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Hartree-Fock study of molecules in very intense magnetic fields
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We investigate the stability of homonuclear diatomic molecules from H2 up to C2 and of the finite
chains H„(n 5) and He„(n 4) immersed in very intense magnetic fields (B=10' T). The atomic and
molecular total energies are calculated within the one-dimensional Hartree-Fock approximation, using a
Lagrange basis set associated with a Cartesian mesh. The stability of the molecules decreases beyond Li2

although all the studied molecules are found stable. The energy per atom of H and He finite chains sta-
bilizes already for the small chain sizes that we have investigated.

PACS number(s): 31.20.—d 36.90.+f

I. INTRODUCTION

The discovery of pulsars and their interpretation as
neutron stars has renewed the interest of physicists in the
study of matter immersed in very intense magnetic fields
(8=10 T). In particular, the possibility that atoms
could form chains of infinite polymers has been the sub-
ject of many investigations [1,2]. Since the beginning of
the 1970's the hypothesis of the existence of infinite linear
polymers of iron at the neutron star surfaces has pre-
vailed. However, a more recent calculation of
Neuhauser, Koonin, and Langanke [2] has contradicted
this hypothesis.

The electronic structure of atoms and one-dimensional
infinite chains in strong magnetic fields has been investi-
gated through variational methods [3—5], Thomas-Fermi
[6], Hartree-Fock [2,7—9], and density-functional calcula-
tions [10,11]. Very little attention, however, has been
paid to the study of light molecules. Apart from its in-
trinsic interest, such a study can shed light on the results
of Neuhauser, Koonin, and Langanke [2].

The first physicists who considered the molecu1ar
behavior in very intense magnetic fields were Kadomtsev
and Kudryavtsev [12]. Unfortunately, their calculations
suffer from various troubles: erroneous kinetic energy
and too vigorous numerical approximations. The total
energies they obtained are lower than the exact ones, con-
tradicting the variational theorem. A similar situation
occurs in the paper by Constantinescu and Rehak [13].
Besides these two studies, an interesting conjecture has
been made by Ruderman [1] concerning the structure of
H„molecules. More recently, Lai, Salpeter, and Shapiro
[9] have studied the electronic structures of hydrogen po-
lymolecules H„(n ~4) and infinite chains.

The electrons of the atoms or the molecules are an-
tialigned along the very strong magnetic-field direction:
their behavior is the one of a collection of spinless fer-
mions. Their total wave function is basically a complete-

ly antisymmetric spatial function of the individual vari-
ables. In order to build the ground state of an atom, the
individual wave functions have to be chosen among the
lowest Landau states, their degeneracy being removed by
the Coulomb interaction with the nuclei. The growth of
the individual energies is monotonic as a function of the
projection of the angular momentum along the field
direction. As shown by Rau, Mueller, and Spruch [14],
some atomic shell structure could appear in the so-called
"strong" field regime (in contrast with the "ultrastrong"
fields) in which the magnetic field is not large enough to
keep all electrons in the deep levels characterized by
nodeless longitudinal wave functions. For a given mag-
netic field, the higher the nuclear charge, the more the
appearance of nodes is expected. As explicitly illustrated
by the calculations of Neuhauser, Koonin, and Langanke
[2], no shell structure appears at Bi2=1—5, even for an
atom as heavy as iron (Z =26). The lack of periodicity
arising from the nonexistence of shell structure will lead
to a very poor chemistry, which is opposite of our terres-
trial environment. More specifically, atomic systems im-

mersed in a 10 T field will never produce an inert gas
family. Molecules such as He2 and HeH will be as bound
as any other diatomic molecule of very light elements.

In order to evaluate the binding energies of light mole-
cules in strong magnetic fields, one of us [15] proposed
some years ago the use of a basis —called spheroidal—
composed of the mell-known one- and two-dimensional
harmonic-oscillator functions for longitudinal and trans-
verse motions. Such a choice simplifies the calculation of
matrix elements although Gaussian functions are not well

adapted to the asymptotic behavior of molecular states.
These functions were used by Demeur and Mowlavi [16]
who calculated the total and dissociation energies of Hz
and H3. The same basis was used by Kabbadj [17] in or-
der to evaluate the binding energy of HeH. However,
such individual wave functions lead to cumbersome op-
timizations, the variational parameters appearing in non-
linear expressions. Moreover, they are not very well
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adapted to the description of molecular states, which re-
quire the use of a different basis for each center. It was
concluded that this approach was not suitable for the
study of systems involving an increasing number of elec-
trons and nuclei. Therefore, we moved to the Hartree-
Fock method on a one-dimensional cartesian mesh in
which the discretization approach on a basis of Lagrange
functions associated with the mesh [18] has many advan-

tages over common variational basis-set calculations.
Like the numerical methods adopted by Virtamo [7] or
Proschel et al. [8] for atoms or by Lai, Salpeter, and
Shapiro [9] for molecules, no prior assumption about the
form of the longitudinal wave functions has to be made,
as required in basis-set calculations [19]. It provides in a
straightforward way an approximation of the 1ongitudi-
nal wave-function amplitudes based on their values at the
mesh points and the variationa1 parameter is limited to a
scaling factor which determines the box extension along
the magnetic field.

The "Hartree-Fock method on a mesh" is described in
Sec. II, with a discussion of the achieved accuracy and
convergence of the energies. In Sec. III, we focus on the
results obtained for homonuclear diatomic molecules and
finite chains and on their interpretation in terms of
molecular stability.

II. HARTREE-POCK CALCULATIONS

The total Hamiltonian of a system of electrons and nu-
clei in a uniform magnetic field can be written as the sum
of four terms:

H=gh; +g V~+ g V, + g V p .
I, a l,j a,P

i (j a(p

where h j; is the transverse magnetic Hamiltonian of elec-
tron i and T„is its longitudina. l (or parallel) kinetic ener-

I

h; is the Hamiltonian of electron i in the homogeneous
and constant magnetic field B, and the three potential
terms represent the Coulomb interaction between the
electrons and nuclei, labeled by latin and greek letters, re-
spectively. If the magnetic field is chosen parallel to the z
axis, the magnetic Hamiltonian h; can be written as

(2)

O. =o,A(P t bi)=
1/2 2 2« /2bi& pe '~e

nA, !Ibi bi

where A,
—:IAI.

Introducing the dimensionless field-strength parameter
y=8fi /m ce, as a measure of the relative strengths of
the magnetic and Coulomb fields, we will consider very
intense magnetic fields corresponding to y=1000. In
these extreme conditions, the transverse parameter bi is
fixed to the Larmor radius bp for the transverse functions

2Acb:—b =
p eB

(&)
Pl COp

and each wave function can be factorized as

A,0;(r)=No, ~,.(n t'bo)X.
I!,.
«) . (6)

In this scheme, the Coulomb interaction only affects the
longitudinal wave functions y, (z) and the motion perpen-
dicular to the magnetic field is described by unperturbed
Landau states.

Using the factorization (6), assuming the orthonormali-
ty of the individual wave functions &P, lf, &=5,, and
averaging the motion in the transverse plane (i.e., in-
tegrating over the variables p and tp), one gets the follow-
ing total-energy expression (in Ry units):

gy. In the Born-Oppenheimer approximation, the nu-

clear repulsion energy

Z Zpe
XV t=X (3)

(& Ir~ r&l

is merely an additive contribution to the total energy.
We are interested in a Landau regime where the mag-

netic field is dominant and is only slightly perturbed by
the Coulomb interactions. It is strong enough to align
the electron spins. The total wave function 4 can then be
approximated by a Slater determinant built on the n spa-
tial one-electron functions t P;; i = 1,n ], multiplied by the
symmetric product of the antiparallel spin functions.

We assume that the motion perpendicular to the mag-
netic field is described by the lowest-order Landau func-
tions, corresponding to the lowest radial quantum num-
ber n =0 and A ~0,

Z~Zp d'
&q'IHIP''&= g +& &y, (z)l — —gV '(Iz —z l)ly, .(z) &.,~ lr. —rpl, ' dz'

+g g If"(ij)&x;(z|)x,(z2)IU"(lz& —zeal)lx;(zg)x, (zz)&
i(j k

g "(v ) & x;—(zl )X,(z2) I
U "( Iz) —z21) IX, {zl )x;{z2)& ],

where

V {lz—z I)=
1/2

ur e

to+ (z —z )

. 1/2 dw

I

The expression for U "(Iz& —
z2I ) is obtained by replacing

in (8) y by y/2. The coefficients f (ij) and g "(ij) result
from the integration of the electrostatic operator between
the Landau functions in the transverse plane. This step
involves the use of the orthogonal transformation be-
tween the eigenfunctions of the two-electron Hamiltonian
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H=hl+hz where h,. is the Hamiltonian of electroni in a
two-dimensional harmonic potential, into those of the
harmonic-oscillator Hamiltonian H =h „]+h, ex-
pressed in the relative and center-of-mass variable, re-
spectively [15].

Applying the variational principle to the expression (7)
with respect to any variation 5r, (z) yields the one-
dimensional Hartree-Fock equations for the longitudinal
wave functions in the direction parallel to the magnetic
field. We have chosen to describe the individual wave
functions by a discretization on a one-dimensional Carte-
sian mesh, composed of equidistant points. This limits
the number of parameters of the calculation to two: the
mesh size h and the number of mesh points X (or
equivalently, the distance Nh/2 from the origin beyond
which the wave functions are set equal to zero). It has
been shown [18] that such a discretization is equivalent to
an expansion on a basis composed of Lagrange functions
f~(z),

y;(z)= y y;(zp)fp(z),
p=1

(10)

f f'(z)f (z)dz =5

and their analytical form is given by

1 sinn. (z —p)
X sin[a(z —p)/X]

(12)

using the mesh size as unit of length.
The Hartree-Fock equation projected on the Cartesian

mesh [lp &=f (z);p=—l, . . . , X] has the following form
for the longitudinal wave function y, (z):

where y, (z ) are the values of the y's at the mesh points
z . The functions f (z) have very special properties,

T, —g &pl V '(lz —z, l)ir &++ g gy (z )y, (z, )[f"(ij) &pq lu lrs & g "(ij—)&pq u "lsr &] e'„5, —y;(z„)=0 .
K ij k qs

JWl

(13)

Orbitals belonging to the same A subspace are orthogo-
nalized longitudinally in the variational procedure
without affecting the variational content of the total wave
function.

Using the analytical form (12), the Laplacian of f~(z)
can be calculated exactly. In [18], the one-dimensional
kinetic-energy integrals T„, have been computed by use
of the Gauss formula associated with the Cartesian mesh
which turns out to be exact for this matrix element.
Thanks to this formula, the only values of the y entering
the calculation are the values at the mesh points. In a
study of two-electron atoms [20] using a mesh built on
Laguerre polynomials, it has been shown that the accura-
cy of a Gauss quadrature formula limited to the mesh
points is not sufficient for a problem involving the
Coulomb interaction. We therefore chose to compute the
integrals of the electron-proton and electron-electron in-
teractions with a Gauss formula associated with a Carte-
sian mesh denser than the discretization describing the
individual wave functions. The one-body integrals

& p I
I' '( lz —z„l ) lr &—:& f, (z) I

I' '( lz —z. I ) lf, (z) &

were evaluated with nI points, while the two-body in-

tegrals

&pq iu "(lz, —z, l
)irs &:—& f~(z, )f~(z2)iu "(iz, —z~i)if„(z, )f, (z2) &,

(15)

which are minor contributions to the mean field, were
computed with n2 points (1V (n ~ (n I ).

We wrote a computer program, based on this
"Hartree-Fock-on-a-mesh" method, for the study of
linear chains of atoms. The length of the chain is a priori
arbitrary, but of course finite. No restrictions are im-

posed on the charge of the nuclei composing the chains,
making possible the study of chains built with either
identical or different atoms, including the atomic case.

Results of convergence tests on the hydrogen atom
ground-state energy are shown in Table I for y =1000 as
a function of the number N of Lagrange functions and n,
of integration points of the potential. The energies re-
ported in this table correspond to the optimal mesh size

h, ,
The comparison of energies corresponding to similar

integration meshes (n, ) gives a measure of the quality of
the Lagrange basis associated with the N-point Cartesian
mesh. For a given N, the variation of the energy with n,
reflects the accuracy of the Gauss quadrature integration
of the potential. For X= 16, a few hundred points are re-
quired to achieve an accuracy better than 10 while the
use of a number of integration points equal to the number
of discretization points leads to a large inaccuracy. One
can see that a very good convergence can be achieved
with still a reasonable number of integration points.

The total energies of the low-lying Landau states
(A. =0, 1, . . . , 5) of hydrogen are reported in Table II for
%=16 and n, =304 and compared with the adiabatic
values of Friedrich [21]. The results turn to be accurate
with this rather small Lagrange basis set.

The h, , trend illustrates the role of the mesh size in
our calculations. It defines a box extension and its op-
timal value corresponds to the best distribution of the
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TABLE I. Total energies (E in Rydbergs) of the ground state of hydrogen (A, =O), using a Cartesian
mesh built on N Lagrange functions and integrating the one-body terms with n, points. The field

strength y is equal to 100 and h,„, is the optimal mesh size.

16

n&

16
304
528

1520

—11.555
—15.160
—15.173
—15.177

hept

0.13
0.13
0.13
0.13

20
40

160
500

380
440
480
500

1500
2500

—15.206
—15.255
—15.264
—15.265
—15.278
—15.280

0.11
0.07
0.018
0.006
0.007
0.007

Lagrange functions avoiding significant distortion of the
wave function near the singularities (i.e., the nuclei posi-
tions) and beyond the last point of the mesh on both sides
of the atom or molecule. In this respect, it decreases with
increasing N for the same state (see Table I). On the oth-
er hand, the description of more extended wave functions
corresponding to higher-lying states with increasing A, re-
quires larger mesh sizes for the same number of functions
(N = 16).

The atomic ground states of H, He, Li, Be, B and C,
have been calculated using a N = 16 Cartesian mesh and a
Gauss quadrature integration with n, points for the one-
body term and n2 for the two-body term. We have taken
n, =528 for Z «4, n, =880 for Z & 5, and n2 =176 for all
Z's. This choice has been governed by a compromise be-
tween the N scaling law in the number of two-electron
integrals, the N size of the Hartree-Fock eigenvalue
problem, the Lagrange basis set quality, and the numeri-
cal integration accuracy. Our y = 1000 results are
presented in Table III, with the numerical results of
Neuhauser, Koonin, and Langanke [2] for y =425. 53 and
2127.66. For these two field strength values, our H and
He results (not reported in the table) are 161 and 573 eV
(y=425. 53) and 255 and 950 eV (y=2127. 66) in very
good agreement (better than 1%) with Neuhauser, Koo-
nin, and Langanke [2] results and with previous He cal-
culations [7,8].

III. RESULTS AND DISCUSSION

In addition to the atomic states considered in Tables
I-III, a variety of excited atomic states had to be con-
sidered in order to determine the most favorable parti-
tions resulting from the molecular dissociation. Among
all these results, we only present those essential for the
evaluation of the dissociation energy of the molecular
states we are interested in. All results reported in this
chapter have been calculated at y = 1000 (i.e.,
8 =2. 35 X 10' 6).

A. Diatomic molecules

Results concerning the lowest configurations of dia-
tomic homonuclear molecules from H2 to C2 are summa-
rized in Table IV. The configurations are characterized
by the A, sequence of the electrons and are denoted
[(I,&)„.. . (A,„)„]where v gives the number of the orbit-

n

als having a specific value of A, (v= 1 is omitted).
The ground states of H2, He2, and Li2 correspond to

configurations in which all the electrons have different
values of k. Thanks to the growing nuclear attraction,
the situation changes gradually for heavier molecules.
The first excited orbitals corresponding to the lower A,

values become energetically more favorable than the
unexcited orbitals with larger A, 's. In Li2, the

TABLE II. Total energies (E in Rydbergs) at y =1000 of some low-lying states (A, =0, 1, . . . , 5) of
the hydrogen atom, using a Cartesian mesh built on N=16 Lagrange functions and integrating the
one-body terms with n

&
=304 points; h„, is the optimal mesh size.

'Friedrich [21].

16
16
16
16
16
16

nl

304
304
304
304
304
304

—15.160
—11.221
—9.571
—8.585
—7.903
—7.391

h opt

0.13
0.16
0.17
0.18
0.19
0.20

Other'

—15.280
—11.266
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TABLE III. Absolute values of the ground-state total energies (eV) of atoms for different field
strengths. The (y=1000) values have been calculated using N=16 Lagrange functions with an
(n& =528—880/n2=176) integration mesh. The two other sets of results are taken from Neuhauser,
Koonin, and Langanke [2].

H
He
Li
Be
B
C

a(10" O)

[0]

[o-2]
[o-3]
[0—4]
[0-5]

NKL'
1

425.53

161
574

1209
2042
3054
4200

This work
2.35
1000

206
754

1611
2746
4139
5773

NKL'
5

2127.66

255
958

2076
3584
5456
7600

'Neuhauser, Koonin, and Langanke [2].

configuration [021234] lies only a few Rydbergs higher
than the ground configuration [012345], with an equilib-
rium internuclear distance appreciably larger
(r =0.26ao). From Be2, the configuration with two A, =O
electrons is definitely more favorable energetically than
the configuration with all different A, 's. When increasing
the nuclear charge, the first excited orbitals A, =1 and 2
become also competitive and are occupied in the ground
configuration of Bz. In Cz, the A. =O, 1, 2, 3 and 4 first ex-
cited orbitals are all occupied. This evolution is most
likely the key to the molecular problem in strong magnet-
ic fields.

A parallel change can be observed in the nuclear equi-
librium interdistances. For H2, He2, and Liz, these are

close to the longitudinal value of +(z ) relative to atom-
ic states at the same value of y. For Be2, the internuclear
distance is appreciably larger. Due to the growing nu-
clear attraction, the two X=O electrons become more
tightly bound, screening the two nuclei against the other
electrons. If this screening was complete, Be2 [02123456]
could be approximated as the excited configuration
[12. . .6] of Li2, with a nuclear interdistance larger than
the Li2 [01. . .5] ground state. This effect is even
amplified for B2 and C2. In the latter case, the two
Hartree-Fock it=0 orbitals have very close individual en-
ergies and their wave functions are mainly localized on a
different nucleus, having a very high atomic character.
This localization is due to two factors. First, the
Coulomb repulsion between the nuclei increases as Z
and moves the nuclei apart, enhancing the atomic charac-
ter of the lower orbitals. The second factor is related to

the narrowing of the electronic wave functions for the
atoms when Z increases. The wave functions of the excit-
ed states indeed behave like the wave functions of the
field-free one-dimensional hydrogenic ion and conse-
quently scale as Z '. The wave functions of the lowest
A, =O state of the atoms have a longitudinal extension
considerably lower than all the excited states. We have
verified that this narrowing is enhanced when Z is in-
creased.

The dissociation of the molecules in two atoms can
lead to partitions differing by the A. 's of the electrons.
The energetically most favorable partitions are given in
Table IV, together with the corresponding dissociation
energies. Once more H2, He2, and Li2 behave similarly
but differently from Be2, Bz, and C2. The fact that cou-
ples of electronic wave functions have the same value of k
leads to less excited atoms as dissociation products, giv-
ing rise to a faster lowering of the dissociation limit
(Ez+Ez). As a result, the dissociation energy ED in-

creases from H2 to Li2 but begins to decrease at Be2. The
stability evolution is illustrated in Fig. 1 in which we
plotted, for each molecule, the dissociation energies of
both, the most favorable configuration and the
configuration containing only different values of A, . The
dissociation energy increases monotonically for the latter,
while it starts to decrease dramatically as soon as A. excit-
ed orbitals become populated.

The B2 and C2 molecules have small dissociation ener-
gies although both are still bound. The value of this ener-

gy is only 0.7 Ry for Cz and one must wonder how this
number is affected by numerical inaccuracies and by the

TABLE IV. Atomic (E„,E& ), molecular (E„z), total energies and dissociation energies (ED) in Rydbergs and "equilibrium" in-

ternuclear distances (R in units of ao) of ground states of homonuclear diatomic molecules.

E

Hq

He~
Li~
Be2
B2
Cp

[01]
[0123]
[012345]
[02123456]
[0~1~2,3456]
[021~22324256]

0.18
0.17
0.19
0.26
0.36
0.50

—35.8
—119.5
—239.4
—401.7
—605.2
—845.5

[o]
[01]
[012]
[0123]
[01234]
[012345]

—15.2
—55.4

—118.4
—201.9
—304.2
—424.3

[1]
[231
[345]
[0456]
[01256]
[012346]

—11.2
—36.3
—71.7

—168.6
—292.2
—420.5

—26.4
—91.7

—190.1
—370.5
—596.4
—844.8

9.4
27.8
49.3
31.2
8.8
0.7
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FIG. 1. Variation of the dissociation energies of homonu-
clear diatomic molecules as a function of the charge of the nu-

cleus. The full line corresponds to the ground-state
configurations and the dotted line to a configuration where all
the electron wave functions correspond to different values of X.

mean-field approximation. Both errors lead to an un-
derestimation of ED. %e checked that an increase of the
number of integration points or of the Lagrange basis
confirms the stability of the molecules and that our nu-
merical accuracy on ED can be estimated to a few elec-
tron volts. Our method being variational, the relative ac-
curacy on the total energies is of the same order of mag-
nitude than the accuracies on their components, although
these are much larger (see Table V). To obtain a good
numerical precision, it is also essential to compute both
the molecule and its atomic dissociation products with
the same Lagrange basis. Correlations beyond the
Hartree-Fock approximation would, of course, modify
both the energies of the molecule and of the dissociation
products. However, these correlations are probably
larger in the molecular case than in the atomic one. For
instance, the X=0 electronic wave functions in C2 break
slightly the symmetry with respect to the exchange of the
two carbons. The retoration of this symmetry would
bring a gain in stability of the order of a few Rydbergs.

Configuration

R (ao)

V;

V;~

V p

[Oq122~. . .6]

0.36
171.1

—1326.5
411.3
138.9

[0,1,. . .7]

0.30
164.3

—1372.7
437.2
166.7

[01. . .9]

0.19
96.3

—1373.0
459.0
263.2

Etot —605.2
8.8

—604.6
23.9

—554.5
83.4

TABLE V. Total energies (E„t in Rydbergs) and "equilibri-
um" interdistances (R in ao) of low-lying states of 82. E]„„,V, ,
V;, , and V & are the longitudinal kinetic energy, the electron-
nuclei, electron-electron, and nucleus-nucleus Coulomb interac-
tion contributions. ED is the dissociation energy calculated
with respect to the most stable partition of the dissociation
products.

Taking all these sources of unaccuracies into account, B2,
which has a dissociation energy of the order of 1% of its
total energy, is probably the heaviest molecule that we
can predict as being stable with some confidence.

Table V details the total energies of three
configurations of the molecule 82. The selected
configurations are the two lowest ones, having, respec-
tively, three and two A, duplications and lying very close
to each other, and the simple "stacking up" distribution
which lies approximately 40 Ry higher. The total ener-
gies result from a delicate balance between the binding
contributions due to the nucleus-electron interaction and
the antibinding effects due to the three other terms of the
Hamiltonian. The increase of 8 due to the population of
A, excited states explains the decrease of the absolute
values of the Coulomb terms ( V;~, VJ, V &}. In the same

time, the longitudinal kinetic energy Eh„= ( —d Idz )
grows slowly, as a consequence of the Pauli exclusion
principle. The dissociation energies of the three
configurations are very different. The differences are due
to the more favorable atomic dissociation limits, resulting
from the break-up of a molecule in a configuration having
electrons with same A, 's.

8. Finite chains H„and He„

The most stable configurations of H„(n =1,2, . . . , 5)
and He„(n =1, . . . , 4) are presented in Table VI, with
their calculated total energies (E„,) and equilibrium nu-
clear interdistances. In the same table, we present the to-
tal dissociation energies (ED ) (i.e., the energies of atomi-
zation) of H„and He„calculated from the sum of the
atomic total energies (X},corresponding to the dissocia-
tion partition specified in the 5th column.

In his study of infinite nuclear chains, Ruderman [1]
made the conjecture that the ground-state configuration
of H3 is the configuration [Oz1 ]. Our results do not sup-
port this hypothesis. As mentioned in the Introduction
and found by Lai, Salpeter, and Shapiro [9] for
H„(n +4), the nuclear charge Z =1 is not strong enough
to provoke the occurrence of two same A, 's at a low ener-

gy cost. Our calculations indicate that H5 is the shortest
chain in which a A, excited state is populated. The fact
that it already occurs at n =4 in the sequence He„ indi-
cates the efBcient role of Z in the process, at least when
y= 1000. The population of A. excited states manifests it-
self in the reduction of the bond energies calculated by di-
viding the total dissociation energies by the number of
chemical bonds (n —1). These are reported in the last
column of Table VI.

Our total energies are sensitively lower than the—34.82 and —54.94 values found for H2 and H3 by
Demeur and Mowlavi [16], illustrating the superiority of
our Lagrange basis set. Lai, Salpeter, and Shapiro [9]
have studied the stability of hydrogen molecules and of H
and He chains as a function of the magnetic-field
strength. To make a comparison with their results, we
have recalculated the H3 and H4 molecules at magnetic
fields of 10' and 2X10' G. Our results are slightly less
accurate than theirs, with a difference of a few tenths of a
percent. Increasing the number of Lagrange functions
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TABLE VI. Molecular total energies (E„,), dissociation energies (ED) in Rydberg and "equilibrium" distances (R in ao) of
ground states in H„(n =1—5) and He„(n =1—4) molecular chains at y = 1000. X is the sum over the atomic total energies accord-
ing to the partition specified in the 5th column. The dissociation energy is calculated from ED =X—E„,.

H2

H3

H4

H5

Configuration

[01]
[012]
[0123]
[02123]

0.18
0.16
0.15
0.17

Etot

—35.8
—56.3
—74.8
—93.8

Partition

0[1
0 112

0 1 213
0~0~1[2~3

—26.4
—36.0
—44.5
—59.7

E

9.4
20.3
30.3
34.1

ED /(n —1)

9.4
10.2
10.1
8.5

He2

He3
He4

[0123]
[012345]
[02123456]

0.17
0.17
0.18

—119.5
—175.6
—236.8

01
i

23
05

~

14
~

23
05

/

14
/

23
/

06

—91.7
—121.7
—169.3

27.8
53.9
67.5

27.8
27.0
22.5

decreases our total energies and brings them still closer to
those of Lai, Salpeter, and Shapiro [9].

Neuhauser, Koonin, and Langanke [2] evaluated the
cohesion energies of one-dimensional infinite chains.
They found that the only infinite stable chains are H„
and He„at y=425 and H„, He„, Li„, and Be„at
y =2125. The cohesion energies are not directly compa-
rable to the dissociation energies of diatomic molecules
or of finite chains. However, as can be seen in Table VI,
and has been found by Lai, Salpeter, and Shapiro [9] for
hydrogen chains, the total energy of a chain divided by
the number of atoms stabilizes very quickly when increas-
ing the number of atoms. The occurrence of two A. =O
orbitals in the ground state of H5 strengthens this tenden-

cy, the configuration [01234] having an energy per atom
which is 0.2 Ry higher. If we subtract from the energy
per atom the ground-state energy of the isolated atom, we
find for the He chain a value of 61 eV, which lies nicely
between the cohesion energies found by Neuhauser, Koo-
nin, and Langanke at y equal to 425 and 2128 (25 and
150 eV, respectively). However, our calculations show
that diatomic molecules can be stable while infinite
chains are not. A decrease of the field strength to y =425
confirms this result. We have found that the Li2 and Be2
rnolecules are stable at this field, with dissociation ener-
gies, respectively, of 30.9 and 9.4 Ry. Therefore, we can-
not specify from our calculations the atomic composition
of infinite chains which will be unstable.

IV. CONCLUSION

able for atoms. Moreover, our approach avoids the intri-
cate optimization problems encountered in some previous
studies of small molecules.

Our main results were presented in Table IV and in

Fig. 1. The electronic ground-state configurations of dia-
tomic homonuclear molecules are quite different from
that of light atoms, where only nodeless electronic wave
functions are populated. With increasing Z, a Hund dou-
blet appears and induces a gerade-ungerade localization
of two A, =0 electrons, a first step in the formation of two
individual atoms. Table IV indicates clearly the appear-
ance of such a situation between Z =3 and 4. Moreover,
the increase of Z leads to new doublets of electrons with
larger values of A, .

At y=1000, this phenomenon leads to a decrease of
the dissociation energy of the rnolecules beyond Li2.
However, our study shows that molecules up to at least

B2 are stable while the corresponding infinite chains are
predicted to be unstable. For C2, correlation energies are
of the same order of magnitude than the dissociation en-

ergy and it would be necessary to go beyond the
Hartree-Fock approach to get a firm conclusion. This
difference between infinite chains and diatomic molecules
is confirmed by our calculations performed for a lower
value of the magnetic field. It would be interesting to ex-
tend the present work to heavier homonuclear molecules
and finite chains composed of atoms with Z larger than
two, but that would require going beyond the mean-field
approximation. We plan to study the stability of some
light heteronuclear molecules, including hydrids.

In this work, we have introduced an alternative
method to study the stability of molecules immersed in
very intense magnetic field. We have shown that the re-
sults obtained with this Hartree-Fock on a mesh method
can reach the accuracy of the Hartree-Fock results avail-
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