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Dynamical image potential and induced forces for charged particles moving parallel
to a solid surface
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The dynamical image potential and ensuing forces induced by a charged particle moving parallel to a
solid surface are investigated by using a dielectric formulation for semi-infinite dispersive media. The
adiabatic behavior of the field in the asymptotic range is discussed in a general way using a multipole ex-

pansion. Several calculations illustrate the behavior of the field using both a simple model, where the
surface response is approximated by a single plasma resonance, and a more realistic representation of the
medium based upon the empirical information on the optical constants for various solids (Al, Cu, Ag,
and Au). The model parameters may be adjusted to provide very good agreement with the optical-data
integrations of the stopping and lateral forces on the moving charge. On the other hand, important
differences in the description of the wake potential using either the simple plasma resonance model, or
the optical-data representation, are obtained for Cu, Ag, and Au.

PACS number(s): 34.50.8w, 79.20.Rf, 78.90.+t

I. INTRODUCTION

Different aspects of the interaction between fast mov-

ing particles and solid surfaces have been investigated
theoretically and experimentally in recent literature, as
well as applications to relevant processes of electronic
and atomic interactions with surfaces.

The theoretical basis for these studies was developed in
the 1970s, based on earlier studies of surface-plasmon ex-
citations by Ritehie [1,2]. One of the important develop-
ments in this area was the extension of the dielectric for-
malism to treat the interaction of external charges with a
semi-infinite medium [2—5] or the alternative Hamiltoni-
an approach [6,7] where the surface excitations are de-
scribed in terms of quantized modes. The latter approach
is usually applicable to ideal metal surfaces, while the
former approach permits, in principle, the introduction
of more realistic response functions for dispersive media
[8], although so far most of the ealeulations have been
made using free-electron-gas models.

One of the points of interest in these studies is the cal-
culation of the induced field or dynamical image potential
produced by a charged particle moving close to the sur-
face. Investigations of this problem have been made by a
number of authors [3—5, 9—ll] using the dielectric for-
malism for semi-infinite media, and the electron gas
random-phase approximation (RPA) dielectric function.
A detailed description of the surface make potential ac-
cording to the RPA model has been given recently by
Garcia de Abajo and Echenique [11],who also reviewed
previous work in this area.

On the other hand, important experimental develop-
ments have been made in the last few years, which open
new ways to study atomic processes at solid surfaces and
the role of dynamical effects in particle-surface interac-
tions. In particular, we mention the following.

(i) Energy losses of ions specularly reflected from solid
surfaces [12—15].

(ii) The dissociation of molecular ions in glancing in-
cidence experiments [16].

(iii) The skipping motion of ions at surfaces [17,18]
(iv) Image-potential effects on fast-proton trajectories

in surface scattering [19].
(v) Shifts in the atomic energy levels of ions moving

close to a solid surface [20].
(vi) Convoy electrons emission from solid surfaces in

beam-foil (transmission) [21,22] and in grazing-incidence
(reflection) experiments [23—25].

(vii) Acceleration effects on convoy electrons produced
in grazing-angle scattering of ions at surfaces [26—31].

In some of these cases the electronic structure of the
medium has rather complicated features which cannot be
fully represented by a free-electron-gas model, and hence
a study of the problem from an alternative approach may
be useful.

The purpose of this work is to investigate the proper-
ties of the dynamical field induced by particles moving in
a parallel trajectory and close to a vacuum-solid inter-
face. We will use here both a simplified dielectric
description in the form of a single surface-plasma reso-
nance, and a more realistic representation of the response
function for various solids of experimental interest (Al,
Cu, Ag, and Au) by incorporating optical data for each
element. We will use tabulated results for the dielectric
function taken from experiments and optical-data analy-
ses over a very wide range of frequencies, from the in-
frared to the x-ray region [32].

In Sec. II the basic dielectric formulation is reviewed
and some useful results for a simple plasma-resonance
model are derived. This section contains some results al-
ready derived by previous authors which are included
here to illustrate and compare with our results. A gen-
eral multipole expansion of the field is considered in Sec.
III, and is exemplified for the previous case of a simple
plasma-resonance model. In Sec. IV the information on
the optical constants for various elements is used to cal-
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culate the induced potential and the values of the stop-
ping and lateral forces. These values will be compared
with the ones obtained from the plasma-resonance model
with properly chosen parameters for each element. Pos-
sible applications of these results to processes of current
interest will be briefly considered in Sec. V, which also
includes a final discussion and conclusions.

II. SIMPLE MODEL DERIVATIONS

A. Calculation of the induced potential

Let us consider a particle of charge Q moving parallel
to a plane solid surface (located at z =0) with uniform

velocity v along the x direction as indicated in Fig. 1.
The response of the medium will be characterized by a
frequency-dependent dielectric function e(co). The con-
stant distance between the particle and the surface will be
denoted by zo. We will consider the origin of coordinates
0 to be located on the surface and moving with the ion
velocity v, cf. Fig. 1. Thus, the particle position is given
by ro=(0, 0,zo).

As can be shown from simple translational invariance
arguments, the induced electric potential P;„d(r) in this
frame of reference is independent of time, and, according
to the dielectric formalism [4,5], its value may be written
as

4mQ 2
e'" i'e'~' . 2e(ru)

P;„d(r)= d a. dq exp(iqzo) —exp( —~zo)
(2n. ) (tr +q ) @co +1

CO= K'V

After some mathematical transformations, this integral can be conveniently expressed in the x-z plane as follows (see
the Appendix):

P;„d(x,z)= f f dco e' " 'cos g
—(z+zo)

7ru o (1+(2) '~2 — &(ru )+ 1

Let us consider now the evaluation of this integral for a
simple model consisting of a single plasma resonance to
describe the surface response. In this model the surface-
plasma poles are shifted to complex frequencies:
+co,

' t'y/2, whe—re ro, =co /&2 is the surface-plasmon
frequency, ruz=(4nne /m)' .is the bulk-plasmon fre-

quency, y is the damping rate, and ro,
' =(co2 —y2/4)'~2 is

the shifted surface-plasmon frequency. Therefore, the
surface-response function [e(co)—1]/[e(ru)+1] in Eq. (2)
can be written as follows:

shape of the potential calculated from this expression.
Figure 2(a) shows the induced potential P;„d(x,zo), and
the electric-field components E„(x,zo ), E,(x,z p }, for
points x along the particle trajectory for a particle with
velocity u = 10 a.u. (atomic units) at a distance zo =5 a.u.
from the surface. It has the shape of a wake potential
with wavelength A, =2m.u/ro„and with the electric-field
components E, and E„oscillating in and out of phase
with p;„d.

2
e(co) 1 nis — 1

e(ru)+ 1 2co,
'

@+ceo,'+ yt/2 ru Cu +i 1'/2

Using this form, Eq. (2) can be integrated in the complex
co plane, and we obtain

Q C0~

P;„d(x,z) =——

sin[co,'r(x, z, g}]
X d

g (x,z) ( 1+g2)1/2

Zp r Q

X exp[ — r(x, z, g)],

where

go(x, z) =
(z +zo)

(sa)

r(x, z, g)= [((z+zo)—x]/u . (5b)

Equation (4) provides a useful integral representation
of the surface wake potential. In Fig. 2 we illustrate the

FIG. 1. A particle with charge g and velocity ut moving

along the x direction at a distance zo from a plane surface locat-
ed at z =0. The origin of coordinates is taken at the point 0,
which moves along the surface isotachycally with the particle.
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Figure 2(b) illustrates the variation of the wake poten-
tial and electric field at a constant value of x = —20 a.u.
(behind the particle) and as a function of z (i.e., this
shows a cut of the wake potential along a direction per-
pendicular to the surface and to the particle trajectory).
The maximum amplitude of the wake field occurs at the
surface, as can be expected for surface-plasmon fields

[1,6]. (One could notice a basic difference with the wake
field in the bulk, i.e., when the particle moves inside the
material where, as is rather well known, the maximum
amplitude occurs for points along the particle trajectory
[33]}.

From Eq. (4) we can obtain the value of the induced
potential at the charge (for simplicity, here we use iI'i,„z to
denote values taken at the charge position}, namely

o Q Q
2zp (2z ) cii

2

(ii) v ~ ao, y —+0.
For y~0, the integral in Eq. (6) becomes

z, &z
in a =—Io a —Lo a

p ( 1+hz)1/2

with a=2co,'zo/v and P=yzo/u.
It is of interest to quote here the following limiting

values.
(i) v~0.
Approximating (1+/ )

'~ =—1 —
g /2 in Eq. (6) we ob-

tain

0.1

CO

v ~ 0
(6)

where Ip and Lp denote a Bessel function (of imaginary
argument) and a modified Struve function, respectively
[34]. Taking the limit ulnae (i.e., a~0) in Io(a) and
Lp(a) [34] we get

Qco n 2ci) zp
yO

ind

0
',f0x EXy .--

-"/

The first term here gives the value of p;„d for zp «v/co„
which is independent of zp (contact limit).

B. Force components
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From Eq. (4) we can calculate the induced electric field

E;„d=—VP;„~, and then we separate the x and z com-
ponents to obtain expressions for the stopping and lateral
forces acting on the particle. This yields the following.

(i) Stopping force

0.1

10"Ex
W

(b)
2,&

cos aQ cps ~ dg
u o (1+( )'

sin(ag) e
2COs

(10)

(ii) Lateral force
-0.1

/
-02 '

0 2 4 6 8 10 12 14 16 18 20
z (a.u. )

FIG. 2. Induced wake potential i});„d(x,z) and electric-field
components E„(x,z), E,(x,z), for a particle moving with veloci-
ty U =10 a.u. at a distance zo =5 a.u. from the surface. The sur-
face response is characterized here by the parameters co, = 1 a.u.
and y =0.5 a.u. (a) Longitudinal view of the field, for z =zo and
as a function of x (i.e., along the particle trajectory); the solid
circle shows the instantaneous position of the charge, which is
moving to the right. (b) Transverse view of the field along the z
direction (perpendicular to the solid surface), taken at a con-
stant value of x = —20 a.u. ; the crossed circle here indicates the
point of intersection of the particle trajectory (perpendicular to
the figure plane).

cos a
Q co, gdg

o (1+/ )

sin(ag) e ",
2ms

where a=2co,'zo/v and p=yzo/u.
By definition, the stopping force is opposite to the par-

ticle velocity v ( —x direction}, while the lateral force is
perpendicular to the particle trajectory and to the inter-
face ( —z direction). It can be shown from Eq. (11) that
for v ~0, F, reduces to the static image force:
F, =——Q /4zp.

Illustrative values of these forces for various metals
will be given in Sec. IV, but we shall quote here the fol-
lowing limits of interest for the stopping force.
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cos(ag) =Ko(a),
( 1+F2)i/2

(12)

in a mell-known approximation to the stop-and we obtain a we - n
lasma resonanceping force corresponding to a sharp p asma

[35], namely
2

0

2' zo
(13)

(ii) U~O.
a ain the expansionHere we can use again

(1+( ) —= 1 —s an/2 d performing the integration in
Eq. (10) we obtain

Q' rU

co (2zo)
(14)

0.01

ZO=5

bg)

C4
G4
0

(i) y~O.
In this limit the integral in Eq. (10) reduceuces to a Bessel

function,

racteristic of the quasiadiabatic regime,

be shown nex,t this result corresponds to t e ipo e erm
in a multipole expansion of the induced field.

atedin Fi .The resu ts or e1 f the stopping force are illustrate in ig.
ere we compare the values obtained from the '-e in-

from E s. (13) (dashed line) and (14) (dotted line), for the

provide a satisfactory approximation or
plasma resonanc .

o
U ma be usecan be seen ath t the parameter a—=2', zo U y

h d mical effects of the interam ctionto characterize t e ynam'
n escriterion to distinguish between the range

of high or low velocities U, or sma or arge is

Physically, the meaning of thi pis arameter can be dis-
usin the adiabatic Bohr criterion for energy

enc co (with antransfer to a harmonic oscillator of frequency m,
=U/co ). Hence, one should also

ex ect to obtain the quasiadiabatic limit o q. in
h the distance zo between the parti-asymptotic case, w en e

an A,nd the surface is much larger thancle trajectory an
in Fi . 3(b), whichTh' as mptotic limit is illustrated in ig.is asymp

values obtained froms ows eh the ratio between the force va ues
Eqs. (10) and (13) and the limit of Eq. ( 14) as a function

f fi d velocity v =10 a.u. The Ko approxi-0
for lar e z, while the correcmation decay exponentially or a g o,

'
c

a and 3(b) illustrate how the exact force
approaches the dipole limit either for low ve oci ies,
or very large distances, 3(b).
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III. MULTIPOLE EXPANSION

Th ultipole expansion of the induce pced field rovides ae mu
me of the limitscon venien rat framework to understand some

ut this ex-already o taine .b
'

d. The standard way to carry ou
e densitould be to calculate the induced charge e

'
ypansion wou e

e char e distribu-on the surface (or some equivalent image c g
tion inside the solid) and evaluate the multipole moments
of the charge distribution.

n ex ansion of theOn the other hand, one can obtain an expansion o t e
in
'

duced potential in powers o pf the article velocity by
of the inte ranconsi ering e'd '

the low-frequency expansion o
d in articular toin E . (1). This approach has been used in pa

a roximate the vaue o e aa 1 f the lateral force on an electron
beam [36]. It can be s own ab h n that the result of these two
approaches are identical.

E (1)To derive a rnultipole expansion wwe 6rst write q.
(after integrating over q) m the form

FIG. 3. Comparisons between the stopp go in force values from
tions of E ~ (13) (dashedEq. so i. (10) (solid lines) and the approximations q.

and of . (14) {dot-) corres onding to a sharp resonance, an o Eq.
locit di ole limit. (a) andd 1' ) corresponding to the low-ve oci y 'p

locit v and distance
to the surface zo. In (b) we show the ratio between the stopping

. (10) and (13) and the dipole limit of
E . {14). Notice that the exact force approache 'pches the di o e imi
either for low velocities {a)or very la g1 r e distances {b).

—
Q ~ Ir "'+'o~

P;„~(r)=
67= K'V

(15)

where

e(co) —1
+(co)= (16)

Denoting by ~, the x component of x,z so that m=a. , U in
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Eq. (15}, we write the Taylor expansion of F(co) as fol-
lows:

F(co}=F(0)+(ic&v)F'(0}+—,'(ic, v) F"(0)+ (17)

e(0)—1
%md Q

a
p' ax

2

+qii 2, + . , (18)
Bx

where R'=~r —
ro~ =[p +(z+zo) ]'~ is the distance be-

tween a test point r=(p, z) in the vacuum region and the
classical image point ra=(0, —zo) inside the medium.

The first term in Eq. (18) corresponds to the monopole
field produced by a fictitious image charge of value

Using this in Eq. (15) and performing the integrations we
get the following expression:

electric field at the instantaneous position of the moving
particle is always pointing opposite to the particle veloci-
ty, and its value gives exactly the stopping force of Eq.
(14).

%e can additionally note that if the same calculation is
performed for the case of an incident particle with a tra-
jectory perpendicular to the surface, one obtains an in-
duced dipole moment of exactly the same value as in Eqs.
(20) or (22), but oriented now perpendicular to the surface
and pointing against the particle velocity v, so that the
resulting dipole field will again give rise to a stopping
force on the particle. However, the value of the stopping
force in this latter case becomes twice as large as that for
the case of parallel motion. This difference between the
stopping forces in the parallel and perpendicular cases
has already been noted by previous authors [3,10]. We
can give a simple explanation of this factor of 2 using the
well-known expression for the dipole electric field

image
e(co) —1

e(co}+1
(19}

E(r, 8)= (2 cos8r+ sin88)
f 3 (23)

8 E(co) 1—
c}co e(co)+1

(20}

located at the image point ro.
The second term in Eq. (18}yields the field of a dipole

p, oriented parallel to x, and moving in the x direction
with the same velocity v as the source charge. The value
of the dipole moment, as deduced from Eq. (15), becomes

which shows that, for a given r value, the dipole field be-
comes twice as intense for points close to its axis (8=0)
as perpendicular to it (8=m. }.

In summary, the difference between the two cases can
be explained as a consequence of the dipolar character of
the quasiadiabatic approximation. Thus, it turns out to
be a rather general relation, not depending on the partic-
ular plasma-response function.

[notice that p, is a real quantity, as can be shown from
the general property e( —co) =e'(co) ].

The third term in Eq. (18) corresponds to the field pro-
duced by a quadrupole moment

z 8 e(co}—1

e(c0)+ 1 60=0
(21)

and in a similar way the higher-order moments of the ex-
pansion are related to the same-order derivatives of the
response function [(e—1)/(@+1)]. This procedure gen-
erates an expansion in powers of the velocity v, which can
also be considered an adiabatic representation of the
dynamical effects, so that with increasing velocities the
contribution from higher-order multipole moments grows
in a continuous way.

In particular, for the plasma resonance model used be-
fore, the values of the first three moments become

image (22a)

S

v2
eii=Q

S

(22b)

(22c)

Looking back now to the limit of Eq. (14) for the stop-
ping force we can see that it is exactly the field of a dipole
of value p, located at the image point ra=(0, —zo),
oriented parallel and moving with the same velocity v as
the particle. In this situation, the direction of the dipole

IV. DESCRIPTION BASED ON OPTICAL-CONSTANT
VALUES

The plasma-resonance model used in the previous sec-
tions gives in many cases only a very crude representa-
tion of the dielectric properties of real solids. Therefore,
it becomes of considerable interest to investigate the
values of the dynamical potential and induced forces us-
ing more realistic representations of the dielectric func-
tion of various elements.

For this purpose, we will now introduce into the for-
malism the experimental information on the dielectric
function for various solids (Al, Cu, Ag, and Au) using the
results of optical-data analysis derived from experimental
determinations [32]. These experiments cover a very
wide range of frequencies, corresponding to photon ener-
gies E =%co from 10 to 10 eV.

As an example, we show in Figs. 4(a) and 4(b) the real
and imaginary parts of the surface response function
[e(co)—1]/[e(cd)+1] versus the energy E =fico, for the
case of Cu; Figs. 5(a) and S(b) show the same for the case
of Ag. These values were deduced from the empirical
values of the real [e,(cv)] and imaginary [e2(co)] parts of
the dielectric function given in Ref. [32]. The dashed
curves in Figs. 4 and S show rather rough representations
of the data using a broad plasma resonance with ap-
propriate parameters, Eq. (3), as will be discussed below.
We note here a special feature in the data for Ag (Fig. 5):
the peak at Ace=3. 78 eV, which corresponds to a very
sharp plasma resonance [37].

In order to use these experimental values of the surface
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response function [ [e(co)—1]/[e(co) + 1]], it is con-
venient to integrate first over the variable ( in Eq. (2).
This yields the following expressions for the induced po-
tential and forces acting on the particle.

(i) Induced (wake) potential

P,„d(x,z) = — I dcoKo —(z +zo )
2Q ~ co

(iii) Lateral force

2NZp

e(co) —1
X Re

e(ro }+1

F, = Q—E, = — I rudcoK,
2Q

~v

(26}

I

e(ro) —1 rex
Re cos

e(co)+ I U

e( ro) —1 . coax

e(co)+ I U

(ii) Stopping force

o e(ro) —1
Im

U e(co)+ 1

2.0

Cu

2 2

F„=QE, = —— J co dcoE&
&U

(24)

(25)

These expressions have been evaluated numerically using
the empirical data on the dielectric function in the range
from 10 to 10 eV from Ref. [32].

Let us consider 6rst the calculation of the stopping
force, Eq. (25). We show in Fig. 6 the values of the stop-
ping forces for Al (a), Cu (b), Ag (c), and Au (d). The
solid lines are the results of numerical calculations using
the tabulated values of the optical constants for each of
these elements [32]. The values calculated in this paper
are in all cases for a unit charge Q =1.

Now we can consider the question of to what extent a
simple plasma resonance, as in the cases shown in Figs. 4
and 5 (dashed lines), could be used to approximate the
more realistic results for the stopping forces evaluated
here. To test this possibility we found the most appropri-
ate values for the model parameters co, and y, as given in

Table I, which are the ones that provide a best overall
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FIG. 4. Values of the surface response function
[e(co)—1]l[e(co)+1],versus energy E =A'co, deduced from the
experimental data on the optical constants of Cu given in Ref.
[32]. The values of the real and imaginary parts are shown in (a)
and (b).
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100

FIG. 5. Same as in Fig. 4, for the case of Ag.
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shown in Fig. 5.
Thus, contrary to the results obtained from the stop-

ping and lateral forces, and for the potential acting on the
moving charge, the results for the potential and fields at
larger distances cannot be described by a simple plasma-
resonance model (except for nearly-free-electron metals
such as Al). A more realistic representation of these
quantities can be obtained using the detailed information
on the dielectric function over a wide range of frequen-
cies as derived from the optical data for each particular
element.

V. DISCUSSIONS AND CONCLUSIONS

Several cases where applications of the present results
could be of interest have been listed in Sec. I. It is not
the object of the present paper to consider particular ap-
plications, but here we can make a few observations that
may be of interest for further studies.

One interesting phenomenon recently observed is the
acceleration of convoy electrons emitted in ion-surface
scattering experiments at grazing angles of incidence
[26—31]. The acceleration efFect has been explained in
terms of the dynamical image field produced by the ion,
which would be seen as an acceleration (instead of stop-
ping) field by an electron moving close to the ion [26—29].

In Figs. 9(a) and 9(b), we compared the values of the
parallel and perpendicular fields for ions moving parallel
to Al, Cu, Ag, and Au surfaces. We notice that at high
velocities the force values for these elements appear in
the same relative order (i.e., Al-Cu-Ag-Au) as the ac-
celeration eifects found in Ref. [30), while a diff'erent
behavior is expected in the case of low velocities.

Experiments at lower velocities [31] show that the ac-
celeration efFect increases with velocity (contrary to the
findings for higher velocities). A superposition of the re-
sults for low and high velocities [31] appears to indicate
the existence of a maximum at intermediate velocities, a
behavior that is characteristic of the stopping power and
in particular is also obtained for the stopping force calcu-
lated here. Hence, it would be of considerable interest to
get further evidence on these effects by experimentally
studying the whole velocity range in a single experiment.

In Fig. 8 we illustrate the values of parallel and perpen-
dicular fields. We observe that these fields have similar
behavior at large velocities, while at low velocities the
perpendicular forces become stronger. Then, one could
expect that in this type of experiment the (repulsive) per-
pendicular force on the electrons, due to the dominant
field induced by the ion, will produce a deviation of the
angular distributions of the emitted electrons away from
the surface; this effect should be more important at lower
velocities. This also seems to be at least in qualitative
agreement with observations of the angular dependence
at high and low velocities in different experiments
[27,30,31]. In addition, in Ref. [27) the convoy-electron
emission angle has been found to increase with projectile
charge. The effect has been qualitatively explained using
a simple approximation for the image potential, and
hence a quantitative comparison will be desirable.

In summary, the emission of convoy electrons in graz-
ing incidence experiments may become a useful method

to explore in more detail the effects of the dynamical im-
age potential and could serve as a test of theoretical mod-
els. The main predictions of the model (namely, the max-
imum in the acceleration effect at intermediate velocities,
and the defiection of the angular distributions) seem to be
in agreement with experiments, but still more quantita-
tive comparisons would be necessary.

Another problem that we can briefly mention is the en-

ergy loss of ion beams specularly reflected at grazing in-
cidence on solid surfaces [12—1S]. It has been shown that
the experimental results require a good understanding of
the contributions due to both long-range collective losses
and short-range excitations of single electrons. Obvious-

ly, the formulation developed here applies to the collec-
tive energy-loss mechanism. Short-range excitations will
be important at the closest distances of approach to the
surface, and they may be included either by a separate
calculation, or as an extension of the present formulation.
In the simplest case of nearly-free-electron metals, the
RPA model provides a satisfactory solution that includes
collective and single-particle excitations [11].

A possible extension of the present description to in-
clude short-range processes could be achieved by incor-
porating spatial-dispersion effects in a dielectric function
initially built up from empirical optical data for each ele-
ment as considered here. An extension of this kind has
been introduced earlier by Ritchie and Howie [38], and
Ashley [39], to study bulk energy losses in various solids;
this approach is currently being considered using an al-
ternative description [40].

We finally summarize the main conclusions of this
work.

We have analyzed some of the existing models and
analytical expressions frequently used to describe the
dynamical image potential and electric field induced by a
swift charge moving near a solid surface, in particular for
the case of a parallel trajectory.

The characteristics of the induced field in the quasiadi-
abatic limit have been described in a more general way.
The interaction in this limit can be explained in terms of
a dynamical component of induced dipole oriented paral-
lel and moving along with the same velocity as the parti-
cle. The difference between previous results for the stop-
ping forces corresponding to parallel and perpendicular
trajectories can also be explained in terms of the induced
dipole moment.

A simple model for the surface response consisting of a
broad surface-plasma resonance may provide a satisfacto-
ry description of the induced potential and field values in
the proximity of the moving charge, provided that the
model parameters (co, and y) are adequately chosen for
each material; this can be achieved by using empirical op-
tical information on a wide range of frequencies. We
have determined these values for Al, Cu, Ag, and Au
(Table I).

On the other hand, to calculate the values of the in-
duced potential at larger distances from the charge it
may be necessary to use the complete optical data for
each element. In this way one can describe particular
features in the response of real materials or can probe the
range of applicability of other models. It seems that this
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approach will be useful in investigating, on a more quan-
titative basis, various processes of atomic interactions
near solid surfaces, as in the cases referred to before and
others listed in Sec. I.
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APPENDIX: DERIVATION OF EQ. (2)

Let us consider the calculation of the induced potential
starting from Eq. (1). It becomes convenient to perform
first the integral over the variable q,

T

f e iqz 2e(co)
dq exp( iqzp ) —exp( —Kzp )

(K+q ) Eco +1
—dz+zp) e(co) —1

e(co)+ I
(Al)

which can be shown by considering the integration in the
complex q plane (note also that both z and zp are positive
in our case).

Inserting this result in Eq. (1), and separating the d K

integration in the form

we obtain (with d K, =d co/v)

(A3)

—
Q E(co)—1

p;„d(X,Z) =
—1~(z+zo)

K Ki

The last integral is the Bessel function Ep(y), with

g —Kt(z +Zp ).
Finally, if we introduce the integral representation of

the Kp function [34],

Ep(y)= f z, zz cos(gy), (A4)
( I +gz)t/2

we obtain the expression for the induced potential as in

Eq. (2).
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