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Laser-assisted scattering from a one-dimensional 5-function potential: An exact solution
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We consider the laser-assisted scattering of an electron by an attractive one-dimensional 5-function

potential, and solve analytically a coupled-channel Lippmann-Schwinger equation for the full scattering
amplitude. Energy, in multiples of the laser frequency, can be absorbed or emitted by the electron dur-

ing the scattering, and the corresponding superelastic and inelastic, as we11 as the elastic, scattering am-

plitudes are all determined exactly. Stimulated recombination resonances are observed in all channels, if
the laser irradiance is not too high (Io 10'6 W/cm, for a binding energy of 0.5 a.u.) The resonance
widths are a direct measure of the multiphoton ionization rates from the bound level. For stronger fields

the resonances broaden and disappear into the background. For ultrastrong fields (Io & 10' W/cm ) nar-

row structures reemerge just below multiphoton thresholds. An analytic continuation of the scattering
amplitude into the complex energy plane is performed, and the poles of the scattering amplitude are lo-

cated as a function of laser frequency and irradiance. The question of stabilization for this potential is

reconsidered in the light of the present information.

PACS number(s}: 34.80.Qb, 34.50.Rk, 32.80.Wr, 42.50.Hz

I. INTRODUCTION

A body of work now exists which describes the interac-
tion of an electron with a laser electric field, while mov-
ing under the influence of an attractive 5-function poten-
tial in one dimension (1D). These approaches have in-
volved, in some form, a numerical solution of the time-
dependent Schrodinger equation [1—3]. Photoionization
rates have been deduced for a range of laser parameters,
throughout the strong-field regime (10' W/cm
&In & 10' W/cmz), although not in the ultrastrong-field
domain (Io & 10'6 W/cm ). Scattering rates modified by
the laser have not been considered for this potential.
However, laser-assisted scattering has been discussed in
several other contexts [4—10].

A possibility of the stabilization of bound states against
photoionization, at high values of laser irradiance, has
also been considered recently by many workers [11—16],
for a variety of potentials. Although stabilization has
generally been expected to appear at high irradiance and
high frequency, the absence of stabilization was predicted
for an electron moving in an attractive 3D 5-function po-
tential, with a circularly polarized laser field [16]. Final-
ly, an electron moving under the influence of a 1D 5-
function potential, with a linearly polarized laser field,
has been predicted to show both stabilization [17]and the
absence of stabilization [18].

In the present work, we describe an exact solution of
the laser-assisted scattering problem for an electron in-
teracting with an attractive 1D 5 potential. The
coupled-channel Lippmann-Schwinger equation for the

(nf, n,. )
scattering amplitude T ' ' (kf, k;;E) is solved in terms
of a sum over analytic functions, where the number of
photons in the laser field is n; initially, and nf finally, and
we assume that both n; »1 and nf »1, so that the laser
field can be treated classically. The scattering rate, as a
function of the electron initial kinetic energy E, , is ob-

tained as
2

R, (E;)=(1/lkf I ) g T f' ' (kf, k, ;E), (1)
n,.

where the on-shell limit is such that E, =k, /2,
Ef kf /2, E =E; +n;coo=Ef +nfcoo, and n =nf n; i—s
the number of photons emitted during the scattering. If
n (0, then net absorption occurs; n =0 corresponds to
elastic scattering. We adopt the convention that the ini-
tial electron momentum k; is positive, so that kf &0
represents forward scattering, while kf &0 denotes back-
ward scattering. Atomic units (a.u.}are used throughout.
Our formalism is similar to that of Faisal [4], who de-
scribed scattering from a three-dimensional single-term
separable potential, in the field of a circularly polarized
laser.

The scattering rate [Eq. (1)] is evaluated for a range of
laser parameters. Stimulated recombination resonances
are observed, in all channels, if the laser irradiance is not
too high, Io & 10' W/cm, for an underlying bound-state
energy of —0.5 a.u. At higher irradiances these reso-
nances broaden and disappear into the background. For
ultrastrong fields (Io & 10'7 W/cmz) sharp structures
reappear just below multiphoton thresholds.

An analytic continuation of the scattering amplitude is
performed, and the poles of the scattering amplitude are
located as a function of complex energy, for a broad
range of laser frequency and irradiance. An analysis of
these results allows us to comment anew on the stabiliza-
tion hypothesis for this system [17,18].

II. FORMALISM

We write the (time-dependent) Hamiltonian for this
problem as

H =Ho —i( c) /c}x )(Fo /coo) cos(coot }, (2)

where the Hamiltonian in the absence of the laser field is
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H, = —(-,')a'/ax' —5(x) . (3) LO

A bound state of Ko exists at energy E~= —O. S a.u. ,
with eigenfunction Pz(x)= exp( —~x~). The continua
have energies E & 0, with (scattering) wave functions
P~+'(x) = exp(ikx)+(ilk) exp(ik~x~ )/(1 —i lk), and k
=V2E. The corresponding on-shell scattering ampli-
tude is T(k', k;E)= 1/—(1—ilk), for scattering from k
to k', and where k'=2k =&2E. The scattering rate is
then R (E)=(1/~k'~ )/(1+1/2E), independent of the
sign of k', see Fig. l. A term ( —,')(Fo/coo) cos (coot) has
been deliberately omitted from Eq. (2), since it has no
physical consequences [3,7] (in the dipole approximation).

In the strong-field regime the Hamiltonian might
better be written as
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where the "electromagnetic Hamiltonian" is

H, = —( —,')8 /Bx —i(B/Bx)(Fo/coo) cos(coot) .

(4) FIG. 1. The scattering rate vs E;, for xo=0; see discussion
following Eq. (3).

The solutions of the time-dependent Schrodinger equa-
tion for H, may be given as

%1,(x, t) = exp[ ik t /2—+ik [x —xosin(coot)]], (6)

where xo =Fo/coo is the amplitude of the classical quiver
motion. For fixed total energy E, these states can be
Fourier transformed to yield

@k(x,E)= g P'q '(x)5(E k /2 Ncao)—, —
N

where

P' k'(x)= exp(ikx)JN(kxo)

and J& is the ordinary Bessel function of order N.
We choose the wave functions PP'(x) as the asymptot-

ic states, and write the Lippmann-Schwinger equation for
scattering by the 5-function potential, in the field of the
laser, as

T' ' '(k', k'E)=V' ' '(k', k)+ g g J(dk"/2m)V' ' '(k', k")
Ntl Ntll

X J(dk'"/2m) JdE'G~ ~. (k",k"';E,E')T' '(k"', k;E') (9)

where the matrix elements of the scattering potential V(x) = —5(x } are

V ' (k k)= J~(k xo)J~(kxo) (10)

The Green's function in the field (but without the scattering potential) is given by

GN ~(k', k, E',E)=2m JN.(k'xo )J~(kxo )5(k' —k)5(E' —E —[N' N)coo )/(E —
Nemo k /2—+i rt),—

where g is a positive infinitesimal.
We have obtained the solution of Eq. [9] exactly as

T~ ~(k', k;Q}= J~,(k'x&)J&(kxo —)/[1+&(E)], (12)

where y(E} is defined by

y(E)= g f (dk/2n. )J~(kxo)l(E Na)o k l2+irt) —. —
N

(13)

In the preceding, all sums and integrals extend from —~ to + ao. Finally, the scattering rate was obtained from Eqs.
(1}and (13) as

2

R„(E,)=(1/~kI~) g J„+„(klxo)J„(kxz)[1+g(E,+n;coo)
n,.

(14)
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Note that, in Eq. (14), the sum over n; involves the argu-
ment of y as well as the order of the Bessel functions.
Consequently, the performance of this sum is a nontrivial
exercise, generally requiring the applications of a high-
speed computer.

At first sight, a further complication resides in the fact
that the evaluation of the individual integrals in Eq. (13)
cannot in general be performed analytically. However,
we have shown that, when the (N-dependent) principal
value components are summed over their full range, the
result is precisely zero. Consequently, one has for real E
that

3.0

1D-

1.0-

05-

0.0

I I
I i

I
I 1
I

I
I

I
I

I
I
I

~t

y(E)= i g—J~[+2(E—¹oo)xo]/+2(E —¹00),
N

(15)

which is an exact result. Now with the aid of Eq. (15),
the scattering rates given by Eq. (14) can be explicitly
computed as a function of the incoming energy E, . Al-
though the sums in Eqs. (14) and (15) extend formally
from —00 to + 00, upon evaluation convergence is ob-
tained with a finite number of terms. The necessary num-
ber of terms depends on the values of Io and coo, and on
the desired accuracy. In generating our results (see Sec.
III) less than 100 terms were required, provided that the
"convergence parameter" Fo/4coo & 6. For larger values
of this parameter, accuracy deteriorates even in double
precision, due to the appearance in Eq. (15) of exponen-
tially large terms with alternating sign. An efficient algo-
rithm was employed to compute the Bessel functions, the
argument of which is either purely real (E&ncoo) or
purely imaginary (E & n coo); i.e., for Im E =0.

It may be worth pointing out that the laser field in Eqs.
(2) and (5) can really only be defined up to a phase so
that, in fact, cos(coot) should be replaced by cos(toot +P),
and P carried through to the end of the calculation. Fi-
nally, R„should be averaged over P. However, the entire
efFect of this arbitrary phase on the scattering amplitude
is contained in an n-dependent multiplicative factor of

(nI+n, nI) (n,.+n, n,. )
modulus 1;i.e., T ' ' ' ~T ' ' 'exp(in/). Thisdoes
not affect the scattering rate R„.Arguing again on an in-
tuitive basis, one expects R„to be insensitive to the laser
phase if the spatial extent of the incoming wave packet is
much greater than the amplitude of the quiver motion xo.
The modulated plane waves [Eq. (8)] employed here ex-
tend over all space, so that this criterion is certainly
satisfied. Moreover, wave packets can be constructed
from the functions appearing in Eq. (8) which will easily
satisfy this condition.

III. RESULTS

The scattering rate for zero external field (x0=0) ap-
pears in Fig. 1. It shows no sharp features, and forward
and backward scattering rates are identical.

In Fig. 2, we display the elastic scattering rate for
coo= 1.0 a.u. and x =0.25 a.u. (corresponding to
Io =2.2X 10' W/cm }. Resonance structures appear trt

E; =neo —0.5 a.u., where n = 1 and 2. These are "stimu-
lated recombination" resonances. (We prefer this nomen-

0.00 025 050 0.75 1.00 125 150 1.76 P 00

E( (a.u.)

FIG. 2. The elastic scattering rate vs E;, for co0= 1.0 a.u. and
x0=0.25 a.u. ; forward scattering (solid line); and backward
scattering (dashed line).

clature to the sometimes used "capture-escape" reso-
nance. Since every scattering resonance follows a path of
first capture, then escape, this latter ter-ui seems to us to
be insufficiently descriptive. ) The forward (solid line} and
backward (dashed line) scattering rates are now difFerent.

Generally, backward elastic scattering is suppressed in
the field of the laser. We will return to this point below.

It seems useful to point out here that the scattering
amplitude is periodic in the sense that, if a pole of T ex-
ists on the n;th sheet at E;=A; —iB;, with both A; and

B; real and positive, then poles also exist on the same
sheet at E;= A;+ mt00 iB, , —where m is an integer (posi-
tive or negative) or zero, provided that A;+mcoo&0.
These poles lead to a series of stimulated recombination
resonances. The minimum value of m produces a peak at
the lowest allowed value of the incoming electron energy.
Larger values of m produce peaks at higher values of the
electron energy, with recurrent peaks separated by C00.

These resonances correspond, in photoionization, to
threshold and above-threshold-ionization (ATI) peaks, re-
spectively. The full widths (I'= 2B, ) of the—threshold
and ATI peaks are formally identical. However, actual
peak shapes may differ considerably due to interference
with the energy-dependent background term.

We now consider the structure of an individual reso-
nance in more detail. The expected position of the
lowest-lying resonance in Fig. 2 is at E; =coo

0.5 6& =0.496 a.u. , where the shift to lowest order in

xo is b, &=(xo/4}(2—+2coo}=0.067 a.u. , and the full
width to lowest order is l, =(xo/2)+2t00 —1=0.031
a.u. ; see Appendix. These predicted values agree well
with the measured values taken from Fig. 2. The Kel-
dysh parameter (y= 1/xocoo) is y=4. 0, well inside the
photoabsorption domain.

The occurrence of a resonance peak for forward
scattering, and a corresponding minimum for backward
scattering, can easily be understood. Let the elastic-
scattering amplitude be approximated by
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T(k', k;E, )= —1/(1 i—/k)+(k'~ —i (B/Bx)(F /2' )~B ) (B
~

—i (8/Bx)(F /2' )~k )/(E; —E —U c—o +il, /2)

(16)

for E;=k /2=k' /2, where in the coordinate representation (x~k) =P'k+'(x) and (x~B)=Ps(x) (see Sec. II), and
where I, is the width of the ground state. The matrix elements in Eq. (16) can be evaluated explicitly, yielding

T(k'k;E, )= —1/(1 t—/k')+(F /a) ) [kk'/(1+k ) ]/(k /2 0—5 .—U co—+i I,/2) . (17)

In the neighborhood of the resonance, the terms due to
scattering from the 5-function potential (first term on the
right-hand side), and to stimulated recombination fol-
lowed by photoionization (second term), interfere either
constructively or destructively, depending upon the sign
of k', as can be verified from Eq. (17) explicitly.

In Fig. 3, we also consider a higher irradiance
ID=3.5X10' W/cm for coo=1.0 a.u. (y=1.0). The
resonances are now very broad. The lowest-lying reso-
nance appears at a position E;=0.395 a.u. , with a mea-
sured width I,=0.41 a.u. At this high irradiance, the
lowest-order calculation does rather poorly, predicting
values of E; =cop 0.5 5&=0.43 a.u. , and I &=0.55 a.u.
Note the appearance of sharp cusps at multiphoton
thresholds [19];i.e., at E, = neo, for n =1 and 2.

Extending the calculation again to higher irradiances,
for ID=1.4X10' W/cm and coo= 1.0 a.u. (y=0. 50), we
obtain the results appearing in Fig. 4. The resonance
structure is now attenuated, partly as an effect of an in-
crease in the amount of background scattering. Howev-
er, the resonance peaks also seem to be narrowing. At
still higher irradiances the resonance disappears almost
entirely into the background, and a very sharp cusp ap-
pears; see Fig. 5(a). As the irradiance increases still fur-
ther, the cusp inverts and a sharp resonancelike structure
emerges just below the cusp; see Figs. 5(b) and 5(c).

This initial disappearance of resonances at very high ir-
radiance, which we have also observed over a range of
laser frequencies, seems to be in accordance with the pre-
diction that stabilization would not occur for a 1D 5-
function potential [18]. However, as has just been
demonstrated, a close inspection of the scattering rate in
the vicinity of the multiphoton threshold does show the

I

reemergence, at large xp, of a sharp resonancelike struc-
ture just below the cusp; see Fig. 6. This seems to be a
general phenomenon.

In order to consider the question of resonance behavior
more closely, we investigated the pole structure of the
scattering amplitude. From Eq. (14), zeros of
1+y(E, +n, coo), as a function of complex E;, were locat-
ed on a family of sheets, for which —n;=1,2, 3, . . . .
These zeros correspond to poles of the scattering ampli-
tude at values E, =E„,=—ReE„,+ImE„„where—ImE„,=I „,/2, and I' „;is the photoionization rate,
on the n;th sheet. In accordance with the discussion of
Ref. [20], we insure that the poles which we uncover are
"physical, " and not "shadow" poles. That is, we insure
that both Re k„;&0, for all open channels, and Im
k„;&0, for all closed channels, simultaneously. The
channel momenta are given by k„,=+2(E;+n;coo). An
open channel is such that Re(E;+n, coo) & 0, and a closed
channel satisfies Re(E;+n; coo) & 0.

For example, in Fig. 7 we plot values of the half width—ImE„,vs xp for cop=0. 4 a.u. If xp &&2.0 a.u. , then
the half width rises as (4coo —1) ~ xo/64, as expected for
this initially two-photon process; see Appendix. For
values of xp 2.0 a.u. , the width decreases, and then
abruptly "vanishes"; i.e., the pole disappears on the—n; =2 sheet. There is a small gap in xp values, centered
around xp=2. 4 a.u. , where no pole exists anywhere in
the multisheeted complex E, space. Then for xo slightly
greater than 2.4 a.u. , a pole appears on the —n; =3 sheet.
This sequence of migrations of the resonance pole to
higher sheets continues as xp increases. For xp large
enough, poles on several different sheets may coexist, for
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FIG. 3. Same as Fig. 2, but for x0=1.0a.u.

E; (a.u.)

FIG. 4. Same as Fig. 2, but for x&=2.0a.u.
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FIG. 6. Detail of Fig. 5, for x0=3.0 (dotted curve), 4.0
(dashed curve), and 5.0 (solid curve) a.u.

1.0-

05-

0.0
0.0 0.5

1.5-

1.0-

05-

y1
I ~I ~I
I
I ~

r
r~ '~

g ~

~ I
~ I

Ir
'h

1.0

E, (a.u.)

I

2.0
I

2.5 3.0

ance of poles at the highest xp values, except for n; =—2.
Consequently, one might expect that stabilization can be
achieved for this case, if the smallest width dominates the
photoionization rate. For example, for xp =5.0 a.u., t e
most long-lived state lives on the —n; =1 sheet, and has a
half width 0.022 a.u. , which falls with increasing xp as
1 xp.

It is also instructive to consider the real part of the res-
onance energy. In Fig. 9, we plot ReE„,+n;coo for
F0=0.4 a.u. This quantity corresponds to the effective
b' d' on the n th sheet. It is clear, in this case,binaing energy, on
that the binding energy decreases (the electron becomes
more eep y od 1 bound) as the laser irradiance increases.

ofHowever, "transitions" between successive branches o
~ ~

the resonance trajectory must also occur, i t is state is to
evolve quasicontinuously; see Fig. 7 for a plot of the cor-
responding imaginary part.

In Fig. 10, we plot ReE„,+n; cop for cop =0.8 a.u. Now
there is a loosely bound state at large xp which is con-
tinuously connected to the bound state at xp 0 the
imaginary part, for this case, appears in Fig. 8.

0.0

a
Ig
I I

I
I

zr ~
r '~

0.0 05

a
~ t

I

1.0
I

1.5

~ I

I

2.0
r

I

2.5 3.0

0.6

0.5-
E; (a.u.)

FIG. 5. (a) Same as Fig. 2, but for xo=3.0 a.u. (b) Same as
Fig. 2, but for xo =4.0 a.u. (c) Same as Fig. 2, but for xo =5.0
a.u.

04-

cop=0. 4 a.u. In the language of Ref. [20], poles which
correspond to unphysical or shadow states, at small
values of xo, may emerge on the physical sheet at larger
values ofxo.

In Fig. 8 we plot values of —Imi„,vs xo for coo=0.8
a.u. As expected, for this initially one-photon process the
half width rises as (2cop —1)' xp/4, for xp «1; see Ap-
pendix. However, this pole does not disappear at large
xo, but persists along with other poles on sheets or
which —n. &2. There is no indication of the disappear-

02-

0.1-

0.0::
0.0 1.0

I
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I

3.0 4.0
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I
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FIG. 7. Values of —ImE„,are plotted vs xo, for coo =0.4 a.u.
Successive branches of the resonance trajectory appear on the
physical sheet as xo increases. The prediction of the lowest-
order calculation is shown by the dotted line.
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From these observations we can say that an ad&a attic

increase in the irradiance from small to large values will
leave the electron in the state with the narrowest widt, i
this state connects continuously with the zero irradiance
bound state; e.g., when coo »0.5 a.u. In this case, stabili-
zation is likely. However, if the connection is discontinu-
ous, then there must be a transition between the quasi-
bound states, as the irradiance increases. In this case,
stabilization is unlikely to occur.

IV. SUMMARY

0.0:
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FIG. 8. Same as Fig. 7, but for co0=0.8 a.u.
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FIG. 9. Values of ReE„,+n;co0 are plotted for co0=0.4 a.u.
Successive branches of the resonance trajectory appear on the
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l h t increases. The prediction of the lowes-
order calculation is shown by the dotted line.

We have considered the scattering of an electron by an
attractive 1D 5-function potential, while moving in a
sinusoidally varying electric field. The Lippmann-
Schwinger equation for the coupled-channel scattering
amplitude was solved exactly.

Explicit calculation of the scattering rate, for a range
of frequencies and field strengths, revealed the presence
of stimulated recombination resonances. At fixed fre-
quency, as the field strength was increased from small
values, these resonances first broadened, but then nar-
rowed again, for Fo/4coo) 5 a.u. The appearance of
cusps at multiphoton thresholds tended to mask this res-
onance narrowing.

A calculation of the trajectory of the poles of the
coupled-channel scattering amplitude in the complex en-

ergy plane suggested an adiabatic stabilization of t e un-

derlying bound state, provided that the frequency was
high enough. At low frequency, adiabatic stabilization
was absent, due to discontinuities in the resonance trajec-
t I this context, it is interesting to note that the em-

et at hi h-ergence of shadow states on the physical sheet, a ig-
field strength, is a general phenomenon for this system,
and several such states can exist simultaneously. Con-
versely, there are regions of relatively low frequency and
relatively high-field strength for which no physical state
exists. Similar phenomena have been reported previous y
for other systems [20].

We emphasize that our explicit results are confined to
a range of frequencies 0. 1 coo&2.0 a.u. , and to a range
of field strengths such that FOI4coo & 6 a.u. Consequent-
1, ot yet able to comment on conjectures relatingy, weareno y
to the behavior of the width at asymptotically hig re-
quency [17],nor at asymptotically large xo.

For example, it is consistent with our results to specu-
late that just one physical state will persist as xo ~~, at
high frequency, and that this state evolves continuously
from the state existing at xo~0. In this case, adiabatic
stabilization would exist, in the high-frequency limit.
However, it may also be that the trajectory evolving from
the state existing at x0~0 becomes discontinuous, wit in
some range of very large-xo values, even at high frequen-
cy. In this case, adiabatic stabilization would not exist.
Still more work in this area is required in order to resolve
this issue.

-e.o
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I

1.0
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APPENDIX

Xo aU

FIG. 10. Same as Fig. 9, but for coo=0. 8 a.u.

R onances appear at zeros of the denommators in Eq.eson
ner E).(14), on the physical sheet [20] in the complex energy

plane. These zeros can be located easily, as xo~0, espe-
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cially for low photon order.
For example, for a one-photon process, a resonance

occurs at a value of the complex energy E; such that
b, , = (x o/4)(2 —+2too+ 1)A(xotoo/2) (A7)

deromotive energy, and can even have the opposite sign
(at high frequency); i.e.,

0=1+y(E;—too) . (Al)
For a two-photon process, a similar analysis shows that

Using Eq. (13), and expanding y in powers of xo, we ob-
tain

0= 1 i—{I /+2(E; —coo)

[x—
o2 /4)(2!/'2(E; too—)

b 2—-(x o /4)(2 —+2too+ 1 —Q 1 —
2coo) +h. o.t.

and

I =(4' —I) ~ x"/32+h. o.t.

(A8)

(A9)

+—2E; i/2—(E; —2roc) ]+h.o.t. ], (A2)

E; =too —0.5 —5/2, (A3}

where h.o.t. denotes terms of order xo and higher. Then,
defining the energy as

In this case, the shift reduces to the ponderomotive ener-

gy in the small-coo limit.
These results can be generalized to arbitrarily high

photon order (for lowest nonvanishing order in xo. For
example, for a n;-photon process, the full width is

5=(xo/2)[(2 —+2too+1)+i +2coo 1]+—h. o.t. (A4)

and expanding the right-hand side of Eq. (A2} in powers
of 5, we obtain

( —2n,. —1)l2I' „;=2(—2n;coo —1)

X(xo/2) '/[( —n; )!]2+h.o.t. (A 10)

b, , =(xo2/4)(2 —+2too+ I)+h.o.t.

while the full width of the resonance state is

I', =(x /2)+2to —1+h.o. t.

(A5)

(A6)

Notice that the shift 5& is not generally equal to the pon-

The shift in the underlying bound-state energy is, there-
fore,

I', =x /8+h. o.t. , (Al 1)

so that the one-photon ionization rate is discontinuous at
rap=

2 +6).

The preceding analysis pertains only if the "threshold
factor" is large, i.e., ( 2n;t—oo 1)»—I' „.For fixed xo,

l

as ( —2n;too —1}~0,then a more careful analysis is re-
quired. In this limit, for instance, one has that
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