

solutions of transcendental equations —in the case of a
separable potential obtained from a binary 5-function po-
tential, in one dimension. We use the same trick in the
case of our one and two 5-shell potentials (see Appendix
A).

Proceeding in this way, we find for the one 5-shell po-
tential the following sum rule:

MK'(P) =
P

4(K+ 1) ——1

fiKi+ ~ ~Ki( )K ~2 K P (47)

~ 2
sin —mi

1+ 4 3

3 1

1/2

sining,

At this point, M(p) is diagonalized by a similarity trans-
formation using the matrix U(p). Using the EAA, where
we set

4mr 1 V1

pV 1 —(1/p~)
(52)

U'(p) =0, U"(p) =0, ~48~ and for two 6-shell potential case
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2 2

1+ g
l l

The UI& is the Eth normalized eigenvector. The eigen-
vector corresponding to the lowest eigenvalue will be the
same as [g„]in Eq. (C15), i.e.,

where

(53) +n
[Xn ] (58)

~ 2
Sin Kl

1+ 4 3

3 l

' 1/2

siniO,

n

In our one 5-shell case in Eq. (C17}(see Appendix C, Sec.
2) it is given by

and

~ 2
sin —mi

4 3
v'3 i

' 1/2

sining, V1mr1 p
2

+fl
fi m' V 1 —(1/p~)

~ 2
sin —mn

1+
3 n

n +s

' 1/2

4mr p Vp

7rfi PV 1 —(1/p2)

4mr p V1

7Tfl p Q 1 —
( 1 /p

~
)

(54)

(59)

We need to find g„[d[g„(p)]/dp] in order to obtain
UAA'

UTdU
dp

we obtain

UTd U
2dP KK

(55)

dUuc
Wx+e 4 +

dp

'2

Ax(p) Wx—=0.

(56}

As we can see, the difference between EAA and UAA
is the sum of the squares of d UI& /d p which involves the
derivative of the eigenvectors of M(p), i.e.,

d U)~
K(P)UAA ~K(P)EAA X dp

(57)

We are now able to solve for the eigenpotential A, (which
can be written as a sum of the centrifugal term and an
effective potential) numerically and also analytically.

Appendix B contains an outline of the procedures used
in the numerical calculations. We can also find the eigen-
potential analytically by carrying out analytically the
summation in the sum rule given by Eq. (51), thereby ob-
taining Eq. (C5). In Eq. (C5) we rescaled r by dividing by
r„as in (42), in a manner which will be described in the
following section for the one 5-shell potential (see Appen-
dix C, Sec. 1). The more complicated two 5-shell case is
also shown in Appendix C, Sec. 1.

As we shall see later, the lowest eigenpotential in the
EAA diverges negatively as p(=r/ro) goes to d
(=r& /ro). We will also check the eigenpotential when p
is near d using the uncoupled adiabatic approximation
which, as shown by BFL [19],gives us an upper bound on
the ground state energy. The UAA retains the diagonal
elements of U"(p) while the diagonal elements of U U'
are zero automatically due to normalization of the eigen-
vectors forming U.

Since

V. RESULTS

We determined the parameters of the one and two 5-
shell potentials, in Eqs. (1) and (2), in the manner de-
scribed in previous sections. We used the Mason-Rice 1

potential for two ~He atotns to determine the binary 5-
shell potential parameters which we then used in our
three-helium-atom cluster calculations. The resulting
values are shown in Table I. Through this procedure we
obtained a mean square radius a of 16.89 A for the two-
body bound state using the Masan-Rice 1 potential. We
then used this value of a for both (the one and two) 5-
shell potential cases.

We proceeded to solve the Schrodinger equation (15) of
a three- He-atom cluster, by using the HH expansion
method and the two types of binary 5-shell potentials in
order to obtain the coupled equations in Eq. (16). We
then decoupled the equations using the adiabatic approxi-
mation, specifically, the EAA. We diagonalized the ma-
trix Mz' in Eq. (47). We then rescaled Eq. (16) to a di-

mensionless form in which the dimensionless distance,
which we ca11 the hyperradius p, is obtained by dividing r
by the parameter r, as defined in Eq. (42) for the case of
the one 5-shell potential. The corresponding hyperradius

p, for the case of the two 5-shell potential, is obtained by
dividing r by the parameter ro as in Eq. (44). This rescal-
ing proved convenient in our calculations.

We succeeded in obtaining the lowest eigenpotentials
both numerically and analytically. The numerical ap-
proach proved to require very extensive computation.
For example, the numerical work in Eq. (B8), which in-
cludes summation over the index n in Eqs. (B9) and (B10)
for the one 5-she11 potential case, involved a summation
over n up to around 131000 to snake the result agree
with the analytical calculation to an accuracy of 10 at
each point of p. In other words, we needed a lot of har-
monics to carry out the numerical work. Fortunately, an
analytical approach allowed a summation over n to
infinity and permitted us to find the eigenpotential as the
solution of a transcendental equation, with an enormous
saving of time. It also gave us the possibility of obtaining
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TABLE I. Values of parameters for the binary potentials. 50

Parameter One 6 shell Two 6 shell

v, (K.)

v, (K)
ro (A)

r, (A)
d( =r, /ro)

0.393

6.537

3.525
3.335
2.756
3.135
1.1375

analytical results for the eigenpotential in critical regions.
In the single attractive 5-shell potential case, the lowest

eigenpotential includes only the centrifugal term for
0 (p ~ 1; for p + 1, the attractive 5-shell part contributes.
We found a singularity in the eigenpotential at p=1.
Past the singularity the eigenpotential increases as p in-
creases, and asymptotically (phoo) the eigenpotential
converges to a negative constant value (see Fig. 1). For
the two 5-shell potentials we found the same behavior as
in the case of the one 5-shell potential for the region
0 &p & 1 because there is no effect of the presence of the 5
shells in this region. Past this point the eigenpotential
feels the repulsive 5-shell part so that the curve increases
up to p=d( =

r& Iro), whi—ch is the position where the at-
tractive 5-shell potential starts to contribute. At this
point we again found an attractive singularity at p=d.
Beyond p=d the eigenpotential increases asymptotically,
approaching a negative constant value (see Fig. 2).

A. Singular behaviors of the eigenpotentials

We investigated the singular behavior of the eigenpo-
tential starting with the one 5-shell potential case at point
p=1+e, when e is small. Analytical calculations using
Eq. (C5), which includes the variables p and (](, allowed us
to determine the behavior of the eigenpotential; in this
case we rescaled by r, as shown previously in Eq. (42).

For s very large, where s =
—,'+4~A, ~p

—1, i.e., p near 1,

CG

C
6)
0
CL
C
g)

LU

x,

-50

Eq. (C5) reduces to

V, mr,2 —+—&2m+
4sR &2e

X ( 1
—4+2@[1—(5/12)E+ ]s) (60)

Multiplying Eq. (60) by 4&2es, we obtain

V&mr
&

2

4v'2es = 1+—e+
4

x(1 —4+2e[1 —(5/12)e+ . ]s) (61)

~e now let 4+2es =x, +b, +b assuming b to be
a function of e, and small. We choose x, to be the zeroth
order solution of Eq. (61); Eq. (61) can then be converted
to the following form by letting e~O:

FIG. 2. The eigenpotential of three atoms of He using the
two 5-shell potential.

50 x
V)mr )

2

(1—e '),
$2

(62)

C5

CL

lD
g)

UJ

0
(63)

Thus we find for the one 6-shell potential case, neglecting
higher order terms of b, (or e), the following expression:

where x, is a constant. The eigenpotential obtained from
just x, agrees with the exact analytical value to within
0.02% in the region where e is very small (e(10 ).
Now we add the first order correction to x, by including
the 6 term, which is the term proportional to e, obtaining

V mr', 7 („+~)
x, +6= 1+—e (1—e ' ).

4

-50
0

2V)mr) —(1—e ')
g2 4

2V)mr )1— e
$2

E . (64)

FIG. 1. The eigenpotential of three atoms of He using the
one 5-shell potential.

As mentioned before, when e is small, the first order
correction in 5 (and therefore in e) for the eigenpotential
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X, AX, X
IA,

I

= + +0.25 — +O(E)+
Se 4e 4

(65)

The dominant term in Eq. (65) is therefore

X
C

8(p —1)
(66)

Similarly, for the two 5-shell potential case, at the
points p =d +e, when e is small, analytical calculations
using Eq. (C7) (which include the variables p, p, , P, and 8)
also allow us to determine the behavior of the eigenpoten-
tial. In this case we rescaled r by rp and made the
definition p, =p/d, where d =r& /ro, as shown previously
in Eq. (44).

Assuming that s is very large, the eigenpotential, evalu-
ated with x, from the zeroth order approximation (E is
very small), agrees with the exact analytical values to
within 0.25% for this two 5-shell potential case. The
eigenpotential IA,

I
in the two 5-shell case is

r

X' + c 0.2S'+
4de

X

2
+O(e)+

4d

The dominant term in Eq. (67) is therefore
(67)

is very small compared with the constant term, x„ for
the case of the one 5-shell potential, as well as for the
case of the two 5-shell potential. When we solve for s in
Eq. (61), the eigenpotential IA, is found to have the fol-
lowing form:

make the shifts with x =p
—1 and x =p

—d near p~ 1

and p —+d), in the case of the UAA the eigenpotential is
seen to behave as A, ~ —(a /x )+ (b /x ) where a and b are
positive constants [see Eqs. (57) and (69)]. We see that
the eigenpotential is strongly positive near x =0.

Thus we see that the attractive (negative)
singularity —given by the EAA —is overwhelmed by the
repulsive (positive) singularity of the UAA. It is strongly
suggested, by our calculations of the UAA eigenpotential
near the threshold of the attractive 5 shell, that the UAA
eigenpotential is everywhere positive, which implies a
zero binding energy. The difference between the binding
energies from the UAA and the EAA will then be equal
to the magnitude of the EAA result, so that the error can
be quite large.

We note that usually —i.e., for more conventional
binary potentials —the difFerence between the UAA and
the EAA, for the binding energies, is small.

B. Nonsingular behavior with the repulsive 5 shell

One can observe from the behavior of the eigenpoten-
tial at p = 1 (at the position of repulsive 5 shell) in the two
5-shell potential case that there is no singularity in the
eigenpotential, a situation very different from the attrac-
tive 5-shell case, as can be seen from Fig. 2. As we shall
show in Appendix C, Sec. 1, the eigenpotential A. is posi-
tive in this case. The lowest value s does not lead to a
divergence in A, at p= 1; rather one obtains s = 1 which,
therefore, gives a finite value for the eigenpotential at
p=1 of A, =3.75.

XC

8d(p —d )
(68)

n=1

d [X.(p)]
dp

(69)

as shown in Eq. (C30) (see Appendix C, Sec. 2) where e is
defined by p = 1+a and is very small.

From this we concluded that near the attractive 5
threshold, whereas the EAA eigenpotentials behave as
A, ~ —a /x in both the one and two 5-shell cases (when we

As we can see from Eqs. (66) and (68), the eigenpoten-
tials behave like a Coulomb potential, i.e., they go as 1/x
when we make a shift of x =p —d for the two 5-shell po-
tential case, and a shift of x =p —1 for the one 5-shell po-
tential case.

Since, as we see above, the eigenpotential diverges as
1/x when using the EAA approach, we consider it im-
portant to investigate the behavior of the eigenpotential
using the UAA approach since it yields an upper bound
for the binding energy. To check the UAA at a point p
which had a very large negative value for the eigenpoten-
tial using the EAA, we first had to calculate the eigenvec-
tor y„. The latter is given in explicit form in (C17) and
the equations leading up to it, which result from the use
of M(p). In order to obtain the UAA eigenpotential we
then had to calculate the square of the derivative of the
normalized eigenvector [y„(p)] given in Eq. (C15), which
became

C. Asymptotic behavior of the eigenpotentials

For both the one and the two 5-shell potentials the
eigenpotentials converge to a negative constant value as
phoo. It has been shown that the behavior of such
eigenpotentials at large p represents an asymptotic situa-
tion corresponding to a two-body bound state and a free
particle [49]. In our one 5-shell potential case, as p~ ~,
(51) can be transformed into

GATV) Vlf p
2 2 —4x /@Pl

X (1—e ' ')=0,
4A pi

(70)

A,„„„=A,+C
p

(71)

Using values of the eigenpotential at p =40, p =41,

where s =
—,'+41 A Ip

—1 and x, =ms and
&= —(4& +0.25)/p . Solving Eq. (70) for A, (or x, ), we
found that the eigenpotential at p —+00 has the value
A. = —0.11992 asymptotically for the one 5-shell poten-
tial case. This value corresponds to the binary energy—0.034 K of two He atoms using the Mason-Rice I po-
tential.

However, the asymptotic behavior of the eigenpoten-
tial is considerably more complicated in the two 5-shell
potential case because here it is difficult to convert Eq.
(C7) into a simpler form like that of Eq. (70), as p~ oo.
In this case we obtain the convergent eigenpotential A,„„„
using an asymptotic extrapolation of the form
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FIG. 3. The linear relation for the extrapolation of the con-
vergent eigenpotential.

p=42, and p=43, we obtained a value of 0.0180 for the
coefficient C in Eq. (71).

Using the above results we obtained an extrapolated
value A,«„„=—0.0202. This dimensionless value of A,«„„
corresponds to a value of —0.032 K, slightly diferent
from the value of —0.034 K, the value of the two-body
bound state obtained with the Mason-Rice 1 potential.
Figure 3 shows the linear dependence of the eigenpoten-
tial with respect to the variable (Inp)/p.

D. Behavior of the eigenpotentials when considering
only the attractive 5-shell part

of the two 5-shell potential

It is interesting to see how the repulsive 5-shell poten-
tial affects the eigenpotential in the region p) d for the
two 5-shell potential case. The eigenpotential, in the re-
gion where p & d, is important because this is the region
where the eigenpotential is affected by both 5 shells,
whereas the information contained in the eigenpotential
for a hyperradius p less than d must be ignored, as we
shall see, when determining the wave functions.

Let us now consider only the attractive 5-shell poten-
tial part of the two 5-shell potential case; setting Vo =0 in
Eq. (C7), we then obtain Eq. (C5) of the one 5-shell poten-
tial case. We now calculate the eigenpotential X using the
parameters which are shown in Table I. The compar-
isons of the eigenpotentials between the case where we
consider only the attractive 5-shell potential part, in the
two 5-shell potential case, and the case where both the at-
tractive and the repulsive 5-shell parts are included in the
two 6-shell potential case, are shown in Fig. 4.

From that figure we can see that the eigenpotential ob-
tained when considering only the attractive 5-shell part is
lower than the one obtained by considering both the at-
tractive and the repulsive 5-shell parts, as p~ ~, on the
other hand, they have the same behaviors, similar to the
Coulomb potential, in that they are proportional to
I /(p —d) at p =d +e, when e is small.

The asymptotic convergent value of the eigenpotential
is obtained in the same way for the case of the two 6-shell

FIG. 4. The eigenpotential, considering only the attractive
5-shell potential part where p ) 1.1375.

potential when the repulsive 5-shell part is ignored, as for
the one 5-shell potential case. The eigenpotential now be-
comes X= —1.18748, giving rise to an asymptotic value
for the eigenpotential of —1.89 K, very far from the
two-body value.

VI. BINDING ENERGY

To find the wave function and the binding energy of a
three-body bound state, we have to integrate the lowest
uncoupled differential equation in (49) with the lowest
eigenpotential; the results for the eigenpotentials are
shown in Figs. 1 and 2. As we shall see, we do not in-
clude the eigenpotential inside p ~ 1 and p ~ d, in the one
5-shell potential case and the two 5-shell potential case,
respectively. Hence the wave functions start at zero
when we integrate Eq. (49) starting at the position at
which there are singularities, i.e., p=1 for one 5, and
p=d for the two 5-shell case. We use Milne numerical
integration [48] for this work; this method requires infor-
mation about the wave function at two starting points.

As was shown before, the behavior of the eigenpoten-
tial at p= I+a has the form A, = —a/(p —1) where
a=x, /8 for the one 5-shell potential [Eq. (66)], and the
form A, = —a/(p —d) where a=x, /(8d) for the two 5-
shell potential [Eq. (68)]. The values for x, and a for our
model potentials are given in Table II.

To learn how to handle such potentials we solve the
Schrodinger equation with a Coulomb potential for the
region p) 1, since our eigenpotential for the case of one
6-shell behaves like a Coulomb potential in the region
around p=1. We show how we deal with the divergence
of the eigenpotential around p=1 in order to get the
binding energy.

Loudon [39], Haines and Roberts [40], Andrews [41],
and Hammer and Weber [42] tried to solve the problem
of a one-dimensional hydrogen atom using a Coulomb
potential. Andrews [43] concluded that for the one-
dimensional hydrogen atom the Coulomb singularity acts
as an impenetrable barrier, so that all wave functions
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TABLE II. Parameters characterizing the eigenpotentials
near their singularity.

Parameter

xc

One 5 shell

0.693
0.060

Two 5 shell

2.479
0.675

where

+ ' +k u(p) =0
dp p

1/2
mr

1

f2,
'

IEpl

(72)

(73)

and only the centrifugal term appears.
Using a cutoff potential (as in Fig. 5) for the region of

1 (p & 1 +p„where p„ the cutoff position, is very small,
we then obtain

where

2
—k q u(p)=0

dp
(74)

q (75}

Finally, for the region p & 1 +p„and using the Coulomb
potentia. ', we find

must vanish as x ~0, where x =0 is the position of the
singularity, and therefore there is no physical connection
between the regions on the left (x &0) and right (x )0)
sides with the potential lx l

To confirm such ideas and get the binding energy with
a radial Coulomb potential, we can use two different ap-
proaches. The first is to ignore the region interior to the
location of the singular point as in Andrew's argument;
the second is to consider a cutoff potential and to solve
for the binding energy as the cutoff potential gets deeper
and deeper as in Loudon's approach.

The radial equation for our system, for the region of
0&p( 1, is

C
CS

LLI

0

4
0.6 0.8 1.2 1.4 1.6

FIG 5 The cutoff potential

From this it follows, letting x =kp and z =p —1, that
y, (x),y„(x), and y», (z}, the solutions in the three
different regions, are given by

y, (x)= A ~xIz(x),

y„(x)=B,cosqx+Bzsinqx,

y»i(z)=Cider nk, i/2(2kz)+C2% /2k, i/2(2kz)

(7g)

(79)

(80)

where A, B„B2,C„and C2 are the coeScients, and

I2(x) is the modified Bessel function [44] which is related
to the Bessel function by

Iz(x) = —Jz(ix ),
and where the Whittaker functions A &2k, , &2(2kz) and
'N zzk, &z(2kz) are confluent hypergeometric functions

[45—47] ~ The condition for having a bound state is that
the coefficient C, must be zero, so that yiii(z)=0 as
z~00 ~

Now using the boundary conditions

where

XCa=
8

Q+ — +k u(p)=0,
dp' p —1

(76)

(77)

yri(x } y I (x)=y Ii (x) ~

at p = 1, and

yii(x) =y«i(z), yi, (x)=yiii(z)

at p =r, , where r, = 1 +p„we obtain

182q-
Pc

(1—kp, ) cosqkri — Biq+ (1—kp, ) sindkri U 1—,2, 2kp,
pe

=(B,cosqkr, +B2sinqkri)U' 1—,2, 2kp, ($1)
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where

I,(k)
B =8&kI (k)cosqk ——' —+2&kI'(k) sinqk,] 2

q &k 2

4 I2(k)
B2=8&kI2(k)sinqk+ — —+2&kI2(k) cosqk .

q &k

(82)

As p, ~0, we find that the binding energy converges to
a finite value. This procedure gives the same result, as
shown below, as that obtained by forcing the wave func-
tion to be zero at p=l. Following that method, the
bound-state wave function has the form

y (z) =ze '"',F, 1—,2; 2kz

and is the well behaved solution of the differential equa-
tion Eq. (76) at z=0 (z=p —1), where the potential
diverges, while the second solution diverges as z~0. A
solution which satisfies the correct conditions at infinity
is obtained only when 1 —(a/2k ) is zero or a negative in-
teger. Then &F, reduces to a polynomial. Otherwise it
diverges as z ~ ao exponentially (e'). Therefore the
lowest energy is satisfied by

1 — =0a
2k

(84)

so that the binding energy is seen to be

2 $2
i&01 =

4 mr,
(85)

This value in Eq. (85) is exactly the same as that obtained
when you let p, ~0 in Eq. (81).

Consequently, we can conclude that the inside wave
function for p & 1 plays no role in determining the wave
function for p) 1. Thus, in our calculations using the 5-
shell potentials, the integration of difFerential equations
using the eigenpotential should ignore the region p~1.
The important region begins at the point where the eigen-
potential is proportional to 1/(p —1) in the case of one
5-shell potential, and 1/(p —d) in the case of the two 5-
shell potential, both cases starting at the hyperradius of
the eigenpotential divergence. Using this information we
can now apply the Milne step numerical integration
method to calculate the values of the binding energy for
the eigenpotentials.

Because the eigenpotentials converge to negative con-
stants asymptotically, due to the existence of a two-body
bound state [49] and a free particle as the asymptotic
state of the wave function for energies higher than that of
the two-body binding energy, we lift the eigenpotential

up to the x axis (i.e., we subtract out the asymptotic nega-
tive constants) when integrating, using Milne's method,
in our numerical program. Subtracting the asymptotic
values of the eigenpotentials which correspond to the
value of the two-body bound state ( —0.034 K), we then
obtain the binding energy of the three-body bound state
relative to the two-body bound state plus a free particle.
We note that, in the two 6-shell potential case, a subtract-
ed asymptotic value of —0.032 K corresponds quite

TABLE III. Calculated values of the three-body energy.

Potential

One 5 shell
Two 6 shell

Smith- Thakkar
Lennard-Jones

MDD-2
MDD-2

ESMMSV
HFDHE2
HFDHE2
HFDHE2

Yamaguchi

Method

HHEM
HHEM
ATMS
ATMS
ATMS

Faddeev-UPE
ATMS
GFMC

FY
Faddeev

Separable app.

Energy (K)

—0.183
—1.056
—0.180
—0.082
—0.105
—0.087
—0.079
—0.117
—0.092
—0.110
—0.123

closely to the two-body bound-state value of —0.034 K.
In the one 6-shell case, the asymptotic value of —0.034 K
which we obtain for the eigenpotential corresponds exact-
ly to the two-body binding energy. The binding energies
relative to the 2+1 configuration are then —0.149 K for
the one 6-shell potential case and —1.024 K for the two
6-shell potential.

To the above values we now add the asymptotic values
that we subtracted, so as to obtain the three-body binding
energy which can be compared to the three free particle
system. In this way we obtain a binding energy of—0.183 K for the one 5-shell potential case and —1.056
K for the two 5-shell potential case.

Of course, when we ignore the repulsive 5 part of the
eigenpotentials in the two 5-shell case, the binding energy
becomes bigger than when both the 5-shell potentials are
properly taken into account (see Fig. 4). Therefore, in
this case, when subtracting out the asymptotic value of—1.89 K, we are not surprised to obtain an huge value of—4.83 K. The subtracted asymptotic value clearly does
not come even close to the binding energy of the two-
body bound state plus one free particle.

By comparison, the binding energies of a trimer of He
have been obtained by others using various potential
models and diFerent methods. Bruch and McGee [11]
obtained a binding energy for the He trimer in the range
of —0.05 to —0.2 K, using variational calculations and
various pair potentials: namely, the MDD-1 (Morse
dipole-dipole), MDD-2, FDD-1 (Frost-Musulin- Voo),
and Lennard-Jones 6-12 potential with different parame-
ters. Nakaichi, Akaishi, and Tanaka [6] obtained ener-
gies of the He trimer in the range from —0.08 to —0.2
K using various potentials, which included Smith-
Thakkar, MDD-2, Beck, Lennard-Jones and
exponential-spline-Morse-spline-van der %aals
(ESMMSV) through the method of amalgamation of
two-body correlations into the multiple-scattering pro-
cess (ATMS). Later again Nakaichi, Lim, Akaishi, and
Tanaka [8] obtained —0.087 K using a realistic He-He
potential and the Faddeev-UPE (unitary pole expansion)
method. Nakaichi-Maeda and Lim [7] obtained a trimer
energy of —0.092 K using HFDHE2 and Fadeev-
Yakubovsky (FY) theory. PZPWH calculated the trimer
energy as —0.117 K using a HFDHE2 potential and the
Green's function Monte Carlo (GFMC) method in a
study of droplets of He. Cornelius and Glockle [10]
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found a trimer energy of —0.11 K using the HFDHE2
potential and a Faddeev scheme. Recently Loucks and
Levinger [9]obtained a timer energy of —0.123 K using a
Yamaguchi potential and a separable approximation. In
Table III, we compare our results with those of other in-
vestigators for the binding energies of three- He-atom
clusters —obtained using different methods and poten-
tials.

VII. DISCUSSION AND CONCLUSIONS

In our work we have calculated the binding energy of a
three- He-atom cluster. In this calculation we used hy-
perspherical harmonic expansions and binary 5-shell po-
tentials in two separate cases, the first with a single 5-
shell potential and the second with two 5-shell potentials.
Using the hyperspherical harmonics formalism, we ob-
tained an infinite set of coupled differential equations. To
decouple the equations, we used the adiabatic approxima-
tion and obtained the eigenpotential numerically and
analytically; the analytical work became possible because
the 5-function potential yielded a separable product for
the potential matrix.

We found that there are singularities in the eigenpoten-
tials at the position of the threshold of influence of the at-
tractive 5-shell potential for each 5-shell case. The wave
function for the hyperradius p less than the critical value
plays no role in determining the wave function for p fur-
ther out when we calculate the binding energy; in each
case the wave function is forced to go to zero at the at-
tractive singularity. On the other hand it turned out that
there is no singularity in the eigenpotential at the posi-
tion of the repulsive 5 shell. Thus we find that while the
attractive delta can contribute amply to the wave func-
tion (though, by forcing the wave function to go to zero,
is also mimics a repulsive interaction), the only role of the
repulsive 5-shell part, in the case of the two 5-shell poten-
tial, is to lift the eigenpotential for values of p larger than
the critical p (the location of the attractive singularity).

Doing the calculation for the three- He-cluster, we ob-
tained a binding energy of —0.183 K using the one 5-
shell potential, and binding energies of —1.056 K using
the two 5-shell potential. We observe that the binding
energy of —0.183 K using the one 5-shell potential falls
within the range of —0.05 to —0.21 K obtained by other
theoretical workers, in contrast to the result obtained for
the two 5-shell potential case.

The result is better when the binary potential has no
repulsive part (i.e., the one 5-shell potential case) since we
see that when we take two 6 shells —the first one of
which is repulsive —the region which contains the repul-
sive part is ignored when solving for the wave function
generated by the eigenpotential: this behavior may be
characterized as a pathology of the 5-function potentials.
%'hile the EAA and the UAA still give us a lower bound
and an upper bound for the binding energy, the difference
between these bounds is very large and our method loses
its usefulness. To the pathology associated with the
three-body problem in three dimensions —with zero
range infinite potentials located at the origin in binary
potentials —we can now add the case of the attractive 5-
shells.

Moreover, our work suggests that the realization of
our goal —the calculation of the binding energies of
molecular clusters —must rely on using not only a more
realistic potential but also the hyperspherical techniques
that we have used successfully in nuclear physics. %e an-
ticipate that the study of the binding energies of these
clusters, as a function of the number of particles, will lead
to an understanding of the "preferred" bound states,
characterized by the so-called "magic numbers, " found
experimentally.

APPENDIX A: DIAGONALIZATION OF THE MATRIX

For the case of the one 5-shell potential —for p & 1—
we consider a matrix H with elements

H) =h;5;, Pf;f,—, (A 1)

where we have let i =X+1 in Eq. (47), and where h;
represents the centrifugal term and the second term
represents the potential matrix resulting from the attrac-
tive 5-shell potential. H satisfies the equation

gH, (A2)
J

Substituting Eq. (Al) into Eq. (A2) gives

Pf;
X;—

h ~ &f)X)
l j

After multiplying both sides of f;, summing over i, and
dividing by the factor g;f,g, , Eq. (A3) gives us a sum

rule which can be used to determine the eigenvalue k:
2

(A3)

1=PQ
l

(A4)

Equation (A3) shows that the corresponding unnormal-
ized eigenvector has components

Pf;
(A5)+l

Similarly, in the case of the two 5-shell potential, for

p & 1, the general matrix 0 has elements of the form

(A6)H,, =h;5;, +agg, Pf f, , —

where we again have let i =K+ 1 in Eq. (47), and where

h; represents the centrifugal term while the second term
represents the potential matrix resulting from the repul-
sive 5 shell and the negative (third) term stands for the
potential matrix which results from the attractive 5-shell
potential. Since H satisfies Eq. (A2), substituting Eq. (A6)
into Eq. (A2) gives

r

Pf, ag,

J l

(A7)

and

After multiplying both sides by f, (or g, }, summing over.
i, and dividing by the factor g,f,y, (or g;g;g;), Eq. . (.A7)
gives

g gJXj
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gf, r,
1=P (gi

h, —
A, ggy;

1

(A8)

and

P—f.'
1 —Pl,

(B9)

Canceling the common factor,

&g,x,
J

gf;x;

P2f 21

(I —pl, )

In Eqs. (B9) and (B10), I& is given by (B3) and lz by

2

(B10)

CXg;
1+ g

i

in (A8) gives us, again, a sum rule:

Pf 2

h —A.
I

l2=
iWn

f„ is given by

C; —C„
p'

'2 (Bl 1)

= —ap
i

(A9) ~ 2
sin —nn

f„'= 1+ v'3 n
(sinn/) (B12)

&„=f(&„),
where

(B1)

APPENDIX B: NUMERICAL CALCULATION

When we let h;=C;/p and A. =(C„/p )+b„, in the
case of the one 5-shell potential, Eq. (51) has the form

Similarly, in the case of the two 5-shell potential, Eq.
(53) has the same form as (Bl) where

f(b„)= Pf„(1+am—, )+ag„(1—Pl~)+2aPf g fg,n n 1

(1+am
~
)(1—Pl, )+aP(fg ) )

(B13)
with

f(A„)=
1

with

4mr ) V)
2

pv 1 —(1/p~)
2f;

C; —C„
p'

and

~ 2
sin —m.n

4 3

v'3 n
(sinn/)

(B2)

(B3)

(B4)

1, = g'
C; —C„

p'

g
2

m&=
C; —C„

p'

4mro Vo

mfi pv 1 —(1/p~)

4mro V)
2

7TA p Q 1 —( 1 /p~ )

(B14)

with f, in Eq. (B3) given by Eq. (52).
Defining

g(&„)=f(&„)—&„ (B5)

and using the Newton-Raphson method [50], we obtain

C; —C„
p'

~ 2
sin —urn

f„= 1+ v'3 n
(sinn 8)

where

g(~„)
g'(&„)

(B6)

gn=

~ 2
sin —mn

l+ '
v'3 n

(sinn/)

g(b,„)=G—b,„, g'(b, „)=P—1,
which leads to

6 —h„P
n+1 l P

where

(B7)

(B8)

and where f, and g, are given by Eq. (54).
Using the Newton-Raphson method again, we obtain

the same Eq. (B8) as in the one 5-shell potential case, but
with

pf„(1+am
&
)+ag„(1—pl —

&
)+2apf„g„fg &

(1+am
&
)(1—

Pl& )+a/3(fg ~ ) (B15)
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(816)

8=[aP( —f„m2 —g„l2+2f„g„fg2)I(1+am, )(1—Pl, )+aP(fg, ) }
—Iag„(1—Pl, ) P—f„(1+am, )+2aPf„g„fg, }

X [ag2(1 —Pl, ) —Phz(1+am, )+2aPfg, fgz }]/[(1+am, )(1—Pl, )+aP(fg, ) ]

where

ian C; —C„
p'

'2

where A, is negative for p & 1. Using the relation
sin nP= —,'(1—cos2n(j)) and letting s= —,'+4p ~A,

~

—1, we

get

2

1= V)mr ) p
2' m. V'1 —(1/p2)

iXn

z= X'
iAn

C; —C„
p'

2 (B17)

n=1

2m'
sin pl

1+—
3 Pl

n +$

(1—cos2n4) )

(C2)

Multiplying the terms in parentheses in the sum of Eq.
(C2} and using the following identity [51]:

APPENDIX C: ANALYTICAL CALCULATION

1. The EAA eigenpotential

cosnx 1 m. cos[s [(2n+1}m.—x })

) n2+s2 2s2 2 $ sm$7T

Consider the case of the one 5-shell potential. Equa-
tion (51) tells us that

Vlmr 1 4 p1=
~ +1—(1/p )

as well as

and

cosnA" , sinnb

, n2+s2 „,n(n —s )

n=1

(sinn/)

4n ——A—p
2 1 2

4

2'
sin n

1+
3 n

(Cl)

sin 2 cosB =
—,
' [sin( & —& )+sin( A +& )},

and also,

2n~~x ~(2n+2)~,

Equation (C2} then becomes

(C4)

V)mr ) p1= —[cothns(1 —cosh2gs )+sinh2$, }2M V'1 (1/p~) 2s

2m 2K 2%+ (1—cosh2ps) cothmssinh s —cosh sv'3s' 3 3

with the following conditions on the angle P:

0~ 2(() ~ 2m,

(C5)

0~ +2/~2m,

0~ —2P ~2m. .2m

3

As we increase the hyperradius p to find the eigenpotential A, at each p, and since P is a function of p as shown in (42),
we have to apply the sum rule —given by Eq. (C5)—while satisfying the inequality conditions (C6).

Similarly, for the two 5-shell potential Eq. (53) can be put in the form (C7) by letting s =—,
' +4p

~
A,

~

—1,
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2%
(1—cosh2$, )

sinh s
31+Voyg, —' +sinh2gs + (1—cosh2gs )

2s tanh~s V'3s' tanhm. s
2'—cosh s
3

p 1 (1—cosh28s ) . 2
+sinh28s + — (1—cosh28s)

p, 2s tanhn. s V'3s ~

2m.
sinh s

—cosh s
tanh~s 3

2'
sinh s

1 (1—cosh2gs ) +sinh2$s .+ — (1 —cosh2$s)
2

p, 2s tan he.s V'3s' tanhns

277—cosh s
3

277
sinh s

&& (1—cosh28s )
2

3s tanh~s

1 (1—cosh28s )

2s tanhms

2K—cosh s
3

1 sinh s 2 2K
=4VOV, y g, gz~ —sinh8, coshPs — + sinhgssinh8s cosh s-

pi 2s tanh~s V'3g ~ 3

2'
sinh s

tanh~s

2

(C7)

where

and

2mrp

2/2

V'1 —(1/p')

(C&)

(C9) xg
n=1

2'
4

sin n

1+
3 11

(4n —
—,') —il, ip

Vpmrp 4 p
2

~ V 1 —(1/p~)

with the following conditions:

0~2)~2~, 0~28~2m,

Letting s =—„'V 4p ~A, ~+1, we obtain

Vpmr p p
2

2R n V 1 —(1/p~)

0& +2P~2m, 0 +28 2n,2m

3

0~ —2)~2~, 0~ —28~2m .
2K 2m

3

(C 10)

n=1

n

n —s2 2

2'
sin n

1+ 4
3

(1—cos2n(() )

As p increases, again we have to apply the sum rule, Eq.
(C3), while satisfying the inequality conditions (C10) on P
and 8, in Eq. (C7).

When we consider p lying in the region 1 & p ~ d for the
case of the two 5-shell potential, we have only the repul-
sive 6 shell so that the eigenpotential A. is positive. Equa-
tion (C7) then becomes

Using the following relation:

1 m cotrrs, ——
„=I n —s 2s

in Eq. (C12), we then obtain

(C12)

(C13)

2'
2 sin s

p 1 (1 —cos2ps ) 3
C —sin2ps + —

z (1 —cos2ps )
2A' V 1 —(1/p~) 2s tangos

tansies

277
cos s

3
(C14)

2. The UAA eigenpotential

In the UAA approximation for one 6-shell potential, considering only the region near the critical p, we need to calcu-
late the term Q„ Id [y„(p)]/dp], where [y„]is the normalized eigenvector:
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[x.) =

n

+n (C15)

The unnormalized eigenvector y„[see Eq. (A5)] is

or

4V, mr,

pV 1 —(1/p )

1+ 4

3

1
4n ——

4
+l~l

p'

1/2

sin —~n
3

sinn/
(C16)

V1mr1 p
2

V 1 —(1/p~)

~ 2
sin —n.n

4 3
v'3 n

tl +S

' 1/2

(C17)

where s =
—,'&4p

I ~I

The derivative term of g„ is
r

~ 2
V mr2

1+
&3

' 1/2

1
1 ——

p'

' 1/2 ' 3/2

sinn/
pg

2 +S 2
1

p 1
p'

cosnP lA, l

pg
2 +S 2

P sinn/
+S

(C18)

where p=cos '[(2/p )—1 j and we have used the chain rule, dg/dp =(dg/dp)(d /Id p), where g(p) =sinn/.
Assuming that s is very big near p = 1, the square of the derivative of p„becomes

dX.
dp

2'2
V1Plr1

4~ 2s 3

1 2
1 — [1—(1+2$s)e ~'}—2 $

1 p1—
p'

2
1 ——

2
P

S/2 e
1

p'.

+— . . z I 1+(1—2gs )e ~'I+—2 1 4b
s S p2 1—

P

(C19)

Here use has been made of the relations

277
sm 6

3

1n(n +S )
X

2'
cos /l A,

f dz——1 1 d " 3
2 O dS

1 n +S
(C20)

00

~, ( '+")' 2sds 1n +s
(C21)

sin2n P 1 d cos2n P
(n +s~)~ 2«P = (n +s )

(C22)
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277 277
sin n cos n k

„=&n(n+s)» „=& (n+s)
cos2n (t 1 d " cos2n P

„=) (n +s ) 2s ds „=) (n +s )

cos2n (t 1 d " cos2n (() 1 d " cos2n P
„=, (n +s ) 8s ds „=, (n +s ) s ds „=) (n +s )

(C23)

(C24)

(C25)

and

2'
cos nP

~, ("+")'=
2m 2'

48s ds „, (n +s ) s ds „& (n +s ) s

277
cos n

(n '+s') (C26)

sin A cos8 =
—,
'

I sin( A +B ) +sin( A —8 ) ] .

The square of the denominator in Eq. (C15) becomes

(C27)

2'2
V)mr ) p2

2 1 ——
P

277 277
sin n sin n cos2n PI 4 3 cos2n 4 3

(n +s ) &3 (nn+ s) (n +s ) &3 n(n +s )
(C28)

2 2
V&mr

&

1
1 ——

p'.
X I 1 —( I+2gs )e

1

8ms

(C29)

Again, assuming that s is very large near p= 1, Eq. (C28)
becomes

n=1

d[X. ]

dp
CC—

2 (C30)

for the region p= 1+@,where e is small.

where we have used (C20) and (C27).
Therefore, by dividing Eq. (C19) by Eq. (C29), the

square of the derivative of the normalized eigenvector
[g„]becomes
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