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Nonadiabatic efFects on resonance-enhanced two-photon dissociation of H2
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Resonance-enhanced two-photon dissociation from the ground X 'Xg+ (vg=0, Jg) state of H~ to the
final continua of EF, GE, and I states has been studied using both linear parallel and crossed polariza-
tions of the two-photon fields. The first field creates an aligned population in the intermediate resonant
state B 'X„+ ( v; =0,3,J;) for which the reduced density-matrix description has been adopted. This inter-
mediate state is dissociated through coherent excitation of a number of near-resonant discrete vibration-
al levels, bound and quasibound, of HH and I, respectively, as well as by direct transition to the continua
of EF, GE, and I by absorption from the second field. The nonadiabatic interaction of the HH and I lev-

els with the continuum of GE gives these states predissociating characteristics and the whole process can
be formulated in terms of overlapping Fano resonances. The nonadiabatic couplings of the continua of I
and EF with the HH bound levels have been neglected because of their smallness. The interference of
the transition amplitudes to different overlapping predissociating resonances gives the resultant structure
in the dissociation probability which is studied for the second photon wavelength covering a range be-

tween the dissociation threshold of the final states and the ionization threshold of H&. The dissociation
cross section obtained from these nonadiabatic calculations are found to be drastically altered from the
adiabatic and Born-Oppenheimer results.

PACS number(s): 33.80.Gj, 42.50.Hz

I. INTRODUCTION

There has been growing interest in resonance-enhanced
multiphoton dissociation and/or ionization (REMPD
and/or REMPI) of small diatomic molecules in recent
years, both theoretically [1,2] and experimentally [3—6].
In such a process a set of degenerate or near-degenerate
levels is coherently excited by resonance absorption and
the characteristics of the transition to the continuum
then depend upon the symmetry properties and excita-
tion process of this set of coherently excited levels. For
sufticiently intense fields, the eigenvalues, eigenfunctions,
and symmetry properties of this set may be strongly per-
turbed by the external electromagnetic fields, and a set of
dressed states rather than the field-free set will be
effective in determining the transition characteristics.
However, in another class of investigations of resonant
multiphoton processes weak radiation fields are used and
in such cases features such as the transition line shape
can be used to explore the intramolecular interactions
among states not accessible by single-photon spectrosco-
py. These interactions, not masked by field effects, play a
key role in determining the response of the molecular sys-
tem to multiphoton excitation. Exact and detailed calcu-
lation of the REMPD and/or REMPI cross sections and
their comparison with experiment in such cases are useful
tools for gaining knowledge of intramolecular interac-
tions. In this context the relevance of resonance-Raman
scattering studies (which is basically a two-photon pro-
cess) for assessing the role of nonadiabatic couplings may
also be mentioned [7]. Also it is only for simple diatomic
molecules whose electronic potential-energy curves and

transition dipole moments are accurately known that
such an almost exact and detailed calculation can be
meaningfully performed.

In earlier works [1], we studied the resonance-
enhanced two-photon dissociation (RETPD) of H2 in
two-frequency weak laser fields assuming the clamped-
nuclei or the Born-Oppenheimer (BO) approximation.
The calculations were made for parallel, crossed, and cir-
cular polarizations of the two-photon fields for different
combinations of initial and intermediate rotational levels.
However, the nonadiabatic interactions between different
electronic states are well known for this smallest two-
electron molecule [8,9(a)] [in comparison with other sys-
tems [9(b)]]. The knowledge of the nonadiabatic cou-
pling between 8 'X„+ and C 'II„states were used earlier
to demonstrate interesting effects on resonance-Raman
scattering by H2 through these states [7]. Another in-
teresting area of investigation is the nonadiabatic cou-
plings between the higher Rydberg state HH 'X+ and the
state GK'Xg, and between the I'Il state and the
GK 'X+ state [10]. This coupling can be best probed by
RETPD. The heterogeneous rotational coupling between
I and GK due to intramolecular configuration interaction
mixes the II+ and X+ states while the H state remains
unperturbed [11]. By restricting the photon intensities to
the linear region these intensity-independent effects of in-
tramolecular dynamics on RETPD have been investigat-
ed.

More specifically, in this work, we have studied the
etfect of the above-mentioned nonadiabatic (NA) cou-
plings on RETPD of Hz for an intermediate resonance
with vibrational-rotational levels of the B state. The
transitions involved are
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H2(X 'X+, VsJ ) =Hz(8 'X„+,u, J, ),
{col,RI }

uv or visible
H2(HH 'X++I 'll, u„J„)

i%A —+H(ls)+H(2s/2p) .
H [(EF+ GK)'X++I 'II,EJf ]

The first photon creates an oriented or aligned population
in the intermediate B state. The second photon causes
excitation either directly to the dissociation continua of
the final EF, GK, and I states or to the vibrational-
rotational baund levels of HH or quasibound levels of I
which act as predissociating levels because of their nona-
diabatic couplings with the EF„GK, and I continua. For
the weak excitation condition used the nonadiabatic cou-
pling mentioned is rather strong in comparison to the ra-
diative couplings, which indicates the adequacy of the
Fano (autoionization) formalism [12,13] for the treatment
of this particular excitation step leading to dissociation.
Hawever, in this case, a number of predissociating levels
of the HH and I states could be excited simultaneously
and coherently by the second photon. This will cause the
amplitudes of the dissociative transitions through these
predissociating levels to interfere with each other as well
as with the direct transition amplitudes. The Fana asym-
metry parameters and the reduced detuning parameters
for all the predissociating levels coming together play
their part in a complicated form in the line-shape func-
tion instead of being simply additive. We have calculated
the Fano shape functions along with the dissociation
cross sections with all the overlapping resonances. To

study the polarization effects, the RETPD cross sections
are determined for parallel and crossed polarizations of
the two linearly polarized photon fields. We have also
computed the adiabatic (AD) cross sections to exhibit the
net effect of the nonadiabatic interactions. As in our ear-
lier works [1], the reduced-density-operator method [14]
has been used in formulating the first step of the transi-
tion.

II. THEORY AND FORMULATION

The RETPD rate at an energy E, considering the in-
teraction of the n overlapping resonances of HH bound
and I quasibound levels with the final continuum state
GK, is given by [1,2(a), 12]

Wz~'=(2m'/fi)[ I & pz IH, li & I'+1&E IH, li & I']p;;, (1)

where Hl is the radiation-molecule interaction Hamil-
tonian. The first term within the square brackets is due
to dissociation to the continuum of GK through predisso-
ciating levels of HH and I, and the second term corre-
sponds to direct dissociation to the continuum of I '?I~.
We have, in the steady-state condition for excitation by
linearly polarized light [1],

p;;=&ilp;li &

J1J, '
1 1 E,=(C, /I;)( —1) g(2J;+1) 0 0 0 g ( —1) ' '(2K;+1)

E, .M,

Ji J; E; 1 1 E
X M —M 0 J J J I &RQU. J.(r)lg, g '(r)IRpU g (r })I (2)

where p, is the reduced density operator for the inter-
mediate discrete vibrational-rotational level of B 'X„+
state (for no J, or M; coherence) and

I

where

+1 +1
(ez d2) = g g (2) ~~~ (1—

25~i)di Dpi'($80),
p= —1 A.= —1

Ci =(4&/i' c)I,g(co,g
—co, ) . (3)

I; is primarily the radiative decay rate due to the spon-
taneous emission from the intermediate state, I1 is the in-
tensity, and g(co; —

cubi) is the normalized line-shape func-
tion of the first photon field. E,. =0, 1,2 determine, re-
spectively, the population (isotrapic), orientation, and
alignment of the intermediate state, created by the first
photon. Q,g' is the electronic transition dipole matrix
element between the initial and intermediate states.

The radiation interaction Hamiltonian between the in-
termediate and final states is given by

HI = —(E2/2)(&2. dz) = (2mIz/c }' (e2.d2), — (4)

p =0 (+1)for linear parallel (crossed) polarizations of the
two photon fields, I2 is the intensity, ez is the unit polar-
ization vector of the second photon field, d2 is the electric
dipole moment operator for transition between the inter-
mediate state li ) and final state IE&, and do=d, and
d+, =+(2} '~ (d„+id ) are the components of dz in the
body-fixed frame.

The intermediate X state wave function li ), the final X
(II) continuum state wave function IE )z ( IE )ny), and
the predissociating bound X state and quasibound II+
state wave functions can explicitly be written as
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~i &
= [(2J,. +1)/4n ]' g,p(r. „«)Rp„~ («}DM p($80), (6)

~E&x=(1/4m) 'g (2J&+1)(i) exp( —i5& )g&p(r„«)RpkJ («)DM p($80)DM p(pk8k0),f f f f
f' f

~
E&„~=(1/4')(2) ' g (2J/+ l)(i) ~exp( i—6J )R,kj («)

J~,M~

X [~f1(r «)DM 1(~80)DM 1(~k8k0) ef, —1(—r «)DM, —1(~80)DM, —I(I('k8k0)] (7b)

with

«Rxkj(«) — (2p/n5 k)' sin(k« Jn/—2+5&),

~n & =[(2J„+1)/4m]'~

tion of the nth predissociating level with the continuum;

represents the full linewidth of the predissociating level
In &; and

Xf„p(r„«)RQ J («)DM p($80), (8a) v„,= &n
~ V, ~E & (14)

and

~n &n+ =[(2J„+1)/4m.]' (2) ' R)„J («)

X [p„&(r„«)Dkr" &
($80)

+0,—l(r «)DM„, —1(4~)]

Equation (1) can explicitly be written as [12]
'2' —1

8'I '=C, 1+ g q„/e„', 1+ g 1/e„

X/T"/'+/T" 'f'+fT" '['

where

Cz = (4m /Pic )Iz

(8b)

(9)

is the matrix element of the nonadiabatic coupling Harn-
iltonian Vr. Q„ includes all the vibrational-rotational
levels of HH bound and I quasibound levels embedded
within the region between the dissociation threshold of
GK, I, and the ionization threshold of H2. HH bound
levels only within the inner well of HH double-well po-
tential (Fig. 1) [15] are important with respect to cou-
pling. The nonadiabatic interaction of the predissociat-
ing levels of HH with the continuum of I state is negligi-
ble at small internuclear distance («} [10(a)] and hence it
is not considered in our study. The parameters I „,F„,
and q„are, strictly speaking, functions of E. But in the
narrow range of E considered, these may be evaluated
with sufficient accuracy at the resonance energy [16(a)].

Using Eqs. (5)—(8), the electric dipole transition matrix
elements of the intermediate state with final continuum
and predissociating states can be expressed as

0.05

and q„ is the Fano q factor for nonadiabatic coupling of
the HH/I predissociating state ~n & with the continuum
of GK. It is defined as

0-.--

-0.05-

q„= T„;+P E' V„~.TE., E—E' (m V„@Tx;) .
-0.10-

(10)

The configuration coupling of the I-state continuum with
the HH bound levels is negligible [10(a)]. The function

Qp
U -0.20-

CJ

—0.25-

~ -0.30-

f= 1+ gq„/e„ ~ 1+ g 1/e„
n

L

—0.35-

—0.40-

F„(E)=I'J(E E') 'I V.& I'dE'— (12)

represents the shift in the energy E„due to the interac-

will be called the Pano shape function [12];

e„=I E E„F„(E)]/[I „(E—)/2I—
is the reduced detuning parameter for the nth predissoci-
ating level, where E„ is the energy of the nth predissoci-
ating level;

-0.45-

—O. JO-

—0.55

0
I I

1 I I I I 1 I I I I J I I I I t I I ~/ I I I I J I I I I J I
'

I I

2 4 6 8 10 12 14 16
r (a.u ]

FIG. 1. Plot of the adiabatic potential energies V(r) for the
pertinent states of H2. Excitation from the initial ground state
(X) to the intermediate (8) state, then dissociation to the Snal
(EF,GK,I) states either directly or via predissociating levels of
HH/I states are shown schematically.
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Jf 1 J; Jf 1 J,
0 0 p Dj)ifo(kkekp)

g

X &R, (r)lg,", '(r)IR,„,(.) &,

M
X( —1) f

Tz; = [(2J;+I)/4m. ]' g (2Jf + 1)(i ) exp(i5z )(2)
Jf,Mf

TEx; =[(2J,+I)/4n].' 2 g (2Jf+1)(i) exp(i5~ )g (2) IPI&~(1 —25, )

Jf,Mf P

(1Sa)

Jf 1 J.
X g (2) ~~~~ (1—25'))( —1)

Jf 1 J;
1 —1 0

T„,'= [(2J +1)(2J +1)]'"g (2) "(1—25

~, i(&kekp) +Dsr' -i(4k~kp)]&R ikj (r) IQE,"(r ) IRp„.g. (r ) ),
(15b)

J„1 J, J„1 J,.

p p &Rop J (r)IQ„, (r)IRp J (r)),

and

(16a)

Tn x= [(2J +1)(2J + 1)]&~&(2)
—1/2+ (2) Irl 2(1 —25, )( —1)

P

J„1 J,
—M„p 3f,.

1 J;
—1 0

X & R,„(r) I g.';"(r ) IRo. (r ) & .

The electronic-nuclear rotational matrix elements of the configuration-interaction Hamiltonian are [10]

(16b)

and

-xx
~nE r~ ar

= A(r)+2B(r) d
dr

(r)=(2p) I J(RJ„+1)]'~S(r)/r~.

The nonadiabatic coupling matrix elements between relevant states are thus

Vz=(4z) ' X (2Jf+))' (i) exp(i5r )Dor o(pzpz0)IRo„r (r)IV z r (Roor (r))5r r 5or or
f' f

and

Vz *=(4z) ' X (2lr+))' (i) exp(i5r )Dor o(8opz0)IR, „r (r)(V z *(r)(Roer (r))5r r 5or or
f' f

(17b)

It is to be noted that all I „,F„,e„,and q„are to be integrated over all angles [16(b)]. Thus integrating over Qk(()I)k8kp)
we get

q„(X)=[&Ro„~(r)IQ„',. '(r)IRp„J (r))+PfdE'(E E') '&Ro, z (—r)IVE. IRpkz (r))&Rok J (r)IQE','(r)IRp„j (r))]

X[w&R,„(r)IV„ IR, (r))&R, (r)IQ",.'(r)IR,„(r)&]

Similarly q„(II+) can be obtained by using the II+-state wave function and replacing V E (r, d/dr) by V„"E (r).
As we are interested in integral dissociation cross sections, we get, after integrating Wzz' over Ok(pk8kp),

W' = [(16m I,I )/(fi c I;co )]g(co; co,)P—
g I

where

(19)
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J; 1 J
P» =~~2( —I) '(2J, +1)'. . . l«.„,(1)ig,',"(.)I~,„,(.)) I'

K 1 1 E
X g ( —1) '(2K +1}

K,. =0

1 1 K,
X g (

—1) ~(2Jl+1) '

JI i i f
Jf1J
000

X 1++q„

1 1 K,

p —p 0

1+ g 1 e„
2 Jf 1 J

1 —1 0

X~&~ikJ, (&)IQE', "( )~~o. J ( )) I' (20)

The generalized integral dissociation cross section is

crEg = 8 Fg'/F)F2

= [[2 m g(co; —co, )]l(A' cA, , I', )]Pz J (21)

tential energies, transition dipole moments, and coupling
matrix elements are interpolated by the cubic-spline-
interpolation method [24]. The values of I'; and

g(c0; —co, ) are taken from Stephens and Dalgarno [25]
and Meier, Zacharias, and Welge [3(b)), respectively.

where F, and F2 are the photon flux of two laser fields
and A, , is the wavelength of the first photon field. IV. RESULTS AND DISCUSSIONS

Eigenenergies (E„), full linewidths (I „), line shifts

(F„), and Fano asymmetry parameters (q„) for the
predissociating bound vibrational-rotational levels of the
HH 'X~+ state [levels within the inner well of the double-
well potential curve (Fig. 1)] and the I 'IIg state (quasi-
bound levels) are presented in Table I. For the HH state,
the vibrational levels 8 and 9 are very close and change of
localization occurs at lower J values so that for v&& =8,
all the rotational levels, except JHH=O, are within the
outer well whereas for vHH =9, JHH

= 1 —4 are within the
inner well. We have not considered contribution from
levels with wave functions localized in the outer well of
HH due to negligible nonadiabatic coupling [10(a)] and
very small Franck-Condon overlaps [15].

The Fano shape functions f are plotted against A,2, the
second photon wavelength, in the range between the dis-
sociation threshold of EF'X+, GE '2+, I 'll, and the
ionization threshold of H2. The nonadiabatic coupling of
the EF continuum with the predissociating bound levels
of HH is very weak [10(a)] and the direct dissociation
through this state is very small compared to the other
two continua of GK and I [1]. Hence the final state EF
has not been considered in the present study. The range
of A,2 contains overlapping resonances with the bound
HH (vHH=3 —5, 8, 9) and quasibound I (vi=4) levels

with selected rotational quantum numbers (JHH and JI }

according to the values of J, (rotational level of B 'X„+

state), which is fixed in turn by J (rotational level of ini-
tial X 'X+ state); levels with vHH=6 and 7 are localized
into the outer well. Figures 2 and 3 present f values for
overlapping resonances with v, =0 and 3, respectively, as
functions of k2.

Figure 2(a) is for J, =1. Thus the allowed J values are

III. CALCULATIONS

We have calculated the RETPD cross sections of H2
molecule for transitions from the initial ground I 'X+
(v =O,J =0—2) to the final [(EF+GK)'X+g, ~g

~ i g++I IIs](E JI) states via the intermediate B X„
(u; =0,3;J;=0—3) state for linear polarizations of the
two photon fields. The final GE-state continuum is
strongly coupled with the predissociating bound levels of
the high Rydberg state HH and quasibound levels of the
state I by nonadiabatic interaction. The Born-
Oppenheimer potential energies and the adiabatic correc-
tions to them for the X, B, EF, GK, HH, and I sfates are
taken from Wolniewicz and Dressier [17,15,10(b)] and
others [18]. The radial bound and free wave functions for
single-well potential are generated by numerically solving
the corresponding radial Schrodinger equations using the
Numerov-Cooley method [19(a)]. The bound-state
eigenenergies and eigenfunctions for the double-well po-
tential (HH) are obtained using the Numerov-Cooley
method modified by Wolniewicz and co-workers [19(b)].
The I-state quasibound vibrational wave functions are
computed following Le Roy and Liu [20] by matching the
wave function at the outermost turning point with the
Airy functions [21]. The nonadiabatic coupling matrix
elements for HH 'X+ —GK 'X+ vibrational and
I 'II —GK 'X+ rotational couplings are given by Qua-
drelli, Dressier, and Wolniewicz [10(a}]and Dressier and
Wolniewicz [10(b)], respectively. The principal-value
parts in F„and q„are calculated by Gaussian quadrature.
The electronic dipole transition moments dz(r) for XB-
and B-GK transitions are obtained from Wolniewicz [22]
and Wolniewicz and Dressier [23], and those for BIare-
taken from Dressier and Wolniewicz [10(b)]. All the po-
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=0,2 and JI =2 only (as J =0). Again the wave

function for the v» =8,J» =2 level and the

v» =9,J» =0 level are in the outer well and hence they
have not been considered. The individual contribution of
each of these levels to f are recognizable in the respective
regions of A,z. In four such regions, the three regions at
the right contain resonances with U»=3 (overlapped
with vi=4), 4, and 5 respectively, whereas the leftmost
region is for A,z values for resonance with v» =8,9. In
each region two individual curves corresponding to two
final rotational quantum numbers are shown by dashed
and dotted curves. However, the two branches due to
J»=0,2 interfere in their overlapping regions so that
the total shape function has interesting structures instead
of being the mere sum of the individual contributions.
There are destructive minima, one in each region of A,z.
Ranges of A,z for resonances with diff'erent vibrational
quantum numbers are generally well separated and the
overlap is negligible. Contributions for v» =3,8, 9 are of
comparably larger value than for v»=4, 5. However
there is strong overlap between the level vI =4,JI=2 and

v» =3,J» =2 and they are very closely spaced. This is

also true for v»=8 and 9. The levels v»=8, J»=0
and vH~ =9,JHH =2 are very close to each other and the
individual shape functions for these vibrational levels ap-
pear as two rotational branches of a single vibrational
level and interfere, giving a very deep minimum like oth-
er regions corresponding to single v». It is interesting
to note that contribution from vi=4, Jr=2 is so small
that the shape function for this level considered alone
does not appear in the figure. But when it is included, the
resultant f, (1++„q„/e„)II1+(g„lie„) I, changes
considerably with a significant destructive dip. More-
over, there is another small modulation in the resultant f
due to larger transition probability to the I-state quasi-
bound level, i.e., the shape resonance.

Figure 2(b) is for J, =2, with J» and JI taking values
1 and 3. In this case for v»=4, the two rotational
branches interfere constructively throughout the corre-
sponding range of A,z, whereas for all other v», the over-
lapping branches show minima. At longer wavelengths,
the two rotational branches for v»=3 and those for
vi=4 overlap and produce a very complex structure in
the resultant shape function. For this set also the shape-

TABLE I. Eigenenergies (E„),full linewidths (I „),line shifts (F„),and Fano asymmetry parameters

(q„) for predissociating levels of HH and I states. 1.04[ —3]= 1.04 X 10

v;=0 v;=3

PS' v„J„E„(a.u. ) I „(a.u. ) F„(a.u. ) J;=J„—1 J;=J„+1 J;=J„—1 J;=J„+1
HH 3 0 —0.065 79 1.04[ —3]

1 —0.065 59 1.04[ —3]
2 —0.065 18 1.05[ —3]
3 —0.064 58 1.07[ —3]
4 —0.063 78 1.08[ —3]

8.44[ —5]
8.82[ —5]
9.43[—5]
1.64[ —4]
1.03[—4]

29.44
28.57
27.78
26.50

30.74
31.08
31.21
31.30

—9.47
—9.59
—9.56
—9.73

—9.13
—8.92
—8.69
—8.35

4 0
1

2
3
4

—0.059 06
—0.058 86
—0.058 46
—0.057 87
—0.05707

9.14[—4]
9.13[—4]
9.10[—4]
9.09[—4]
9.10[—4]

—6.32[—5]—6.04[ —5]—5.51[—5]—4.31[—5]—3.21[—5]

11.10
7.07

—6.52
516.77

12.72
12.04
10.50
7.89

1.62
1.51
1.38
1.24

1.73
1.75
1.76
1.74

5 0
1

2
3
4

—0.051 97
—0.051 79
—0.051 42
—0.050 88
—0.050 17

1.07[—3]
1.07[—3]
1.06[—3]
1.05[—3]
1.03[—3]

—1.05[—5]
—9.07[—6]
—7.39[—6]—5.17[—6]

4.72[ —5]

13.98
13.81
13.53
13.63

13.93
13.75
13.44
13.02

—0.05
—0.06
—0.07
—0.13

—0.06
—0.07
—0.09
—0.12

8 0 —0.045 80 8.82[ —4] —4.73[—5] 31.16 —0.43

9 1

2
3
4

—0.045 63
—0.045 28
—0.044 76
—0.04408

8.84[ —4]
8.87[—4]
8.93[—4]
9.02[—4]

—4.65[—5]
—4.48[ —5]—4.22[ —5]
—3.87[—5]

29.56
27.68
25.58
23.33

30.55
29.01
26.87

—0.42
—0.40
—0.38
—0.35

—0.43
—0.42
—0.40

I 4 1

2
3
4

0.004 773 5.17[—5]
0.005 133 1.51[—4]
0.005 665 2.91[—4]
0.006 358 4.58[—4]

1.20[—5]
3.53[—5)
7.32[—5]
1.19[—4]

—0.66
—0.55
—0.43
—0.38

—1.17
—1.43

1.89

13.25
7.56
5.41
5.63

15.87
12.84
17.62

Predissociating state. E„are measured from dissociation threshold of the corresponding state.
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fununction curve is much more prominent in the region
around the resonance with UHH=3 (vI=4) and 9 com-

pared to those with vHH =4 and 5.
Figure 2(c) is a result of J, =3, requiring JHH and JI to

be2and4 v — dHH and vr are same as the preceding case.
Unlike the previous two cases, here one q„value (for

UHH=4, JHH=4) is larger than those for the other

vibrational-rotational branches by an order of ma nitude
(Table I .a e ). The total and individual shape functions have

large magnitudes only in the region about the resonance
with this level. However, there is interesting structure
throughout the whole range of A,2, and to show this whole
structure the curve for resultant shape function is plotted
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FIG. 3. (a) Same as Fig. 2(a) except v; =3. (b) Same as Fig.
2(b) except v; =3. (c) Same as Fig. 2(c) except v; =3. The resul-

tant and individual shape functions are shown.
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1in logarithmic scale. To avoid clumsiness, the individua
curves have not been plotted. As in the previous case,
the higher A, z range is more complicated due to presence
of both I-state quasibound levels and HH bound levels
very close to one another.

For u;=3, the nonadiabatic efFect is dominant by or-
ders of magnitude at higher wavelengths corresponding

to the region about resonance with 0+0=3 and v~=4.
Hence the shape functions are plotted only in this region
of f)(,z. Unlike the v; =0 cases, here the individual shape
functions for the I quasibound levels are considerably
large.

Figure 3(a) corresponds to I;=l. Individual shape
functions for v~=4, J~=2 and vH~=3, JHH=2, 0 appear
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TABLE II. Generalized RETPD cross sections 0.'
g for X(vg 0 Jg 0 2)~B(v' 0 3,

J;=0—3)~(EF+GK+I) transitions with linear (a) parallel and (b) crossed polarizations of the two
photon fields, using different methods. 5.353[—10]=5.353 X 10

v;=0 (I, '=5.353[—10] s) v;=3 (I, '=6.510[—10]

Jg Method k& (A) ~~ (A) gz' (cm s) gz' (cm s)

0 1

1 2

2 3

0 1

1 2

2 3

NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO

NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO
NA
AD
BO

1108.67
1108.67
1108.19
1108.67
1108.67
1108.19
1108.67
1108.67
1108.19
1109.17
1109.17
1108.68
1109.17
1109.17
1108.68
1109.17
1109.17
1108.68
1110.65
1110.65
1110.16
1110.65
1110.65
1110.16
1110.65
1110.65
1110.16

1108.67
1108.67
1108.19
1108.67
1108.67
1108.19
1108.67
1108.67
1108.19
1109.17
1109.17
1108.68
1109.17
1109.17
1108.68
1109.17
1109.17
1108.68
1110.65
1110.65
1110.16
1110.65
1110.65
1110.16
1110.65
1110.65
1110.16

3050
3050
3050
3250
3250
3250
3525
3525
3525
3050
3050
3050
3300
3300
3300
3525
3525
3525
3050
3050
3050
3300
3300
3300
3525
3525
3525

3050
3050
3050
3250
3250
3250
3525
3525
3525
3050
3050
3050
3300
3300
3300
3525
3525
3525
3050
3050
3050
3300
3300
3300
3525
3525
3525

(a)
4.35[ —46]
3.23[ —46]
3.83[—46]
1.42[ —44]
8.86[ —46]
9.84[ —46]
2.19[—42]
2.01[—44]
2.40[ —44]
5.03[—46]
1.79[—46]
2.11[—46]
2.07[ —45]
8.75[ —46]
1.17[—45]
1.06[ —42]
1.12[—44]
1.20[ —44]
8.53[ —44]
1.62[ —46]
1.90[—46]
6.95[—43]
8.11[—46]
9.41 [

—46]
7.52[ —42]
9.10[—45]
9.60[—45]

(b)
1.71[—46]
1.27[ —46]
1.50[—46]
2.76[—45]
4.64[ —46]
1.56[ —46]
7.09[—43]
6.50[ —45]
7.90[—45]
3.10[—46]
1.11[—46]
1.31[—46]
2.15[—45]
1.32[ —45]
1.77[ —45 ]
6.09[—43]
6.46[ —45]
6.96[—45]
5.74[ —44]
1.09[—46]
1.28[ —46]
5.06[ —43]
1.09[—45]
1.31[—45]
4.83[ —42]
5.48[ —45]
6.21[—45]

1063.36
1063.36
1062.83
1063.36
1063.36
1062.83
1063.36
1063.36
1062.83
1063.93
1063.93
1063.40
1063.93
1063.93
1063.40
1063.93
1063.93
1063.40
1065.46
1065.46
1064.92
1065.46
1065.46
1064.92
1065.46
1065.46
1064.92

1063.36
1063.36
1062.83
1063.36
1063.36
1062.83
1063.36
1063.36
1062.83
1063.93
1063.93
1063.40
1063.93
1063.93
1063.40
1063.93
1063.93
1063.40
1065.46
1065.46
1064.92
1065.46
1065.46
1064.92
1065.46
1065.46
1064.92

3550
3550
3550
3750
3750
3750
4050
4050
4050
3550
3550
3550
3800
3800
3800
4050
4050
4050
3550
3550
3550
3800
3800
3800
4050
4050
4050

3550
3550
3550
3750
3750
3750
4050
4050
4050
3550
3550
3550
3800
3800
3800
4050
4050
4050
3550
3550
3550
3800
3800
3800
4050
4050
4050

6.90[—43]
7.40[ —43]
2.95[—43]
6.45[ —41]
6.58[ —41]
5.47[ —41]
1.35[—40]
8.41[—42]
9.85[ —42]
6.69[—43]
6.95[—43]
3.14[—43]
1.73[—41]
1.50[—41]
3.55[—41]
5.53 [ —41]
4.00[ —42]
4.74[ —42]
8.55[ —43]
8.80[ —43]
4.68[ —43]
1.83[ —41]
1.74[ —41]
3.34[ —41]
3.48[ —41]
3.08[ —42]
3.69[—42]

5.17[—43]
5.20[ —43]
1.51[—43]
4.81[—41]
4.87[ —41]
4.06[—41]
4.01[—41]
2.49[—42]
3.08[ —42]
6.50[ —43]
6.60[ —43]
2. 19[—43]
2.09[—41]
1.95[ —41]
5.09[—41]
2.97[—41]
2.15[—42]
2.62[ —42]
8.08[—43]
8.22[ —43]
3.53 [ —43]
1.98[—41]
1.90[—41]
4.26[ —41]
2.11[—41)
1.87[ —42]
2.28[ —42]
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from left to right. The range of considerable contribution
from the I state is much smaller and the peak is slightly
lower than those from the HH levels mentioned. The
resultant shape function shows that the interference of
two rotational branches of v» =3 produces one broader
maximum while the Jz =2 and J» =2 branches interfere
constructively, giving rise to a much larger and sharper
maximum.

Figure 3(b) is due to J, =2. Thus each of HH and I
states contributes two branches J»(Jz}=1,3, which

strongly overlap with one another. The J»=1 and 3
branches exhibit two equally broad and high peaks. The
Jz =3 branch contributes the least, but the Jz =1 branch
has a very sharp resonance peak. The peak is further
enhanced, rejecting the same peak in a larger form in the
resultant shape function by combining mainly with the
J»=3 branch contribution. The two HH rotational
branches combine and give one broader peak. The Jz =3
and J» =3 branches interfere to give another large peak
at lower A,2.

Figure 3(c) represents shape functions for J;=3 and
correspondingly J~~(Jz }=2,4. The contributions from
the HH branches are very similar to that for the case
with J;=2. The R branch for the I level also behaves
similarly to that for J;=2, but the sharpness of the P
branch decreases much compared to that for J, =2,
whence the minimum arising from interference of the P
branch for I level with the HH branches gets broadened
and merges with the next minimum at higher A,2 value
arising from the HH branches.

Figures 4 and 5 show dissociation profiles for adiabatic
and nonadiabatic RETPD for linear polarizations of the
two photon fields for v; =0 and 3, respectively. Actually
we have plotted PJ z, which is the RETPD cross section

g I

weighted by a factor [25~ g(co; —co, )]/(R cA, ,I;), which
is a constant with respect to A,2 [1]. The nonadiabatic
structures are obtained more or less by superposing the
shape function structures on the adiabatic curves.

For u, =0 (Fig. 4), the I-state continuum has a very
small contribution to the dissociation cross section, ex-
cept of course near the shape resonance peaks. The GE-
state continuum is the major channel of dissociation
throughout almost the whole range of A, 2. Since the
nonadiabatic coupling of the resonant states are with the
final GEE state only, so for v; =0 the dissociation profile is
affected by the shape function throughout the whole A,2

range. For all sets of J,J, , i.e., 0, 1 [Fig. 4(a)]; 1,2 [Fig.
4(b)], 2,3 [Fig. 4(c)], it is observed that the nonadiabatic
coupling enhances the dissociation by several orders in
magnitudes at all wavelengths except for a few very nar-
row (pointed in maximum cases) "transmission" windows
where deep minima arise in the RETPD cross sections.

For u,. =3 (Fig 5), the d.issociation profiles are almost
unaffected by nonadiabatic coupling effect except in a
small range of higher A, z values. Hence only the profiles
for this range of A, 2 having significant nonadiabatic cou-
pling effects are shown in the figures. In the other por-
tions, the I state is most active and the GEC state is more
or less inactive as a dissociating continuum channel. As

previously discussed (for u; =3 },the Fano shape functions
have small ups and downs at lower values of A,2, which,
however, does not change the dissociation profile appreci-
ably from the adiabatic case because of the negligible
contribution of the GK continuum. Hence the nonadia-
batic and adiabatic curves are compared at higher wave-
lengths only. The configuration interaction causes
enhancement everywhere in this range except at some
narrow regions where dissociation is below that obtained
from the adiabatic approximation. The curves for
Js=O, J;=1 [Fig. 5(a)] have a simpler structure because
of a smaller number of rotational branches due to absence
of Jz=0 and 1 [1]. For J =1,J, =2 [Fig. 5(b)] and
J =2,J, =3 [Fig. 5(c)], the regions where the I-state
shape resonance peaks appear show here a complex struc-
ture. At the shape resonance positions, the adiabatic
values are approximately equal to the nonadiabatic
values, because at those positions the GE continuum con-
tributes negligibly so that the nonadiabatic interaction
has no role to play. Figure 5 represents dissociation cross
sections for parallel polarizations only. The profiles for
crossed polarizations are almost similar and for the sake
of clarity these are not shown in the figures.

Tables II contain absolute values of a few integral dis-
sociation cross sections for nonadiabatic coupling, adia-
batic and Born-Oppenheimer approximations for some
specific values of A,2. Table II(a) corresponds to linear
parallel and Table II(b) corresponds to linear perpendicu-
lar polarizations of the two photon fields. The AD and
BO values do not differ much, but they are much
different from the corresponding NA values at most of
the cases. It may be noted that the BO results in Ref. [1]
are 16 times larger owing to a different definition of in-
tensity in that work. Also the BO results in Ref. [1]were
obtained using axial recoil approximation whereas in the
present work no such approximation has been made.

V. CONCLUSIONS

For all sets of intermediate levels investigated the
nonadiabatic interaction of the final continuum with the
bound or quasibound resonant levels has a large enhanc-
ing effect at all A, 2 values except at a few pointed regions.
The nonadiabatic interactions give these resonant levels a
predissociating character. These predissociating levels
must be considered to be coherently excited and all the
final channels appear in the equation either as direct dis-
sociation background or as coupled continuum multiplied
by large shape functions. Resonance contributions from
the predissociating levels largely depend on the inter-
mediate levels, e.g., all the HH levels contribute by a
large amount for v,. =0, but this contribution is decreased
a lot for u, =3 (except for u„=3). On the other hand, for
v;=3, sometimes the contributions of the I-state quasi-
bound levels exceed that of the HH state levels, but for
v;=0, the I-state quasibound levels are more or less
ineffective compared to the HH levels. However, the
profiles and tables show that almost throughout the
whole range of kz, the nonadiabatic coupling generally
causes an enormous increase in the RETPD cross sec-
tions in comparison to AD or BO values, while creating,
at the same time, very narrow transmission windows.
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