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The relativistic Fock-space coupled-cluster method for the direct calculation of ionization poten-
tials and excitation energies (including fine structure) is presented and applied to atomic Au and
its ions. The no-pair Dirac-Coulomb-Breit Hamiltonian is taken as the starting point. The CCSD
approximation is implemented (where CCSD indicates coupled cluster with single and double excita-
tions), which includes single and double virtual excitations in a self-consistent manner, incorporating
therefore the effects of the Coulomb and Breit interactions to all orders in these excitations. A rather
large basis set (21s17p lid 7f) of kinetically balanced Gaussian spinors is used to span the atomic
orbitals. All calculated energies (ionization potential and electron aifinity of Au, excitation energies
of Au and Au+) agree with experiment to 0.1 eV or better, with an average error of 0.06 eV. Fine
structure splittings are accurate to better than 0.01 eV.

PACS number(s): 31.20.Tz, 31.30.Jv, 31.50.+w

I. INTRODUCTION

The relativistic contraction and stabilization of the ns
valence shell (n = 4—6) undergoes a local maximum at
the coinage metals, group 11 [1]. This is known in the lit-
erature as the "gold maximum, " as the gold atom shows
pronounced relativistic effects on its physical and chem-
ical properties. Nonrelativistic calculations on the gold
atom and its compounds lead to qualitatively incorrect
results, e.g. , reverse order of the first two excited states,
D and zP [2]. The inclusion of the leading relativistic

terms in the Hamiltonian improves the situation dramat-
ically (see [3] for a recent discussion). The gold atom
and its compounds have recently become the subject of
intense investigations [1,3], both because of their inher-
ent interest and as testing grounds for relativistic quan-
tum mechanical methods. While many of the relativistic
effects on atomic and molecular structure may be esti-
mated by perturbation theory or model (pseudopoten-
tial) techniques it is desirable to have a first-principles
method which incoporates relativity and correlation to
high order, both for accurate prediction of atomic and
molecular properties and as a check on more approxi-
mate models. An important issue is the nonadditivity of
relativity and correlation effects in high-Z atoms, which
may be investigated by a scheme including both effects
ab initio.

The relativistic xnany-body Hamiltonian cannot be ex-
pressed in closed potential form. The nonrelativistic
many-body approach may be extended to the relativis-
tic domain by applying a formalism based on effective
potentials, obtained with arbitrary accuracy from quan-
tum electrodynamics (/ED), as suggested by Lindgren
[4). Two major modifications are required upon going

from the nonrelativistic to the relativistic formulation:

(i) the Pauli-Schrodinger spin orbitals are replaced by
four-component Dirac spinors, which may have positive
as well as negative energies, and (ii) the instantaneous
particle-particle Coulomb interactions are supplanted by
the irreducible multiphoton efFective potentials, together
with radiative corrections and renormalization countert-
erms.

The many-body formalism used in nonrelativistic
quantum mechanics for correlation effects may be em-

ployed in the relativistic case, with proper changes taking
into account the modification of orbital form and poten-
tial terms. Different levels of approximation are possible,
depending on the order of relativistic and /ED effects in-
cluded. The first rigorous level beyond the nonrelativistic
scheme is based on modification (i) and on the potential
derived from the single-photon-exchange S-matrix with
no consideration of negative energy states and radiative
corrections. The Hamiltonian formed this way is called
the projected Dirac-Coulomb-(Breit or Gaunt) Hamilto-
nian. Its use was advocated by Sucher [5], to avoid the
"continu»m dissolution" problem associated with nega-
tive energies in relativistic many-body calculations. We
write this Hamiltonian as

H+ ——Ho+ V,

where (in atomic units)

hid(i) = cps; . p; + c (P; —1) + V„„,(i) + U(i),

Formerly Ilyabaev.
V=) A+A+(V. ),,A+A+ —) A+U(i)A+. (4)
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Here ho is the one-electron Dirac Hamiltonian. An ar-

bitrary potential U was included in the unperturbed
Hamiltonian Ho and subtracted fmm the perturbation
V. This potential is chosen to approximate the effect
of the electron-electron interaction; in particular, it may
be the Dirac-Fock self-consistent-field potential. The nu-

clear potential V „, includes the effect of finite nuclear
size. The A,+. are projection operators onto the positive
energy states of the Dirac Hamiltonian h~. Because of
their presence, the Hamiltonian H+ has norxnalizable,
bound-state solutions. This approximation is known as
the no-(virtual)-pair approximation (NVPA), since vir-
tual electron-positron pairs are not allowed in interme-
diate states. The form of the efFective potential V,~ de-

pends on the gauge used. Here we shall consider the
two most popular gauges, the Feynman gauge and the
Coulomb gauge, in which cases the effective interaction
becomes in atomic units [4],

(5)

—CXy ' A2
~12

ca~v'1~ —1
+(a1 V) (a2 V)

4P Fy2

respectively. The ~ parameter is related to the energy
transfer between the virtual photon and the electrons
and is included only in exponential terms, which phys-

ically mean retardation of the interaction. When only
the positive part of the energy spectrum is present, the
energy parameter ur is first order in n, the fine-structure
constant. Terms involving the Dirac operators n and P
that mix the large and small components of the wave

function are of the same order. The one-photon poten-
tial, correct to order o.2, is then

V1r(~) = 1

T1
+ G12 ——(u r12+0(n ),1 2 3

2

+ B» + O(n'), (8)

where

G12 nl ' n2/F12 (9)

and

B12 [nl ' n2 + (nl ' r12) (n2 r12)/~12]/r12 (10)

are the well-known frequency-independent (unretarded)
Gaunt and Breit interactions respectively. The Coulomb
potential 1/r12 describes the instantaneous electrostatic
interaction, and the Gaunt or Breit potentials are the
magnetostatic terxns. Adding the latter leads to the
best description of Lorentz invariance in relativistic in-
teractions and increases the accuracy of calculated fine-
structure splittings and inner-electron bonding energies
[6—8]. Equation (6) shows that only the magnetic part is

retarded in Couloxnb gauge, while the Coulomb interac-

tion is instantaneous. Hence, the unretarded interaction
in that gauge, the Couloxnb-Breit potential, is correct
to order n2 [see Eq. (8)]. In the Feynman gauge (5)
the Coulomb interaction is also retarded, and the lead-
ing part of the retardation must be considered to achieve
the same accuracy [Eq. (7)].

The no-pair approach with unretarded Coulomb-Breit
interparticle potential accounts for relativity up to or-
der n2. High-order /ED efFects, such as Lamb shifts
and effects of negative energy states, appear first in or-
der ns and are omitted. This scheme is now widely used
and is expected to be quite accurate for most neutral
and weakly ionized atoms of the naturally occurring ele-
ments. The no-pair method forms the basis for modern
versions of relativistic many-body perturbation theory
(MBPT), which is a powerful and systematic method for
calculating electron correlation efFects in many-electron
systems (for recent reviews see [6]). The first few terms
of the perturbation series suffice for highly charged ions

[9], but the method is less suitable for neutral atoms,
where higher orders of MBPT are non-negligible. The
expressions for the higher orders become complicated,
and direct perturbative studies are rarely carried out be-
yond the second-order correction to the wave function or
the third-order energy correction. An alternative treat-
ment is provided by so-called all-order methods, where
infinite subclasses of contributions are summed. One of
the most promising of these is the coupled-cluster (CC)
formalism [10,11]. It leads to all-order equations, which
upon iteration yield the order-by-order expressions for
the Rayleigh-Schrodinger linked-diagram expansion. The
formalism thus shares with the order-by-order approach
the property of size extensivity, important for accurate
calculations on heavy elements, for which relativistic ef-
fects are most significant. The CC method gives electron
correlation with high accuracy, and is widely applied in
nonrelativistic atomic and molecular calculations [12].

The development and implementation of reliable rela-
tivistic CC schemes is a challenging problem in the study
of many-electron systems. Several groups are working in
this direction, but only few applications have appeared.
A numerical procedure for solving relativistic difFeren-

tial many-body equations with Coulomb potential based
on the pair approximation of the CC approach has been
developed by Lindgren and co-workers [10,11] and im-

plemented to two-electron atomic systems [13]. A spe-
cific problem arising in this work is the application of
the projection operators, which is nontrivial with the
differential-equations technique.

A different approach to the many-body problem in-
volves the use of discrete basis sets of local or global func-
tions. The implementation of the projection operators is
easier in the kame of this scheme than in the differential-
equations method. Applying the projection operators
is reduced simply to summation over the positive en-

ergy part of the one-electron spectrum. Relativistic CC
techniques based on local splines (piecewise polynomial
fitting) were developed by Blundell et aL and applied
to closed-shell two- and four-electron atoms [14]; in lin-

earized forxn the method was applied to the one-valence-
electron open-shell Li, Be+ [15] and Cs [16]. A difFerent
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type of local basis set was introduced by Salomonson and
Oster [17], who discretized the radial space. This tech-
nique is similar in spirit to the spline method and can
be regarded as a limiting case of that method (single-
point representation rather than polynomial fitting). The
method has been applied to energy calculations of atomic
Be [18] and to evaluating hyperfine structure, transi-
tion energies, and parity-nonconservation effects in some
one-valence-electron systems [19]. All relativistic CC im-

plementations discussed above neglect the Breit interac-
tion and treat the two-electron interaction "nonrelativis-
tically" as the instantaneous Coulomb repulsion. Lin-
droth and Salomonson [20] have recently extended the
method of Salomonson and Oster to include the Breit
interaction [Eq. (10)] self-consistently in the Dirac-Fock-
Breit orbitals and then in the pair-correlation procedure,
combined with Coulomb interactions to all orders. Thus
the NVPA scheme correct to order o, 2 was realized. This
CC version has been applied to the ground-state energy
of the Be atom [21] and to transitions in He-like Ar [20]
and Be-like Fe and Mo [22].

Quantum chemical methods mostly use basis sets
of global analytical functions such as Slater-type or
Gaussian-type orbitals. A relativistic CC method in a
discrete global analytical spinor basis has been devel-
oped and implemented recently by our group [23—25].
Using the Dirac-Coulomb Hamiltonian, we calculated the
ground-state energies of the closed-shell Ne and Ar atoms
[23]. An open-shell version of the method was applied to
atomic ground and excited states with one or two elec-
trons and/or holes relative to a closed-shell state [24,25].
This approach is similar in content to the methods based
on local basis functions discussed above, since they use a
discrete representation of the Dirac spectrum, with sub-
sequent evaluation of many-body diagrams using finite
summation. The principal advantage of the analytical ex-
pansion technique is the speed and accuracy with which
the two-electron integrals over the basis functions may
be evaluated. The transformation of these integrals into
matrix elements of the Hamiltonian may be performed
using linear algebra techniques, and the scheme may be
programmed very effectively on modern computers [26].
Many of the high-performance computer codes developed
in nonrelativistic quantum chemistry can be adapted
without substantial modification to the relativistic case
[27], and relativistic ab initio calculations of electronic
correlation in molecules become feasible. Gaussian-type
functions have certain advantages as bases for relativistic
quantum chemistry, in addition to the well-known sim-
plicity of calculating two-electron integrals [28]. Basis
sets of Gaussian spinors (G spinors) show no near-linear-
dependence difBculties reported with sets of S spinors
(with Slater-type functions). G spinors mimic exactly
the behavior of the wave function near the origin of a
uniformly charged spherical nucleus. This is the main
reason why G-spinor expansions exhibit fast and smooth
convergence when the nucleus is modeled as a uniform
proton charge ball [28,29]. The relativistic CC approach
based on G-spinor basis sets generates a compact rep-
resentation of the Dirac spectrum and allows investiga-
tion of many-electron systems based on existing quantum

chemical packages [23—25].
The present calculations on the Au atom and its ions

were done by extending our CC programs [23—25] to in-
clude the Breit interaction. The atomic integrals, Dirac-
Fock-Coulomb (DFC), and Dirac-Fock-Breit (DFB) func-
tions were calculated by programs written by Ishikawa
and co-workers [28]. The computations were performed
on the IBM RS6000 workstations at Tel Aviv University.

II. COMPUTATIONAL METHOD

In q-number theory the Dirac-Coulomb-Breit Hamilto-
nian H+ is rewritten in terms of normal-ordered products
of the spinor operators, (r+s) and (r+s+ut) [5,28]

H = H+ —(OIH+IO)

v stu

(rsII™)= ("sI™) ("sI«) (12)

and

(vs~tv) = f dxldx2%„(xl)C (x2)(pl~ +812)

x C, (x, )@„(x,). (i3)

H g ——PIIOP, (i4)

where 0 is the normal-ordered wave operator,

0 = (exp(S)).

In addition to the traditional decomposition into the sum
of terms with different total (1) number of excited elec-
trons, the excitation operator S' may be partitioned ac-

Here, f„, and (rsIItu) are, respectively, elements of one-
electron Dirac-Fock and antisymmetrized two-electron
Coulomb-Breit interaction matrices over Dirac four-
component spinors. The effect of the projection oper-
ators A+ is now taken over by the normal ordering, de-
noted by the curly braces in the equations above, which
requires annihilation operators to be moved to the right
of creation operators as if all anticommutation relations
vanish. The Fermi level is set at the top of the highest
occupied positive energy state, and the negative energy
states are ignored.

By adopting the no-pair approximation, a natural and
straightforward extension of the nonrelativistic open-
shell CC theory emerges. The multireference valence-
universal Fock-space coupled-cluster approach is em-
ployed here, which defines and calculates an effective
Hamiltonian in a low-dimensional model (or P) space,
with eigenvalues approximating some desirable eigenval-
ues of the physical Hamiltonian. According to Lindgren's
formulation of the open-shell CC method [11],the effec-
tive Hamiltonian has the form
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cording to the number of valence holes (m) and valence
particles (n) to be excited,

m)0 n&0 l)m+n
(16)

where the first term on the right-hand side consists of di-
agrams without any external (valence) lines and includes
core-electron correlation. The eigenvalues of H,& will
then give directly the transition energies &om the ref-
erence state, with correlation efFects included for both
initial and final states. The physical significance of these
energies depends on the nature of the model space. Thus,
electron afBnities may be calculated by constructing a
model space with valence particles only [(O,n) sectors,

The upper indices in the excitation amplitudes re8ect the
partitioning of the Fock space into sectors, which corre-
spond to the different numbers of electrons in the physical
system. This partitioning allows for partial decoupling
of the open-shell CC equations. The equations for the
(m, n) sector involve only S elements from sectors (k, t)
with k & m and l & n, so that the very large system of
coupled nonlinear equations is separated into smaller sub-
systems, which are solved consecutively: first, the equa-
tions for S(o o) are iterated to convergence; the S(i o) (or
S(o'i)) equations are then solved using the known S( ' ),
and so on. This separation, which does not involve any
approximation, reduces the computational effort signif-
icantly. Presently our relativistic CC program includes
the (0,0), (1,0), (2,0), (0,1), (0,2), and (1,1) sectors.

The lower index l in (16) goes, in principle, to the
total number of electrons. In practice, it has to be trun-
cated. The level of truncation reflects the quality of the
approximation, i.e., the extent to which the efFect of the
complementary Q space is taken into account in the cal-
culation of the e8'ective Hamiltonian. The most common
truncation level is at l=2. The resulting CCSD (cou-
pled cluster with single and double excitations) scheme
involves the fully self-consistent, iterative calculation of
all one- and two-body virtual excitation amplitudes and
sums all diagrams with these excitations to infinite order.
As negative energy states are excluded from the Q space,
the diagrammatic summations in the CC equations are
carried out only within the subspace of the positive en-

ergy branch of the DF spectrum.
The H,g diagrams may also be separated into core and

valence parts,

n ) 0], ionization potentials are given using valence holes

[(n,0) sectors, n ) 0], and both valence types are required
to describe excitations out of the reference state [(m, n)
sectors, m, n ) 0]. The method has been applied with
the Dirac-Coulomb Hamiltonian in the (n, O) and (O,n)
sectors, with n = 1, 2 [24], and in the (l, l) sector [25].

Experience with nonrelativistic coupled-cluster calcu-
lations shows that the selection of the model space plays a
crucial role. The commonly used complete model space
comprises all possible distributions of the valence elec-
trons (or holes) in the valence orbitals. Frequently, one
has to resort to incomplete model spaces [30,31] to ensure
convergence. We have included the possibility of using
the incomplete-model-space formalism in our relativistic
CC program codes.

III. CALCULATIONS

Calculations were carried out for the Au atom and
its cation and anion. Two sequences of the open-shell
CC calculations were used, starting from the two closed-
shell systems Au+ and Au and going through valence-
particle and valence-hole sectors, respectively:

Au+(0, 0) ~ Au(0, 1) -+ Au (0, 2),

Au (0, 0) + Au(1, 0) m Au+(2, 0) .

(18)

(19)

The Dirac-Pock equation was first solved in a basis of
Gaussian-type functions for the appropriate reference
state in the (0,0) sector. Consecutive sets of CC equa-
tions were then iterated to convergence in the sequences
indicated. The Gaussian spinors were carefully chosen
to avoid "variational collapse" [32] in the DF procedure.
To this purpose, basis spinors were made to satisfy the
condition of kinetic balance [33]and relativistic boundary
conditions associated with a finite nucleus, described here
as a sphere of uniform proton charge [28]. The atomic
mass of Au was taken as 196.967, and the speed of light
as 137.037 atomic units.

The basis set of Pizlo et ul. [3] in its uneontracted
form was selected for our calculations. It consists of
21s 17p lid 7f functions. Atomic orbitals with the same
1 and difFerent k values (e.g. , pi~2 and ps~2) were ex-
panded in the same set of basis functions. The relativis-
tic CC programs used previously [23—25] were modified to
take advantage of the angular decomposition of the rel-
ativistic CC equations in a central field. Using standard
angular-momentum graphical techniques [11], the Gold-

TABLE I. Total energies of the closed-shell systems Au+ aud Au (hartrees).

Au+ Au

HF
DFC
DFB

None orrelated
—17863.463009
—19029.013225
—19007.423851

Correlation
—1.297561
—1.361496
—1.364300

Noncorrelated
—17863.683925
—19029.320775
—19007.730628

Correlation
—1.370182
—1.464362
—1.466900

External two shells (4s to 5d).
External three shells (4s to 6s).
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TABLE II. Transition energies in Au (eV). These are the results of correlated coupled-cluster
calculations, starting from Dirac-Pock-Coulomb (DFC), Dirac-Fock-Breit (DFB), or nonrelativistic
orbitals. IP is the ionization potential, EA denotes electron afEnity, and EE the excitation energy
relative to the ground state. FS denotes fine-structure splittings.

EE

EA

5d 6s
5d 6s
FS
5d 6p /
5d 60 /
FS
5d 6s

2
Ds/2
D5/2

2D
2

2
P3/~

2p
1S

5d 6s S&/2

DFC
9.101
8.992'
2.661'
1.115'

-1.546'
4.723
5.193
0.470
2.278'
2.241

DFB
9.086
8.977'
2.669'
1.150'

-1.519'
4.720
5.184
0.466
2.269'
2.232

Nonrel.

6.981
6.799'
5.301'
5.301'
0
3.313
3.313
0
1.267'
1.236

Expt. b

9.22

2.658
1.136

—1.522
4.632
5.105
0.473
2.31

Nonrelativistic limit calculated with c = 10 a.u.
Reference [35].

'Energies calculated with scheme (19). All others use scheme (18).

stone diagrams were decomposed in terms of vector cou-
pling coefFicients, expressed by angular-momentum dia-
grams, matrix elements of the reduced Coulomb-Breit
interaction, and excitation amplitudes 8 of (15). The re-
duced version of the equations for one- and two-electron
excitations was then derived [34] with the help of the
Sucys-Levinson-Vanagas theorem. This approach allows
us to use large basis sets for high-accuracy results.

IV. RESULTS AND DISCUSSION

The total energies of the closed-shell Au+ and Au
without and with relativistic and correlation effects are
showa in Table I. The nonrelativistic limit was ob-
tained by setting the speed of light c to 10s a.u. The
4s 4p4d4f 5s 5p Sd electrons were correlated, with the 6s
added for the anion. The relativistic energy lowering
(the difference between Hartree-Fock and Dirac-Fock en-

ergies) is very large, over 1100 hartrees. The Breit term
increases the total energy by 21.6 hartrees. Most of
these contributions come Rom the inner shells of the
atom. Relativistic and correlation efFects are nonaddi-
tive. Correlation of the two external shells of Au+ is 64
millihartrees larger (in absolute value) in the relativistic
than in the nonrelativistic approximation, with the dif-
ference going up to 94 millihartrees for Au . Inclusion
of the Breit interaction increases correlation by 2—3 mil-
lihartrees. These effects are expected to be even larger
for the inner shells.

The nonrelativistic and relativistic (with and without
the Breit interaction) coupled-cluster ionization poten-
tial, electron afBnity, and excitation energies of the Au
atom are shown and compared with experiment [35] in
Table H. Table IH presents excitation energies of Au+.
The nonrelativistic approximation gives a very poor de-
scription of the energy spectrum of the atom and ion.
The relativistic energies are in very good agreement with
experiment. The largest error, 0.12 eV, is in the ion-
ization potential of the atom. The average error of the

TABLE III. Excitation energies of Au+ (eV) calculated
with scheme (19).

FS ('Ds —Dg)
FS ( D2 —Di)

5d ( Ds(2) Gs 'D2

DFC
1.872
2.207
3.484
0.335
1.277
3.724

DFB
1.907
2.240
3.491
0.333
1.251
3.734

Nonrel.
6.245
6.245
6.245
0
0
6.707

EXpt, .b
1.864
2.187
3.442
0.323
1.255
3.672

Nonrelativistic limit calculated with c = 10 a.u.
Reference [35].

ten reported energies for Au and Au+ is 0.06 eV. These
remaining errors are ascribed to deficiencies in the basis
and to the truncation of the coupled-cluster expansion.
The fine-structure splittings are also quite close to exper-
iment (better than 0.01 eV), especially when the Breit
interaction is included. It should be noted that the split-
tings are of the same order as many of the separations
between different I8 levels.

Table II includes results obtained by the two schemes
described above [Eqs. (18),(19)], which start Rom the
closed-shell systems Au+ and Au respectively. The dif-
ference between the two sets f values is not large, but sig-
nificant (0.1 eV for the ionization potential of the atom,
0.03 eV for the electron affinity). As may be expected,
Au+ is a better starting point for the ionization poten-
tials, whereas Au is better for the electron amenity.

We have found no correlated four-component treat-
ment of the atom to compare with the results reported
above. Pizlo et at. [3] carried out one-component calcu-
lations of the Au ionization potential and electron aKn-
ity, as well as the IS averuges of the excitation ener-

gies, without fine structure. Their results with the same
basis are within 0.05 eV of ours. Schwerdtfeger's work

[36] using pseudopotentials and including correlation by
quadratic configuration interaction with single and dou-
ble excitations and approximate triples QCISD(T) gave
much larger errors, 0.3 eV for the ionization potential
and 0.2 eV for the electron aKnity.
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V. SUMMARY AND CONCLUSION

A relativistic open-shell coupled-cluster scheme appli-
cable to direct calculation of ionization potentials and
excitation energies of many-electron systems has been
presented. Test calculations on the low-lying excited
states of Au and Au+ were performed, giving highly sat-
isfactory results for excitation energies and fine-structure
splittings. The relativistic CC program is limited at
present to its CCSD form. The Coulomb-Breit poten-
tial was used, which is correct to order o.2. Work is now
in progress on extensions to higher orders of the excita-

tions and to further sectors of the Fock space. Molecular
relativistic CC calculations are also planned.
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