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Radiative electron capture (REC) from a low-Z target atom into a bare high-Z projectile is
described in the impulse approximation for the momentum distribution of the captured electron in
the initial target state. Otherwise the treatment is rigorous by using exact relativistic Coulomb
wave functions for the bound and continuum projectile states. As an application of the computer
program, photon spectra and differential cross sections have been calculated for 295-MeV /u U2+t N
collisions. The angular distributions for K-shell REC as well as for L-shell REC show pronounced
deviations from sin® 8. Cross sections for radiative recombination with capture into the K shell and
into the L subshells are presented for projectile charges between 20 and 100 and for energies between

100 MeV/u and 2 GeV/u.

PACS number(s): 34.70.4+e

I. INTRODUCTION

With the currently developing possibilities to acceler-
ate highly stripped high-Z ions to relativistic velocities,
new frontiers are opened up in atomic structure as well
as in atomic collision physics. Atomic structure stud-
ies of high-Z few-electron atoms such as hydrogenlike or
heliumlike gold and uranium atoms (1] may serve as a
testing ground for quantum electrodynamics in the non-
perturbative domain of strong fields. The starting point
for experimental investigations of this kind will always be
the production of the desired species in a specific quan-
tum state. This, in turn, requires an understanding of the
basic atomic processes. For a recent review, see Ref. [2].

One of the basic processes occurring in nonrelativis-
tic as well as in relativistic collisions is electron trans-
fer accompanied by the simultaneous emission of a pho-
ton. This process is usually denoted as radiative electron
capture (REC). Under certain conditions, the cross sec-
tion for radiative electron capture can be much larger
than the cross section for nonradiative electron capture.
The reason is the following. In the nonrelativistic energy
regime, the nonradiative capture cross section falls off
with increasing projectile velocity v as v~!2 (or as v~1!
in second order). This rapid decrease is mainly caused by
the requirement that a given momentum component in
the initial electronic wave function has to find its coun-
terpart in the final momentum wave function displaced
by the momentum m.v of an electron traveling with the
speed of the projectile. With increasing displacement,
the overlap of the tails of the two momentum distri-
butions will rapidly decrease. If, however, the electron
transfer is accompanied by the emission of a photon, the
severe requirement of momentum matching will be re-
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laxed, so that the cross section for REC falls off as v—3
for high nonrelativistic projectile velocities.

For free electrons, capture cannot occur at all without
the emission of photons, owing to energy and momentum
conservation. This means, qualitatively, that electrons
loosely bound in low-Z target atoms or in outer shells
are more likely to be captured with photon emission than
without. Hence for low-Z target atoms at high projectile
energies, the REC cross section exceeds the cross section
for (nonradiative) Coulomb capture. We will focus our
attention on radiative electron capture from low-Z tar-
gets into high-Z projectiles. Experimentally, the process
of REC has been identified by Raisbeck and Yiou [3], and
by Schnopper et al. [4], and since that time has been ex-
tensively studied both experimentally and theoretically
[6-12]. More recently, the interest has been extended to
the relativistic energy regime [13-15].

The theoretical treatments of radiative electron cap-
ture in relativistic collisions have followed two different
lines. (a) In a direct formulation, approximate distorted-
wave methods have been applied to a direct evaluation
of the transition amplitude [15]. (b) Existing results for
the inverse reaction, namely the photoelectric effect, have
been used to estimate REC cross sections and to repro-
duce experimental data [13,14]. The underlying picture
is the following [3,7]: A loosely bound target electron
may be regarded as approximately free in a high-energy
collision. In this limit, REC is identical with radiative re-
combination (RR) in which an electron initially moving
with the momentum —py in the projectile frame is cap-
tured into a bound state with the simultaneous emission
of a photon. Radiative recombination is the inverse of
the photoelectric effect and can be calculated by detailed
balancing. The effect of electron binding in the target
just gives rise to a momentum spread around —po which
is usually taken into account by the Compton profile, see,
e.g., [2,7].

Both groups of publications are not yet fully satisfac-
tory. Regarding (a), we have to be aware of the fact that,
to leading order, REC, in contrast to Coulomb capture,
is subject to selection rules which are likely to be violated
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by approximate wave functions, so that significant spuri-
ous contributions may appear [2]. The approach (b), in
our opinion, represents the most practical way; however,
formulas for differential cross sections for the photoelec-
tric effect are available in an aZ expansion not suitable
for high-Z projectiles. Exact numerical results are also
available but not always for differential cross sections and
for the systems required. Therefore “similar” systems
have been used for comparison with experimental data
[13].

In the present publication, “dedicated” rigorous cal-
culations for the photoelectric effect and for radiative
recombination are combined with an exact convolution
with the momentum distribution of the electron in its
initial target state to calculate differential REC cross sec-
tions. This amounts to an impulse approximation for the
electron initially bound in the low-Z target.

In Sec. II, we provide the theoretical framework for
our treatment and in Sec. III give applications to the
double-differential cross section, to the angle-dependent
single-differential cross section, and to radiative recombi-
nation for the K and L shells. In Sec. IV, we add some
concluding remarks. Natural units A = m, = ¢ = 1 are
used unless explicitly stated otherwise.

II. THEORETICAL DESCRIPTION
A. REC from radiative recombination

In order to avoid the problems of a “direct” formula-
tion addressed in the Introduction, we focus our atten-
tion on the accurate description of a Coulomb-distorted
electron-projectile system and include the (low-Z) target
in the description only insofar as it gives rise to a mo-
mentum distribution of quasifree electrons. In this de-
scription [2,3,7,13], we refer all quantities to the projec-
tile coordinate frame and visualize the process as radia-
tive recombination of free electrons moving with respect
to the projectile with momentum q’, which results from
Lorentz transforming the momentum q = (q,q;) of the
electron in its initial state is given by the momentum
distribution p(g) within the target atom. In all cases, we
assume that ¢ < yv. Although the electrons are treated
kinematically as free, we require the energy conservation
in the form

w' + Ef =v(E; —vg,), (2.1)
where v = 1/+/1 — v?, E; and Ejy are the energies (includ-
ing the rest mass) of the initial and final atomic states,
w' is the photon energy in the projectile system, and
the right-hand side of Eq. (2.1) results from the Lorentz
transformation of the energy-momentum four-vector. In
terms of the RR cross section, the cross section for ra-
diative electron capture is written as

2
d®ogEc

do !
dow' d§Y' :/ dsq R'R"'(q ) p(q) 6(‘”’ + Ey — vE; + yvq,),

QY
(2.2)

where Q' denotes the photon angle in the projectile sys-
tem.

The calculation proceeds in the following steps: (1)
The photoelectric differential cross section in the pro-
jectile frame o, is calculated and (2) converted into the
cross section oy for radiative recombination. (3) The re-
sulting cross section is folded with the momentum spread
due to the electronic momentum distribution in the ini-
tial target state. (4) The frequencies w’, the angles @',
and the cross sections are Lorentz transformed into the
laboratory frame. The following subsections deal with
these steps.

B. The photoelectric cross section

The photoelectric effect has been treated since the
early days of quantum mechanics, and approximate for-
mulas for the differential cross section in the case of rel-
ativistic electrons are available to various degrees of so-
phistication [16-19]. However, the existing tabulations
for exactly evaluated cross sections [19] are not very suit-
able for use with Eq. (2.2) which requires differential
cross sections on a sufficiently dense mesh. We have
therefore developed an independent computer code in
which from the outset we confine ourselves to unpolarized
photons and assume that no polarization measurement is
performed for the electrons. Exact bound and continuum
wave functions for an extended nucleus are used [20].

In this subsection, we omit the primes which indicate
that the quantities are defined in the projectile frame.
Then, for a given photon energy w and binding energy
€p of the electron in the bound initial state b, the final
electron energy E (including the rest mass) is determined
by

E=w+1-¢, (2.3)

and the differential cross section for a single electron is

[17]

do 1
ph o \
- My p(ms, Ay, , (2.4
dQ 4w 25, + 1 ZZ' b( +5 1) (2.4)

Hb MM,

where we have averaged over the (2j, + 1) angular mo-
mentum projections up in the bound state and have
summed over the spin projections m, = :i:% of the emit-
ted electron. Furthermore, we have averaged over the cir-
cular polarizations Ay =1 and A_ = —1 of the incoming
photon. Because of the summation over all other angular
momentum projections, up and m,, this is equivalent to
taking one photon polarization, e.g., A; = 1, only. The
quantity a denotes the fine-structure constant.
The transition matrix element is

My (1m0 M i) = / Bh o (F) oy € g, (1) o,
(2.5)

where
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Yp,m,(r) = 4m Z ileitn (I, p — m,, %’ m, |7, )

L2724

. (6,0) 9x (1) X
WM, I ’l‘_f,g(’l‘) Xlin )

is the partial-wave expansion of the wave function de-
scribing the relativistic electron emitted with asymptotic
momentum p (p? = E2—1,p, = pcos@) and spin projec-
tion m, with respect to the z axis. The summation ex-
tends over the relativistic quantum number x = +(j+ 1)
and the angular momentum projection yx. Associated
with x are the orbital angular momenta [ and !’ of the
upper and lower components, respectively. The x# are
the usual [2,21] normalized two-component spin-angular
functions, and the g,.(r) and f.(r) are the (real) radial
continuum wave functions. They are normalized on the
energy scale, and their asymptotic behavior is given by

g™ 1 [E+1 cos(kr + 0,),
r V P

1 [E-1
fmz_—

T Uy

xY, (2.6)

(2.7)

sin(kr + o).

In the limit of a point nucleus, the Coulomb phase shift
is

o = Ay + nln(2pr)

—k+in/E

Anzéarg< s+i17

) —argl(s+1in) — iws (2.8)

nza_Zz;Ey 3=\/K,2—(aZ)2.
J

Equations (2.7) and (2.8) serve to clarify our normal-
ization and phase conventions. In our actual calcula-
tions, we use the generalization for an extended nucleus
given by Miiller et al. [20]. The Clebsch-Gordan coeffi-
cient (---|---) in Eq. (2.6) mediates a projection onto the
definite spin component m, in the z direction and onto
a definite orbital angular momentum ! entering into the
directional dependence expressed by Y;*,_ . (6,0). Ow-
ing to the axial symmetry, an azimuthal dependence does
not occur.

Returning to Eq. (2.5), the bound-state wave function
is written as

gs(r)xke

29
ifb(r)xﬁbm. ( )

¢jbyl‘b (l') =

Here, we use again wave functions for an extended nu-
cleus [20]. If we now insert the Rayleigh expansion of the
photon plane wave and perform the spinor algebra, we ar-
rive at integrals over three spherical harmonics which can
be expressed by Clebsch-Gordan coefficients. Collecting
the results, we obtain

oo
My s(ma, Ay, ) = 47V/2 Z Z LA gite

L=0 &«

x(l?”‘b +1- ms, %amsl]‘,ﬂb + l)
xF} (L, ) Yi,up41-m,(6,0), (2.10)

where

Fl(Lk)= [AL(jbubj;l{,l) /000 9x(r) G (kr) fo(r) r? dr — AL (Gopsg; lbl') /0‘°° fr(r) i (k) go(r) r? dr|, (2.11)

and
2l +1

Ar(jomsgslilz) = (2L +1) 20, +1

x<ll1/"'b + %1 La 0”27“1) + %)(llaov Ly O|1270>

It is not difficult to carry the analytical reduction fur-
ther [17,19] by squaring the matrix element Eq. (2.10)
and by expanding the resulting products of spherical har-
monics. In this way, additional summations are intro-
duced. Since, however, our aim is numerical evaluation,
we do not perform this step. Hence Eq. (2.4) with Eq.
(2.10) represent our final result for the atomic photoef-
fect. '

We may also quantize the spin of the emitted elec-
tron in the direction of its motion. In this way, the con-
tinuum electron wave function is expressed in terms of
the Wigner rotation matrices. In the calculation of the
differential cross section, one then obtains an expansion
in terms of Legendre polynomials. After checking the
numerical identity of the two representations, we have
abandoned the latter because it requires longer comput-
ing times.

(ll,ﬂb + %, %1—%ljbal‘b)<l27ﬂb + %, ';" %ijﬂb + 1)

(2.12)

[
The summations occurring in Eq. (2.10) are limited by
the selection rules embodied in the Clebsch-Gordan coef-
ficients. In particular, if the electron is initially bound in
a 1sy/; state, a rather small number of terms contributes.
Most of the published calculations have been performed
for this case, usually taking into account screening cor-
rections which are needed for the photoelectric effect in
neutral atoms. However, if one wants to use existing tab-
ulations to derive REC cross sections for bare projectiles,
one has to eliminate these screening corrections [14].

C. The cross section for radiative recombination

Once we have computed the cross section oph(w’, 8') of
the photoelectric effect in the projectile frame (we rein-
troduce primed quantities), it is a simple matter to write
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down the cross section ogg(E’,8') for radiative recom-
bination. This is the cross section for capturing a free
electron of energy E’ into a bound atomic state (binding
energy €) with the simultaneous emission of a photon of
energy w’. Since according to Eq. (2.3), w' = E' — 1 + ¢,
we may use E' as well as w’ to characterize the process.
We now choose the direction of the incoming electron as
the z direction, so that 6’ is the emission angle of the
photon.

By the principle of detailed balance, the cross section
for radiative recombination is written as

w? &0, (E',0)

d*opp (E',0') .
Tapdy, @t v

2.13
dE' dSY,, ( )
Here, the factor (2, + 1) turns the averaging of Eq. (2.4)
into a summation while the factor w'2/q'? replaces the
phase-space factor of the outgoing electron by that of
the emitted photon.

In applications to relativistic ion-atom collisions, the

z direction is usually defined as the direction of the pro-
jectile motion. This is opposite to the direction of the
electron momentum as seen from the projectile. Hence
for REC, the angle 8 of the photoelectric effect or of the
radiative recombination has to be replaced by = — ', or
cos 6’ is replaced by —cos€’.

D. The REC cross section in the projectile frame

In relativistic electron capture, the velocity of the cap-
tured electron is essentially determined by the velocity
—v of the target atom with respect to the projectile.
However, an electron bound in the target (which is as-
sumed to have a low charge Zr < Zp) has a momentum
distribution p(q), so that there is a momentum spread
around the momentum —pg = —2v.

If we assume a spherically averaged distribution for a
single electron (averaging over a complete principal shell
n), the nonrelativistic hydrogenic momentum distribu-
tion is given by

8Qs

1 . .
pla) = ;;iiﬁnzm(q)l = mEron (219

where &nzm(q) is the Fourier transform of the electronic

J
—d20RR(q/ é)
= — d? dq, [ dcos6 ’_
dw’ d cos ¢’ 2n / ql/ 1 / €% Gt dcos B

wave function in the state {nlm} and

0, = 24T

= (2.15)

The momentum distribution Eq. (2.14) has a maximum
at ¢ = 0 and a width determined by @,,: the distribution
gets more and more peaked around ¢ = 0, the lower Zr
and the higher n. For an atomic multielectron target, it
is more realistic to use the Fourier transforms of Hartree-
Fock wave functions as tabulated by Clementi and Roetti
[22]. In all our results presented in Sec. III, we use
momentum distributions obtained in this way.

Since the electron momentum within the target has a
component ¢, transverse to the beam direction, the mo-
mentum seen from the projectile deviates slightly from
the z direction (defined by the beam) and the correspond-
ing angular distribution will be tilted. by this amount.
For the rather low-energy collision of 197-MeV /u Xe on
Be [13], we estimate a deviation from the z direction by
arctan(Q/vvy) ~ 4.3°, while for higher energies the angle
will be less.

For a given electron momentum q in the target,
the Lorentz-transformed momentum q’ in the projectile
forms the axis of an axially symmetric photon angular
distribution. If we denote the polar and azimuthal an-
gle of the photon with respect to q' as 8 and ¢, a given
direction 6',¢' = 0 in the projectile frame will receive
contributions from various axes q' = (0, ;) and, asso-
ciated with them, from corresponding angles 8 and @.
Let us consider the spherical triangle composed of the
pole P, = (6 = 0), of the point P, = (8',¢' = 0) giv-
ing the direction of the emitted photon, and of the point
P, = (0,,¢,) giving the direction of the electron momen-
tum q'. The sides in this triangle are so = 6, s, = 6},
and s, = 6. Knowing the angle ao = ¢, at the pole, we
can express the opposite side so = 8 by the law of cosines
as

cosf = cosf; cos 8’ + sin 0, sin ¢’ cos ¢,. (2.16)
In this way, we may eliminate the angle # by which the
photon is emitted with respect to the direction q'.

We thus get a generalization of Eq. (2.2) which takes
into account the deviations of the electron momenta q’
from the beam axis and integrates over their contribu-
tions. The differential REC cross section in the projectile
frame is accordingly

d?o w0 1 d%c w6 1 Hcos
35?519' - Py T Beostr | PO — w0t yva:)
x §(cos @ — cos ) cos§' — sin 6 sin @' cos 47). (2.17)
[
Here, qﬁf; is measured with respect to ¢’ = 0 chosen to over 0 and g, can be carried out to give
define the z axis, and -
d®oppe(w,0) _ 1 d%q d’opg(d’,0)
wo =vE; — Ef (2.18) dw' dSY 2myv + dw'dcos®
is the resonance energy. x dcos b p(q). (2.19)
With the aid of the delta functions, the integrations dcos b’
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Besides the relations Egs. (2.14), (2.15), and (2.16) we
use the abbreviations

q= \/'72(E —vgcosfy)? —1,

(2.20)

wh — W' 2
E2=q2+1=qi+( P ) o

Furthermore, from the energy-conserving delta function,

"
cosfy = DY (2.21)
Yvq
and from the Lorentz transformation,
sin 9;: % sinf,,
(2.22)

cos ;= %(qcos 0y —vv/@%2+1).

In the limiting case ¢; < ¢’ ~ v, so that the axis of the
angular distribution coincides with the z axis, we have
sinf, = 0, cosf, = —1, and |dcosf/dcosf'| = 1. We
then get the usual result, Eq. (2.2). The cross section has
a peak at ¢ = 0 or at the resonance energy wj given by
Eq. (2.18). The Doppler width is characterized by Q,, as
defined in Eq. (2.15). The target momentum distribution
here enters the cross section simply as the momentum
profile [7].

E. Transformation to the laboratory frame

Experimentally, REC cross sections are measured in
the laboratory system as a function of the photon fre-
quency w and/or the emission angle 6. We then have
to substitute for w’ and cos@’ their values expressed in
terms of w and cos § using the relations [2]

w'=yw(1 — v cosf)
(2.23)

cosf —v
cosf'= ————.
1—vcosf
If we are interested in the angular distibution at a fixed
frequency, say at the resonance frequency wy, in the pro-
jectile system or in the complete integral over the reso-
nance line, we obtain the laboratory angular distribution
by multiplying with the ratio

Q' 1 (2.24)

dQ  4%2(1 —wvcosf)? )
of the differential solid angles, so that the desired single-
differential cross section becomes

doggc(0) _ dogrgc(f) d_Q'
dQ N asy dQ’

(2.25)

If the emission angle of the photon as well as its energy is
measured at the same time, the double-differential cross

section is needed. We then have to evaluate the Jaco-
bian for the transformation ', Q' — w,Q. Owing to Eq.
(2.23), we have dcos#'/Ow = 0, so that the Jacobian
factorizes in the form

O(w', Q) dw' dcosb’
_ = — 2.26
O(w,) dw dcosf (2:26)
and the double-differential cross section is given by

d?*oppc(w,Q) 1
dw dQ " (1 —vcosh)

dzoREC(w,’ @)
dw' dQY'

(2.27)

By inserting Egs. (2.4) and (2.13) into Eq. (2.17) and us-
ing the transformations given here, we can calculate the
REC cross sections appropriate to various experimentally
given situations.

F. Numerical evaluation

While evaluating REC cross sections, we will need sev-
eral numerical calculations. The photoelectric cross sec-
tion Eq. (2.4) is transformed into the RR cross section
using Eq. (2.13). The radial functions for the bound and
continuum states in Eq. (2.5) can be calculated numeri-
cally by solving the radial Dirac equation [20]. In order
to avoid the truncation error of the transition matrix
elements, a sufficient number of partial waves in the con-
tinuum state should be taken into account [17]. After
several test calculations of photoelectric cross sections for
the K, L, Ly, and L3 states, we confirmed that at least
the first two digits of the differential cross sections eval-
uated in our computer code agreed with those of Alling
and Johnson [23]. For the collisions of 197-MeV /u Xe%4+
on Be and 295 MeV/u U2t on N considered in this pa-
per, we considered all partial waves with |«| < 10. The
differential cross section was calculated from 0° to 180°
with the interval of 15° to obtain a smooth curve of an-
gular distribution by spline fitting.

The double-differential cross section of REC given by
Eq. (2.19) for a single electron in the projectile frame can
be evaluated using numerical integration of the RR cross
section over ¢, accompanied by the momentum distri-
bution p(g) of the target electrons. The integration has
been carried out in the neighborhood of ¢ = 0, because
p(q) decreases to zero quickly with the increase of g. We
used more than 100 mesh points for each g and ¢.

After the double-differential cross section (photon
spectrum) Eq. (2.19) for the single electron is obtained,
the angle-differential cross section given in Eq. (2.25) for
the fixed laboratory angle 6 is calculated by integrating
the right-hand side of Eq. (2.27) over w. The integra-
tion should be carried out from the peak of the photon
spectrum Eq. (2.18) to both ends with the appropriate
interval dw (we chose dw in the range 1.0 < w < 5.0 keV)
until the converged value is obtained. Then the evaluated
cross section is multiplied by the occupation number of
electrons in the target state. The final angular distri-
bution for REC is determined by summing up the cross
sections from every target state.
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III. RESULTS AND DISCUSSION

With the procedure outlined in Sec. II and the asso-
ciated computer program, it is possible to evaluate any
desired REC cross section for capture into an arbitrary
projectile state. As long as the target charge is small
compared to the projectile charge, so that the impulse
approximation is justified, the calculated results can be
expected to be very accurate.

As an illustration, we present various angle-differential
cross sections, and for radiative recombination with cap-
ture into the K and L shells provide the charge and en-
ergy dependence between 100 MeV /u and 2 GeV/u.

A. Differential cross sections

Anholt et al. [13] measured the absolute values of the
angle-differential cross section for the K-shell REC (K-
REC) of 197-MeV/u Xe®** incident on Be. As a case
study, we have applied the present treatment to this col-
lision system.

The double-differential cross section (photon spec-
trum) was first calculated with two types of momen-
tum distribution function defined by the hydrogenic wave
function and the approximate Roothaan-Hartree-Fock
(RHF) wave function (see Sec. IID). The RHF function
comprises “double-¢” Slater-type orbitals (DZ-STO’s)
given by Clementi and Roetti [22]. Figure 1 shows the
result at a fixed laboratory angle 90°, where the angle-
differential cross section takes a maximum value. In the
figure the spectra depicted with solid and dashed lines
are obtained using the RHF and hydrogenic momentum

T T T T T T T T T T

4 Xe>* +Be 197 MeV/u
90°

REC photon spectrum (b/sr/KeV)

1 1 "
120
Photon energy (keV)

p—

-
140

FIG. 1. Calculated K-REC photon spectrum in b/srkeV
for 197-MeV /u Xe®*** on Be atoms for the laboratory photon
angle 90°. Solid line : calculated with the approximate RHF
wave functions by DZ-STO’s [22] for the target atom; dashed
line: calculated with the hydrogenic momentum distribution
for the target atom. All partial waves with |x| < 10 have been
taken into account in the calculation of the photoelectric cross
section.

distribution functions, respectively. Each spectrum is
peaked at the resonance photon energy wj of 123 keV
given by Eq. (2.18). As is considered in Sec. IID, there
appears a difference in the line shape. This difference
comes from the fact that owing to the screening effect,
the RHF momentum distribution is narrow in spread
and about twice in maximum value at ¢ = 0 compared
with the hydrogenic momentum distribution function. In
the present calculation, it turns out that the momen-
tum distribution of target electrons changes the double-
differential cross section, but leaves the angle-differential
and total cross sections almost unchanged.

The angle-differential K-REC cross section is shown in
Fig. 2 in comparison with the measurement of Anholt et
al. [13]. The values of the cross section are reduced by
a factor of 0.8 for normalization at 90°. This excess of
about 20% of the theoretical results over the experimen-
tal data is less than the systematic deviation in a recent
observation by Stohlker et al. [24]. Aside from the over-
all normalization, the experimental angular dependence
is well represented by our theory. The total K-REC cross
section is predicted to be 81.9 b.

Figure 3 illustrates the calculated photon spectrum at
a fixed laboratory observation angle of 132° for the 295-
MeV/u U®2* + N collision. The photon spectrum cal-
culated with the hydrogenic momentum distribution is
also shown by the dashed line. As in Fig. 1, the pho-
ton lines for the hydrogenic momentum distribution are
broader. A measurement was made by Stohlker et al.
[25] for the N, target. Our results based on atomic RHF
wave functions give very good agreement with the ex-

10 T T T T T
L Xe®** + Be 197 MeV/u .

Differential REC cross section (b/sr)

4r- -
2 — -4
I i
| | 1 1 I
0 30 60 90 120 150 180
Angle (deg)

FIG. 2. Differential K-REC cross section in b/sr for
197-MeV Xe®** on Be as a function of the laboratory angle.
Measured values are from [13]. In addition to the statistical
error, there may be a systematic uncertainty of £20%. The
solid curve represents the calculated results (this work) mul-
tiplied with a normalization factor of 0.8. The approximate
RHF wave functions by DZ-STO’s [22] have been used for
the target atom. All partial waves with |x| < 10 have been
taken into account in the calculation of the photoelectric cross
section.



49 RADIATIVE ELECTRON CAPTURE IN RELATIVISTIC. .. 1881

6 T T T T T L
U9+ + N 295 MeV/u
sk 132 K shell

L shell

REC photon spectrum (b/sr/keV)
w
T
1

/ /

1 - L 1
G80 100 120 140 160 180

Photon energy (keV)

FIG. 3. Calculated REC photon spectrum in b/srkeV for
295-MeV /u U??* on N atoms for the laboratory photon angle
132°. For the L shell, the contributions of the subshells are
added. Solid line : calculated with the approximate RHF
wave functions by DZ-STO’s [22] for the target atom; dashed
line: calculated with the hydrogenic momentum distribution
for the target atom. All partial waves with |«| < 10 have been
taken into account in the calculation of the photoelectric cross
section.

perimentally observed ratio between the peak heights of
the K-REC and L-REC lines after applying an efficiency
correction [26] to the original data (Fig. 1 of [25]). The
angle-differential cross sections into K and L shells are
predicted to be 21.0 and 7.38 b/sr, respectively, at 132°.

Figure 4 gives the differential REC cross sections for
capture into the K and L shells of the projectile. It is
known that in the theoretical description of nonrelativis-
tic REC, the photon angular distribution shows a simple
sin? @ dependence in the laboratory system [10]. How-
ever, both distributions of the present calculation exhibit
deviations from a sin® @ distribution. The total K- and
L-REC cross sections are predicted to be 423 and 128 b,
respectively.

In order to describe the relativistic effect of REC, the
contributions from spin-flip and non-spin-flip transitions
to K-REC are indicated in Fig. 5. At forward (and
backward) directions with respect to the electron mo-
mentum (which may slightly deviate from the beam di-
rection because of the transverse momentum spread in
the target) photon emission is forbidden in a nonrela-
tivistic theory [2], since photon angular momentum +1
cannot be created from axially symmetric electron wave
functions. Only the relativistic coupling of the electron
spin giving rise to spin flip can lead to a nonzero cross
section. From Fig. 5 it is clearly seen that the deviation
from a sin?6 behavior mainly comes from the spin-flip
transition.

The cross section for L-REC is shown in more detail
in Fig. 6, where REC into the individual subshells L,

60 T T T T T
U%* + N 295 MeV/u

K shell

3o -

201 -

Differential REC cross section (b/sr)

10 -

0 30 60 90 120 150 180
Angle (deg)

FIG. 4. Calculated differential K-shell and L-shell REC
cross sections for 295-MeV /u U®?** on N as a function of the
laboratory angle. The approximate RHF wave functions by
DZ-STO’s [22] have been used for the target atom. All partial
waves with |k| < 10 have been taken into account in the
calculation of the photoelectric cross section.

Ly, and L3 (2812, 2p1/2, 2P3/2) is displayed separately.
It is found that the peak positions of the angular distri-
butions of L-REC to the 2p,/; and 2ps,; shells are in the
backward direction compared with that to the 25,/ shell,
in contrast to the angular distributions of photoelectric
effect [17,23,27]. This is because the REC angular dis-
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FIG. 5. Calculated differential K-shell REC cross sections
for 295-MeV/u U%** on N as a function of the laboratory
angle. The spin-flip and non-spin-flip contributions of the
K shell are shown separately. The approximate RHF wave
functions by DZ-STO’s [22] have been used for the target
atom. All partial waves with |k| < 10 have been taken into
account in the calculation of the photoelectric cross section.
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FIG. 6. Calculated differential L-shell REC cross sections
for 295-MeV/u U®?* on N as a function of the laboratory
angle. The contributions of the L, Lz, and L3 shells are
shown separately. The summed cross section appears again in
Fig. 6. The approximate RHF wave functions by DZ-STO’s
[22] have been used for the target atom. All partial waves
with |k| < 10 have been taken into account in the calculation
of the photoelectric cross section.

tribution at 6’ corresponds to the photoelectric (or RR)
angular distribution at m — 6'.

B. Charge and energy dependence of the cross
section for radiative recombination

The dependence of REC cross sections on the projec-
tile charge and energy is best represented if we consider
radiative recombination (RR), in which the electron is
assumed to be at rest in the initial state. Therefore, no
target parameters enter. Figure 7 presents a comparison
of the exactly calculated cross section (solid line) with the
cross section calculated according to the nonrelativistic
Stobbe formula [28,29] for radiative electron capture into
an empty K shell given by

Stobbe
ORR

1 — e—2mv ’ (31)

_ 2812¢ V3
K 1+ 02

) 2 e~ arctan(1l/v)

where v = aZ/v is the Sommerfeld parameter. Stohlker
[26] has pointed out that for K-shell RR (K-RR), the
exact relativistic cross section almost coincides with the
nonrelativistic Stobbe cross section Eq. (3.1). In Fig. 7,
the dotted lines are calculated by assuming the correct
relation between the velocity v and the projectile energy,
while the dashed line uses the relation Ey;, = %M pv2,
as if the projectile speed were nonrelativistic. Indeed,
we confirm that the completely nonrelativistically calcu-
lated cross section for K-RR is very close to the exact

103 T YT T T T -r L
F Z=100 ... 3
102F 1
) I ]
g 10‘5‘ E
é 10°F 3
-1
g o 3
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10-2 P u_‘ S .L.l(T -
10 10

Energy (GeV/u)

FIG. 7. Energy and charge dependence of the cross section
for radiative recombination (in barns) with capture into the
projectile K shell. Solid lines: exact (relativistic) calculated
cross sections; dotted lines: Stobbe cross sections, Eq. (3.1),
assuming the correct relativistic relation between energy and
velocity; dashed lines: Eq. (3.1), but assuming the nonrela-
tivistic relation Eyxin = %M pv? between energy and velocity.
In the relativistic calculations, all partial waves with |k| < 20
have been taken into account.
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FIG. 8. Energy and charge dependence of the cross sections
for radiative recombination (in barns) with capture into the
projectile L shells. All results are obtained from exact rela-
tivistic calculations. Solid lines: capture into the L, shell;
long-dashed lines: capture into the Lz shell; short-dashed
lines: capture into the L3 shell. The cross sections for L,
capture are considerably larger than those for the other two
shells, so that they appear to group with the next higher
charge state. All partial waves with |x| < 20 have been taken
into account.
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relativistic cross section.

This equivalence cannot hold for the differential cross
section, which nonrelativistically would be represented
by a strict sin?#@ distribution, while in the exact cross
sections (see Figs. 4 and 6), considerable deviations from
this form occur. One reason is that spin-flip contributions
to the cross section, as in Fig. 5, yield nonzero values at
forward and backward angles.

In analogy to Fig. 7, we have plotted in Fig. 8 the
exact relativistic RR cross sections for capture into the
Ly, Ly, and L3 shells. Here, very clearly, capture into
the L; shell dominates for all charges and energies.

IV. SUMMARY AND CONCLUSIONS

Radiative electron capture dominates over nonradia-
tive capture for high-Z projectiles and low-Z target
atoms. Under these conditions, it is well justified to take
into account the target atom only through (i) the bind-
ing energy of the electron in its initial state and (ii) its
bound-state momentum distribution. Beyond this im-
pulse approximation, the present description of REC is
rigorous by using exact relativistic bound and continuum
Coulomb projectile states in the underlying treatment
of the photoelectric effect and by performing an exact
convolution with the target momentum distribution. A
versatile computer program for REC into arbitrary pro-
jectile shells has been developed, which is applicable to
a variety of experiments that are currently in progress.

As an illustration, photon spectra and angle-
differential cross sections have been calculated. The ex-
perimental dependence of K-REC for the collision sys-
tem of 197-MeV/u Xe®4* + Be is well represented by
the calculation. For the collision system of 295-MeV /u
U®2*+ 4+ N, Hartree-Fock wave functions reproduce the
experimental line shapes of photon spectra very well.
The calculations show pronounced deviations from a sim-
ple sin® @ dependence for K-REC as well as for L-REC.
The importance at forward angles of spin-flip contribu-
tions, which cannot be described nonrelativistically, is
also demonstrated.

Furthermore, exact relativistic cross sections for radia-
tive recombination have been calculated. The treatment
includes capture into the K shell and into the individ-
ual L subshells for projectile charges between 20 and 100
and energies between 100 MeV /u and 2 GeV/u. These
values are useful for simple estimates of total REC cross
sections.
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