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Two-electron atoms: o(4,2) operator replacements and large-order perturbation theory
with respect to the replaced kinetic-energy operator
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The Schrodinger equation for two-electron atoms is transformed into an alternative equation depend-

ing on a free dimension1ess parameter P, according to the method of o(4,2) operator replacements. These
operator replacements are well defined except for the case where both the orbital and spin momenta are
zero, i.e., except for singlet S states. When P goes to positive infinity, the solutions of this present equa-
tion should correspond to the solutions of the Schrodinger equation. When P goes to negative infinity,

the present equation becomes exactly solvable. These exact solutions are the zero-order solutions for a
Rayleigh-Schrodinger perturbative expansion where the perturbation is the nondiagonal part of the re-

placed kinetic-energy operator. An essential property of this method is that the perturbative operator is

bounded, and therefore the convergence radius of the series is nonzero. The method is purely nonvaria-
tional. A numerical application for the triplet S even-parity ground-state helium atom is performed.

PACS number(s): 31.15.+q, 31.20.Gm, 02.90.+p, 03.65.Fd

I. INTRODUCTION

The recently introduced method of o(4,2) operator re-
placements [1] has been used to study the properties of
two-electron atoms [1,4]. This method transforms the
Schrodinger equation into a new equation depending on a
free dimensionless parameter P. This alternative equa-
tion wi11 be referred to as the replaced equation below.
When P goes to positive infinity, the solutions of the re-
placed equation should correspond to the solutions of the
Schrodinger equation.

Some eigenvalues of the replaced equation have been
studied with the use of numerical diagonalization in a
truncated basis [1]. This method is well suited to the
determination of eigenvalues corresponding to finite P
values. A disadvantage of this procedure is that a calcu-
lation has to be carried out for each different finite P
value, and the extrapolation to the limit where P goes to
positive infinity has to be done from the results corre-
sponding to finite P values.

The present paper describes a way to obtain the P-
dependent solutions and in particular the physical solu-
tions corresponding to the limit where P goes to positive
infinity. The starting point is the fact that, at the limit
where P goes to negative infinity, the replaced equation
becomes exactly solvable. These solutions are the zero-
order solutions for a Rayleigh-Schrodinger large-order
perturbative expansion. The perturbative operator is
proportional to the nondiagonal part of the replaced
kinetic-energy operator. The parameter that measures
the strength of the perturbation is exp(dg). An essential
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result is that the perturbative operator is bounded. As a
result, it follows [5,6] that the radius of convergence of
the perturbation series is nonzero if the zero-order solu-
tion is an isolated eigenvalue. The fundamental problem
thus is reduced to an analytic continuation along the pos-
itive real axis of a function of exp(P), a power series for
which is known a Taylor expansion in the vicinity of the
point exp(P) =0.

In the present paper the possibility to carry out
effectively this analytic continuation from the numerical
computation of a finite set of the coefficients of the per-
turbation series is considered. The numerical application
performed in this paper is mainly exploratory. It con-
cerns the triplet S even-parity ground state of the helium
atom. The zero-order solution for this state is nondegen-
erate and thus the Rayleigh-Schrodinger perturbative
method for the nondegenerate case has been used. (See,
e.g. , Ref. [7].) Up to 50 nonzero terms of the series for
the energy expanded in powers of exp(P) have been cal-
culated. The coefficients of the series are easily obtained
due to the three following facts. First, the zero-order
basis is discrete, and thus the problems connected with
the handling of continuum, which are present when the
zero-order Hamiltonian is a hydrogenic one, are com-
pletely avoided. Second, the action of the perturbative
operator on an arbitrary zero-order basis vector yields a
lineal combination involving only a finite number of
zero-order basis vectors. The problem of infinite summa-
tion for the computation of the perturbative series is thus
also avoided. Third, the matrix elements of the perturba-
tive operator in the zero-order basis are explicitly known
and extremely simple. The three above properties trace
back to the fact that all the replaced operators are ex-
pressed in terms of o(4,2) generators and to the fact that
the zero-order basis is directly related to discrete unitary
irreducible representations of o(4,2).
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II. GENERAL FORMULATION

The method of o(4,2) operator replacements is only
very briefly recalled here since it has been described in
inuch details elsewhere [1]. The emphasis is on the per-
turbative approach. The Schrodinger equation for a
two-electron atom in the limit of infinite nucleus mass
and for nuclear charge Z, is

p Z p' Z 1——+ ——,+, —E le&=0
2 r 2 r' lr —r'l

Atomic units are used. The symbols r, p denote the posi-
tion and momentum operators associated with an elec-
tron. The prime refers to the second electron. The above
equation can be considered within the o(4,2) algebra
framework because a realization of this algebra in terms
of position and momentum operators has been obtained
(see, e.g. , Refs. [1,8 —12]):

a(p)—:exp( —p)[ —,'rp —p(r p)] —
—,
' exp(p)r,

l=rXp,

t2 —=r

b(P) —=a(P}+exp(P)r,

t, (P) =—r [exp( —P)p —exp(P) ]/2,
ti(P): r[exp( —P)p—+exp(P)]/2 .

The above operators indeed satisfy the commutation
relations characterizing an o(4,2) algebra. The o(4,2) gen-
erators are Hermitian. It is emphasized that the terms
Hermitian, unitary, and normalized imply in this paper
llr scalar product [or 1/(rr') scalar product when both
electrons are considered]. The so-called o(4,2) operator
replacements [1,13] are the following:

r ~2 exp( P)t3(P)—,
r~ —2 exp( —P)a(P),

p~exp(P)t 3
' (P)g/2,

p ~exp(2p)[t, '(p)t, (p)+1]/2 .

If one goes back to the expression in terms of r and p,
the above r replacement, for example, gives
r~r [1+exp( —2p)p ]. It is thus apparent that the solu-
tion of the replaced problem is expected to converge to
the solution of the initial problem if the limit p going to
positive infinity is taken at the end of the calculations.
According to the operator replacements described above,
the Schrodinger equation (1) is transformed into Eq. (2):

[exp(p) 2 (p)+2[ —Z( 1 lt, (p)+ I/t', (p) }+I /3 (p)]
—@(P)][t (P)t'(P)]'"liP(P)&=O, (2)

2'(P)—:[t,(P) ]
' "t,(P)[t,(P) ]

'"
+[t,'(p)] '"t', (p)[t', (p)] '",

& (p) =—la(p) —a'(p) l,
8(P):—[4 exp( P—)E (P}—2 exp(P) ],

(4)

=2r( —1) ' '
(ln, n', J,2J„+'L, M) P) . (8)

For more details, we refer to Ref. [1].
The important fact is that all operators appearing in

Eq. (2), except T(P), are diagonal in this basis.
Specifically, 1/t3(p)+1/ti(p) has eigenvalues equal to
1/n + 1/n'; I/3 (P) has eigenvalues equal to
[2[Ji(Ji+I)+J2(J2+I)]—L(L+1)] '~ . The only
nondiagonal operator is T(p}, whose explicit action on
the vectors l(n, n', J , 1J, 2+'L, M)p) is given by Eqs.
(20, 21}of Ref. [1]. It can be seen from these equations
that T changes n, n' by unity and J„Jz by one-half. It is
important to note that all matrix elements of the P-
dependent operators in the p-dependent basis

where T(P) is Hermitian. In Eq. (2), we consider 6(P) as
the eigenvalue and [t3(p)t3(p)]' l%(p) ) as the eigenvec-
tor. The physical energy is obtained by considering the
limit of E (p) [see Eq. (5)] when p goes to positive infinity.

The replaced equation (2) is well defined except for the
case where both the total orbital angular momentum and
the total spin are zero. The difBculty for this singlet S
case originates [1] from the fact that the operator defined

by Eq. (4}, corresponding to the operator of an interelec-
tronic distance, has zero among its eigenvalues in the
subspace of states with orbital and spin momenta equal to
zero, and therefore is not invertible.

An orthonormal basis for two-electron states of definite
parity ~, total orbital angular momentum L with projec-
tion M on an arbitrary axis, and total spin S has been de-
scribed in Ref. [1]. The vectors of this basis are denoted
l(n, n', Ji,J2, +'L,M}p) The .projection of the spin S
is not explicitly displayed in this notation. The ket nota-
tion does not include spin space. Specifically, if P denotes
the two-electron permutation operator, one has

Pl(n, n', Ji J +'L,M)P)

=( —1) l(n, n', Ji J + L,M)P) .

The symbols n, n' are nonzero positive integers. The
symbols J, ,J2 are the numbers associated with the cou-
pling of two angular momenta with quantum numbers
(n —1)/2, (n' —1)/2. Depending on the n, n' values,
J

& J2 are therefore integers or half integers. The cou-
pling of J&,Jz yields the total orbital angular momentum
L. With the further following restrictions

n & n', Ji & J2, J]~J2 if 77~( —1)

~( 1) 1 2

the infinite set of vectors l(n, n', Ji,J2, +'L,M)p) pro-
vides an orthogonal basis for two-electron atomic states.
Useful relations are the following:

l(n, n', J, J +'L",M)P)

=2r( —1) ' l(n', n, Ji,J2, + L,M)p), (7)

l(n, n', J, iJ,z+'L, M)P)
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~(n, n', J„J2, +'L",M)P) are P independent. If
we consider Eq. (2) expressed in the basis
~(n, n', J„J2, +'L,M)P), we can suppress the P depen-
dence in the operator and in the basis vectors. Thus Eq.
(2) can be written as

[exp(P)T+2[ —Z(1/t3+1/t3 )+ 1/A]

—B(p)][t t' ]' ~e) =0 . (9)

In Eq. (9}, the abstract P-independent operators T, t3, t'„

and 3 are defined as the operators having the same ma-
trix elements in the separable Hilbert space spanned by
the abstract orthonormal basis

~ ( n, n ',Ji,Jz, + 'L ",M) )
as the P-dependent operators T(P), t3(P), and t3(P) have
in the separable Hilbert space spanned by the basis
~(n, n', J&,J 2,

+'L,M)P). It is now clear that in the
limit where f3 goes to negative infinity, the eigenvalue
problem becomes exactly solvable. The unperturbed
operator has only a point spectrum corresponding to the
eigenvalues

6( —oo )=2( —Z(1/n + I/n')+ [2[Ji(J,+1)+Ji(Jz+1)] L(L—+ I)] '
) .

For exp(P) different from zero, T is the perturbing opera-
tor with exp(P) as the parameter that measures the
strength of the perturbation. As all matrix elements of
all operators are known, the Rayleigh-Schrodinger series
can be calculated for a given initial unperturbed state.
We consider from now on the case where the zero-order
eigenvalue 6( —P) is nondegenerated. It can be seen
from the explicit action of the operator T on the basis
vectors ~(n, n', Ji,J2, +'L, M)) that in the expansion
of 8(P) in powers of exp(P), all odd powers are zero.
This can be seen immediately if, for example, one notes
that as a result of the action of the operator T [explicit
formulas for it are given by formula (21) of Ref. [1] ] the
sum n +n' changes its parity. Therefore, the projection
of a given state on the state obtained after m-fold applica-
tion of operator T to this state is certainly zero if m is an
odd number. It follows then from Eq. (5) that the expan-
sion for E(P) can be written as

E(13)=c,z+-,'z'+ g c.. .z"+',
j=l

z =exp(P),

c, =6( —~ )/4 .

(12)

(13)

The notation z for exp(P) will be retained in the rest of
this paper. The calculation of the Rayleigh-Schrodinger
series has been made for the triplet S even-symmetry
ground state of helium: Z=2, n =2, n'=1, J& =J2 =

—,'.
The coefficients c2 + &

for j between 0 and 50 are reported
in Table I.

III. ANALYTIC CONTINUATION

A fundamental property of the Hermitian perturbing
operator T is that it is bounded (and therefore self-
adjoint). This essential property is common to all opera-
tors acting in a separable Hilbert space and that can be
described in a given orthonormal basis by a matrix, all
elements of which are zero except a finite set of nonzero-
bounded elements on each column and on each row.
(See, e.g. , Ref. [14].) As a result, the Rayleigh-
Schrodinger series has a nonzero radius of convergence if
the unperturbed eigenvalue is isolated and has finite mul-
tiplicity [5,6].

The Rayleigh-Schrodinger perturbation theory pro-

duces the Taylor expansion of the energy E as a function
of the complex variable z near the point z=0. This
defines a germ for an analytic function, and the basic
problem reduces to the determination of an analytic con-
tinuation along the real axis, outside the circle of conver-
gence. Of course only a finite number of coefficients of
the Taylor series can be computed. The coefficients of
the series are reported in Table I. The only nonzero
even-order coefficient is cz =

—,'. This section is devoted to
extraction of the information contained in Table I. These
coefficients were obtained by using double precision on a
Cray computer. Double precision is necessary for per-
forming the subsequent Euler transformation discussed
below. The double-precision results of Table I modify at
most the last three digits of the results that are obtained
with single precision. Thus one can reasonably expect
that the coefficients of Table I are accurate up to 25 di-

gits.
The first interesting point in Table I is that the series is

alternating for odd powers of z (except for the coefficient

c, ). If the series continues to be alternating up to infinite

order, this means (see, i.e., Ref. [15]) that there exists a
singularity at z = —

p where p denotes the radius of con-
vergence of the function S of the variable z:

S(z ):F. /z —z/2—= g C (z )~,
j=0

(14)

with C =cz~+& and E defined by Eq. (11). In order to
determine the radius of convergence of the function S, we

have performed a so-called Neville-Richardson analysis
of the Cauchy ratios C /C i. This means that we are
looking for an expansion in inverse powers of j for the
Cauchy ratios:

C,-,=ao+a, ~j+a2~j'+ . (15)

Specifically, ao is determined by recursive computation
with respect to the index k of

When a limit for ao has been obtained, the procedure is
repeated with the starting value r' '=[C /C. ,

—ao]j.
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When applied to the coefficients C. of Table I, this pro-
cedure appears to be surprisingly stable. Thus the radius
of convergence p in terms of the variable z is found to be
approximately

2j+ 1 c»+. ) —=CJ

TABLE I. CoefBcients of the expansion of the energy
E=c,z+ —'z + g",c21+,z ~+' in powers of expP, where

c& = 2, c» =0 ifj ~ 2. The numbers in brackets denote multipli-

cative powers of ten.

p =0. 113959 189 957 3 . (18)

If the series S is dominated by a singularity of the type
(p+z }, the exponent a will be given by
a= —a, /ao —1. The Neville-Richardson analysis of the
coefficients of Table I gives a =0.500000000.

To summarize, we conclude that the series S has a
square-root branch-point singularity on the circle of con-
vergence at z = —0. 113959 189 957 3. This result is also
supported by Pade analysis of the series S. For the nu-

merical computations of Pade approximants to the series
S, it is convenient to introduce a scaled variable

1

3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99

101

—0.121 132486 540 518 711 774 542 560 97[E+01]
—0.285 293 148 066 891 740036 261 497 21[E+00]

0.438305035 18420438622070192880[E+00]
—0. 176920713916245686125 51860999[E+01]

0.932083228945 964420906344933 71[E+01]
—0.559 294 916901 944 288 894007 786 25[E +02]

0.362 544 729 012 304 365 050018 249 92[E+03]
—0.247 331 529 647 765 159 852 114492 90[E+04]

0.174 974 421 462 754 801 496 447 698 49[E + 05]
—0. 127 192 312063 452 219203 982 807 31[E+06]

0.944265 790071 862 360087433 975 35[E+06]
—0.712 903 821 582 965 564 844 170 359 67[E+07]

0.545 674 911309 983 803 676 256 039 79[E +08]
—0.422 477 000466 163 450 936 754 387 25[E +09]

0.330270815066 127 11460547941000[E+10]
—0.260 335 195040 916 108 810454 258 40[E + 11]

0.206 685 384064432 605 691 859 474 66[E + 12]
—0. 165 123 982 019372 342 693 443 268 40[E + 13]

0. 132 651 630452 687 017904 154 386 29[E+ 14]
—0. 107090 121 235 737 436 140 123 755 70[E + 15]

0.868 351 071 ".".". 561 870 862 407 576 43[E+ 15]
—0.706901 705 266633674838 349 51940[E+16]

0.577 532 616276 005 566 328 168 996 54[E + 17]
—0.473 376040215 149 933 801 599 787 94[E + 18]

0.389 157 380 839 208 539046 733 332 43[E+ 19]
—0.320793 751 596056475 864 11065258[E +20]

0.265 102 293 923 121 426 611400411 01[E+21]
—0.219 585 823 783 451 574 786 964 711 39[E +22]

0.182273 66766701943773415701622[E+23]
—0. 151 602 360289412 845 505 056 889 69[E+24]

0.126 325 448 714 772 501 602 800261 75[E +25]
—0. 105 ""4762 839 966 542001 450341 33[E+26]

0.881 576 634 696 275 144 576 887 752 16[E+26]
—0.738 162 835 024 677 703 971 276 569 07[E +27]

0.618 958 418 302 552 504 955 714 392 33[E+28]
—0.519 698 703 326 621 665 518 877 539 11[E+29]

0.436 907 437 102 090 819637 788 147 00[E +30]
—0.367 743 022 684 962 439 022 759 969 77 I

E +31 ]
0.309 876 520777 438 310281 449 896 89[E+32]

—0.261 394450231 280 329 310993846 36[E+33]
0.220 721 040 907 891 010 142 839 592 29[E+34]—0. 186555 816623 609 518 394482 358 23[E+35]
0.157 823 312 506 751 711 061 891 728 33[E+36]—0.133 632 436 742 868 938 576 927 611 63[E+37]
0. 113243 527 205 719985 464 717 360 36[E+38 ]—0.960415697765081030775683895 18[E+38]
0.815 143 674450 240 841 418 035 19144[E +39]

—0.692 347 000093 849 356 554200 638 13[E+40]
0.588 457 101 344 603 442 629 795 416 82[E+41 ]—0.500489053 257 527 195 117421 928 59[E+42]
0.425 942 865 860 196052 285 713 073 09[E+43]

Q =sz (19)

u =sz =y/(I —ey) . (20)

The parameters s and e of this change of variables will be
qualified as scaling parameter and Euler parameter, re-
spectively. When z increases from zero to infinity on the
real axis, y increases from zero up to I/e. If all the singu-
larities on the z plane are on the negative real axis at a
distance from the origin larger or equal to the radius of
convergence given by Eq. (18}, it is seen that with the
choices e=1 and s=8, for example, that there are no
singularities in the y plane inside the circle ~y~= 1/e.
These values of the parameters will be retained in all sub-
sequent calculations. These choices are not critical. Oth-
er values can be chosen; the essential point is that the
final series for the energy as a series in powers of y con-
verges inside the circle ~y~ =1/e. The energy can be ex-
pressed as a function ofy as

E =c&(s)&y/(1 —ey)+c2(s)y/(1 —ey)

+ [y/(s (1—ey) }]' '+(y),

F(y)=s g C+,(s)u'
j=0

(21)

(22)

(23)

so that the coefficients of the expansion of the function S
in the variable u be approximately of the same order of
magnitude. This is obtained by choosing s=8, for exam-
ple. There is a succession of poles and zeros of the Pade
approximants on the negative real axis of the z plane.
This succession of alternating poles and zeros corre-
sponds to a cut, as usual in Pade analysis of functions
with branch points [16]. The pole closest to the origin
moves toward the point z = —p as the order of the diag-
onal Fade approximants increases. In order to get more
information on the series S, in particular concerning the
location and nature of other possible singularities, we also
have performed a Fade analysis on the second-order loga-
rithmic derivative [17], on the series obtained from the
series S by dividing each coefficient by the coefficient of
the series associated with (1+z )'~ [18] and finally used
the so-called GJ3 analysis [16]. No definitive conclusions
have been presently obtained.

The analytic continuation has been done by means of a
Euler transformation (see, e.g. , Ref. [19])as follows. The
Euler transformation is produced by the change of vari-
ables
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c,(s)=—cj/s~, C, (s)—=c2~+, (s) . (24)

+(y/s)' 'G(y) . (26}

The function F(y) is analytic inside the circle ~y =1/e.
Numerical calculation of energy with the use of expan-
sion for F (y ) in the vicinity of point y = 1/e is difficult,
since at the vicinity of this point a mutual compensation
of different terms becoming large when y tending to 1/e
takes place. One can explicitly take into account this
compensation, having introduced a new function G(y)
according to

F(y)=(1—ey) ~ G(y) —(s )

X [c2(s)[e (1—ey) ]' +c &(s)e (1—ey) ], (25)

through which energy is expressed as

E =c,(s)&y &1—ey +cz(s)y/(1+&ey )

Relation (27) shows that G (y) is analytic inside the circle
~y~ ~1/e. Expression (27) is much more convenient for
calculation since all the terms remain bounded, y tending
to 1/e. All further numerical analysis is accomplished,
assuming that y = 1/e.

From an operational point of view, one first computes
the coefficients f of t. he Taylor-series expansion of F(y)
near the point y=O from Eqs. (21)—(23) and Table I.
Afterwards one can calculate the coefficients g of the
Taylor-series expansion of G(y) near the point y=O from
Eqs. (27) and (28).

At this stage it is of interest to look at the function
G (y) corresponding to the exactly solvable case of a mod-
el atom with two noninteracting electrons. The function
6(y) for two independent electrons will be denoted 6;(y)
in order to avoid confusion with the case of two interact-
ing electrons. The two-electron hydrogenic case is exact-
ly solvable [1],and the energy is

According to Eq. (25) 6(y) is related to F(y) according
to

6(y) =F(y)[1—cy] ~ +s'~

E =s(n)+E(n'),

E(k)=(z/4)[z —+z +(2Z/k) ] .

(29)

(30)

X [cz(s)Ve /(1 —ey)+c&(s)e (1—ey) '
]

j=0

(27)

(28)

The expansion of the squared roots in power series coin-
cide with the Rayleigh-Schrodinger perturbative series.
The function G, (y) for two noninteracting electrons can
be obtained from Eqs. (21), (27), (29), and (30):

6;(y)=&1—ey [s/(4y)][(1/v)+(1/v')]+[2(1 —ey)]

X [v'se —[s/(2y)][(1/v)}/1+((v /s) —e )y +(1/v')+I+((v' /s) —e )y ]], (31)

X [
—e + [ 1 —v 1 —ey ] /y ] . (32)

The superscript m distinguishes this modified function
from the original function 6;. In complete analogy, one
expects that the convergence of the series G(y) for the
two interacting electrons can be improved if one intro-
duces the function

6—:G(y)+(s/4}[ —4c, ][—e +[1—&1—ey ]/y ] (33)

i=0
(34)

with c& given by Eq. (13). One can verify that
G (1/e)=G(1/e). The convergence of the sequence

E (y) =c&(s)Vy &1—ey

where v= n /(2Z)—, v'= n' /(2Z—) This fu. nction contains a
squared-root singularity at y =1/e. The convergence
near y =1/e of the power series for this function G;(y}
will be improved if one removes this singularity without
changing the value 6;(1/e). This is achieved by intro-
ducing the function 6, (y):

6, =—6, (y)+(s/4)[(1/v)+(1/v')]

J
+cz(s)y/(1+&ey )+(y/s) g g; y'.

i=a
(36)

This indicates that a squared-root singularity at y =1/e
has been eff'ectively removed for E „(y).

There are several methods for the acceleration of the
convergence of sequences (see, e.g., Refs. [20,21]).
Among the most effective nonlinear methods for the se-
quence E (1/e), we found the so-called Levin's transfor-
mations and the so-called iterated Aitken transformation.
The Levin's transformations can be expressed as [20]

(37)

where S
&
=0, 5- denotes the initial sequence, and 6 is

the forward difference operator which acts on the index j
only:

(38)

I

has been found much more difficult to accelerate than the
one of the sequence

E, (y)=c, (s)&y &1—ey

J
+c~(s)y/(1+&ey )+(y/s) ~ g g,y' (35)

Among the three Levin transformations, usually called
u, t, U transformations, we found that the U transformation
accelerates the convergence slightly better than the other.
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This Levin v transformation corresponds to the choice

g(j)= —hS) )5$./b, S (39)

For practical computation of Levin's v transformation,
we use the computer program entitled MLEvINT con-
tained in the flexible disk of Ref. [20] with the constant b

equal to unity.
The first column of Table II contains the numbers of

terms of the sequence. The second column is the nonac-
celerated sequence of the partial sum for the energy, E
See Eq. (36). Only two digits are printed in order to save
space, but all digits of Cray double precision were used to
produce the accelerated sequences of columns 3—6 from

TABLE II. Sequence of partial sums for the energy EJ (1/e) and accelerated sequence by Levin's v

transformation and Aitken's iterated transformation.

Em
J Levin k=5 Levin k=15 Aitken k=5 Aitken k=10

1

2

3
4
5

6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49

—0.56[E+00) —0.561 26[E +00]
—0.68[E +00] —0.561 26[E +00]

0.77[E—+00] —0.502 02[E +00]
—0.84[E +00] —0.629 45[E +00]
—0.91[E+00] —0.432 67[E +00]
—0.96[E+00] —0.935 33[E+00]
—0. 10[E+01] 0.801 97[E+01]
—0. 11[E+01] —0.26098[E +01]
—0. 11[E+ 01] —0.246 09[E+01]
—0. 11[E+01 ] —0.237 63[E+01]
—0. 12[E +01] —0.232 44[E +01]
—0. 12[E +01] —0.228 96[E+01]
—0. 12[E +01] —0.226 52[E +01]
—0. 13[E+01] —0.224 74[E +01]
—0. 13[E +01] —0.223 40[E +01]
—0. 13[E+01] —0.222 37[E+01]
—0. 13[E+01] —0.221 57[E +01]
—0. 14[E+01] —0.220 93[E+01]
—0. 14[E +01] —0.22041[E +01]
—0. 14[E+01] —0.219 99[E+01]—0. 14[E+01] —0.21964[E +01]
—0. 15[E+01] —0.21935[E +01]
—0. 15[E+01] —0.219 11[E+01]
—0. 15[E+01] —0.218 91[E+01]—0. 15[E+01] —0.218 74[E +01]—0. 15[E+01] —0.218 59[E+01]
—0. 15[E+01] —0.218 46[E +01]
—0. 16[E+01] —0.218 35[E+01]
—0. 16[E+01] —0.218 26[E +01]
—0. 16[E+01 ] —0.218 18[E+01]
—0. 16[E+01] —0.218 11[E+01]
—0. 16[E+01] —0.218 05[E +01]—0. 16[E+01] —0.217 99[E+01]—0. 16[E+01] —0.217 94[E +01]—0. 16[E+01] —0.217 90[E+01]—0. 17[E+01] —0.217 86[E +01]
—0. 17[E+01] —0.217 83[E +01]—0. 17[E+ 01] —0.217 80[E +01]—0. 17[E+01] —0.217 78[E+01]—0. 17[E+01] —0.217 75[E +01]—0. 17[E+01] —0.217 73[E+01]—O. 17[E+01) —O. 217 71[E+01]—0. 17[E+Ol ] —0.217 70[E +01]
—0. 17[E+01] —0.217 68[E +01]—0. 17[E+01] —0.217 67[E +01]—0. 18[E+ 01] —0.217 66[E +01]—0. 18[E+01] —0.217 64[E +01]—0. 18[E+01] —0.217 63[E + 01]—0. 18[E+01] —0.217 63[E+01]

—0.561 26[E +00]
—0.561 26[E +00]
—0.502 02[E +00]
—0.629 45[E +00]
—0.432 67[E +00]
—0.935 33[E+00]

0.801 97[E+01]
—0.224 80[E+01]
—0.244 24[E +01]
—0.230 21[E+01]
—0.22605[E+01]
—0.222 90[E + 01]
—0.221 14[E+01]
—0.219 89[E+01]
—0.219 15[E + 01]
—0.218 60[E +01]
—0.218 27[E+01]
—0.218 03[E+01]
—0.217 89[E+01]
—0.217 79[E+01]
—0.217 72[E +01]
—0.217 67[E +01]
—0.217 63[E+01]
—0.217 61[E+ 01]
—0.217 59[E+01]
—0.217 57[E +01]
—0.217 56[E +01]
—0.217 56[E +01]
—0.217 55[E +01 ]—0.217 54[E + 01]
—0.217 54[E +01]
—0.217 54[E +01]
—0.217 54[E +01]
—0.217 53[E +01]
—0.217 53[E+01]
—0.217 53[E +01]—0.217 53[E+01]
—0.217 53[E+01]
—0.217 53[E + 01]
—0.217 53[E+01]
—0.217 53[E+01)—0.217 53[E+01]
—0.217 53[E+01]—0.217 52[E +01]
—0.217 54[E +01]—0.217 52[E +01 ]—0.217 53[E+01]
—0.217 52[E +01]—0.217 36[E+01 ]

—0.561 26[E +00] —0.561 26[E +00]
—0.675 85[E +00] —0.675 85[E +00]
—0. 10983[E+01] —0. 109 83[E +01]
—0. 12147[E+01] —0. 12147[E+01]
—0.164 64[E + 01] —0. 164 64[E +01]
—0. 172 29[E +01] —0. 172 29[E +01]
—0. 19767[E +01] —0. 19767[E +01]
—0.20071[E+01] —0.20071[E+01]
—0.220 30[E+01] —0.220 30[E+01]
—0.211 38[E +01] —0.211 38[E+01]
—0.213 11[E+01] —0.213 11[E+01]
—0.213 97[E +01] —0.213 97[E+01]
—0.212 90[E +01] —0.213 49[E +01]
—0.215 92[E +01] —0.213 69[E +01]
—0.217 06[E + 01] —0.213 48 [E+01]
—0.216 86[E + 01] —0.217 04[E + 01]
—0.217 00[E +01] —0.216 94[E +01]
—0.217 07[E +01] —0.216 67[E +01]
—0.217 13[E+01] —0.216 79[E+01]
—0.217 18[E+01] —0.216 87[E +01]
—0.217 23[E +01] —0.216 90[E+01]
—0.217 26[E +01] —0.216 87[E +01]—0.217 29[E +01] —0.217 46[E +01]—0.217 32[E +01] —0.217 46[E +01]
—0.217 34[E +01] —0.217 46[E +01]—0.217 36[E+01 ] —0.217 46[E +01]—0.217 38[E+01] —0.217 53[E +01]—0.217 40[E + 01] —0.217 52[E +01]
—0.217 41 [E+01] —0.217 52[E +01]
—0.217 42[E +01] —0.217 52[E +01]
—0.21743[E+01] —0.217 52[E +01]

0.21744[E+01]——0.217 52[E +01]
—0.217 45 [E+01 ] —0.217 52[E +01]—0.21745[E +01] —0.217 52[E +01]—0.217 46[E +01] —0.217 52[E +01]—0.217 47[E +01] —0.217 52[E +011—0.21747[E +01] —0.217 52[E +01]—0.217 48 [E+01] —0.217 52[E +01]—0.217 48[E +01] —0.217 52[E +01]—0.217 48[E +01] —0.217 52[E +01]—0.21749[E+01] —0.217 52[E +01]—0.217 49[E +01] —0.217 52[E +01]—0.217 49[E +01] —0.217 52[E +01]—0.217 49[E +01] —0.217 52[E +01]—0.217 50[E + 01] —0.217 52[E +01]—0.217 50[E+01] —0.217 52[E +01)
—0.217 50[E +01] —0.217 52[E +01]—0.217 50[E +01] —0.217 52[E +01]—0.217 50[E+01] —0.217 52[E +01]
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the input sequence of partial sums E . These double-
precision inputs can easily be obtained from Table I by
performing the Euler transformation. It is stressed, how-
ever, that these input double-precision data are affected
by numerical rounding errors in the process of Euler
transformation. Specifically, the loss of accuracy occurs
when going from Eq. (22) to Eq. (23). Therefore about 25
digits should be reliable for the computation of only the
first few terms of the sequence in the second column of
Table II. The loss of accuracy for the coefficients fi [see
Eq. (23)] has been estimated. It increases with the order j
of the coefficient f~. We found, for example, that the f 15

should be accurate to about 20 digits, f3o to about 15 di-

gits, and f4s to about 7 digits.
If calculations were performed with an infinite number

of digits, the natural choice would be to choose a number
k in Eq. (37}as large as possible. Rounding errors, how-
ever, increase with k in practical computations due to the
insufficient accuracy of the input data. The
third column of Table II reports the values

Lp Lp L ] Lp ~ ~ ~ Lk Lk L for k=5
The fourth column is for k=15. It is seen that the
behavior of the last terms of the sequence in column 4 be-
gins to be irregular, and we interpret this as the manifes-
tation of numerical instabilities. For larger k values, the
irregular behavior is amplified,

The iterated Aitken transformation can be described as
[20]

(40)

with Xp'=S. Again the forward difference operator
acts only on the index j. For practical computation of
the iterated Aitken transformation, we use the program
entitled MIDELTA contained in the flexible disk of Ref.
[20]. Column 5 of Table II reports the values

(p) (&) (p) (1) (p) (p) (&) (2)
Xp Xp X

&
X

~ X2, . . . , Xk,Xk,Xk, . . . , for
k=5. In the sixth column results for k=10 are present-
ed. The result obtained by variational calculations [22] is
—2. 175299. . . a.u. We do not claim that we have select-
ed the best methods for accelerating our series. Our pur-
pose was to illustrate that a relative accuracy of the order
of 10 can presently be obtained. In our opinion, how-
ever, significant improvement with final precision compa-
rable with the most accurate variational calculation could
be achieved by calculating coefficients of Table I with

many more digits. The present limiting factor is the
number of digits available for the coefficients c rather
than the number of these coefficients.

IV. REMARKS AND PROSPECTS

If the o(4,2) operator replacements are carried out on
the hydrogenic Hamiltonian, the replaced problem is ex-
actly solvable for any P values [see Eq. (30)], and the lim-

iting value of energies corresponds indeed to the hydro-
genic one, —Z /(2n ). If the starting Hamiltonian is the
Schrodinger Hamiltonian for two-electron atoms, the
method of o(4,2) operator replacements can be carried
out, except for the case of singlet S symmetry [1]. The
results obtained in Ref. [1] and in the present work show
that the limiting values of energies when /3 goes to posi-
tive infinity correspond within numerical accuracy to the
correct results, as expected. It would be interesting to
find the necessary and sufficient conditions that the initial
Hamiltonian should satisfy in the general case in order
for the o(4,2) operator replacements to give the correct
answer in the limit where P goes to positive infinity.

The perturbative method described in this paper re-

quires the usual modifications [7] when the zero-order ei-
genvalue [see Eq. (10)] is degenerated. A more subtle
case occurs when the zero-order eigenvalue is not isolat-
ed. This occurs, for example, for the case of the singlet P
odd state with Z=2, n =2, n'=1, J, =J2 =

—,'. The zero-

order eigenvalue [Eq. (10)] is then equal to —4. This
value is an accumulation point for the set of zero-order
eigenvalues [Eq. (10)] corresponding to the cases Z=2,
n'=1, J, =J2=(n —1)/2 in the limit where n goes to
infinity.

The difficulties in accelerating the convergence of se-

quences, or, more generally, the difficulty in performing
the analytic continuation up to infinity, could be resolved
if the nature and location of other possible singularities of
the functions could be detected from the numerical
coefficients or from general arguments. The determina-
tion of the analytical continuation of perturbative series
is of considerable interest not only for a precise deter-
mination of bound state or resonance energies, but also
for a classification scheme. The evolution of the energies
when exp(P} moving along the real axis in the complex

plane from negative infinity to positive infinity provides a
classification scheme, since the limit of negative infinity is

exactly solvable. The usefulness of this classification de-

pends of course on the complexity of the connection be-

tween the two limits [numbers and distributions of cross-

ing or avoided crossing in the complex plane of exp(/3)].
Information about singularities in the plane exp(/3) can
be imported also when considering the problems connect-
ed with the chaotic behavior of a system. For a discus-

sion of a connection of distribution of singularities and
chaos see, e.g. , Ref. [23].
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