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Hydrogen molecule under con6nement: Exact results
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The properties of a hydrogen molecule under spatial confinement are studied by diffusion quantum
Monte Carlo simulations. The ground-state energy and the bond length of the molecule are evaluated
under an equilibrium spheroidal-box condition. Since the calculations of the ground-state properties
for this specific system are exact from the diffusion quantum Monte Carlo simulations, the results
obtained here can also serve as a criterion to any approximate or variational method applied to
highly correlated electronic systems. The possibility of further work to calculate the vibrational
frequency and other pressure-dependent physical quantities is discussed.

PACS number(s): 31.20.—d, 36.20.Hb, 02.70.Lq

I. INTRODUCTION

There has been a great deal of interest in the properties
of hydrogen molecules under high pressure [1—3]. For
example, the metal-insulator transitions [1,2,4,5] and the
structural phase transitions [6,7] of hydrogen solids above
100 GPa. Recently there have been experimental studies
on the properties of hydrogen molecules confined in neon,
helium, and argon matrices under high pressure [8]. It is
noted that the pressure dependence of the bond length
and the pressure dependence of the vibrational &equency
of the molecule under the high pressure [8] are similar
to those calculated from a variational approach [9] of a
hydrogen molecule confined in a spheroidal box under
equilibrium condition.

When a hydrogen molecule is located inside a matrix,
for example, in a neon matrix, it behaves qualitatively the
same as it is confined inside a cavity. A significant ques-
tion is how sensitive the properties, such as the molecular
energy, bond length, and vibrational frequency, are to the
shape of the cavity. Since the previous calculations are
all variational, it is impossible to determine the quanti-
tative difference between the experimental measurements
and a simple model such as a spheroidal box.

In this work, we present calculations of the proper-
ties of a hydrogen molecule in an equilibrium spheroidal
box &om diffusion quantum Monte Carlo simulations.
The equilibrium here means that the bond length and
the minor axis of the box are adjusted to optimize the
ground-state energy of the molecule for a given major
axis. The calculations here are exact and the only er-
rors are from the statistics and the finite time step of the
simulation. And both of them can be controlled to be as
small as desired. This work is the first part of a planned
project to calculate all physical properties of a hydrogen
molecule confined in a spheroidal box by quantum Monte
Carlo simulations, including the pressure dependence of
the vibrational &equency and bond length and the sensi-
tivity of these quantities to the shape of the box. We will
present here the calculations of the molecular energy and
the equilibrium bond length of a hydrogen molecule in a
spheroidal box with a given major axis. The molecule is

assumed to have two protons located at the foci of the
spheroidal box. So the equilibrium is achieved by search-
ing for a proper bond length, or minor axis, to optimize
the total ground-state energy of the system.

II. HAMILTONIAN

For a hydrogen molecule inside a spheroidal box de-
fined by

X2 Q2 Z2—+ —+ —=1
b2 b2 a2

the Hamiltonian of the system is given by

(2.1)

with

H = H(1) + H(2) + +1 1
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(2.2)

(2.3)

1
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where Eo is the ground-state energy of electrons of
Eq. (2.2) for a given separation of two protons B s.

where the protons are put at the foci of the box along
the z axis. a is the semimajor axis. r; and r,p are the
distances between the ith electron and two protons, and
ri2 is the distance between two electrons. R g is the
separation of two protons. Now if we assume that two
protons are located at the foci of the spheroidal box at
the equilibrium, we have R

&
——4(a2 —b2), with b the

semiminor axis. So for a given a, one can adjust R p

(adjustment on b will follow) to search for the ground
state of the system by optimizing the molecular energy.

If we apply the Born-Oppenheimer approximation to
the system, we can treat the proton wave function and
electron wave function separately, that is, solve the elec-
tron wave equation for a given proton configuration. The
molecular energy is then given by
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Atomic units (a.u. ) are used throughout this article. The
energy is in hartrees and the length is in the Bohr radius,
which corresponds to setting m, = e = 5 = e = 1.

III. THE QUANTUM MONTE CARLO METHOD
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is a propagator with a drifting velocity U and

W(R( R. )
—([E(R)+E(R'))/2 —E (t)}~

(3.7)

(3.8)

F(R, t) = 4 (R, t)4 (R), (3.1)

In order to obtain the exact ground-state energy of Eq.
(2.2), a diffusion quantum Monte Carlo method (DQMC)
is employed to simulate the Schrodinger equation as a dif-

fusion equation of a time-dependent probability in con-
figuration space [10,11].

In the DQMC approach for an ¹lectron system,
one takes a variational wave function 4(R) with R =
(ri, r2, ..., rN) as a guiding wavefunction for the ground
state and then constructs a time-dependent probability
density F(R, t) &om

is a branching factor. So the actual simulations are done
as follows.

(1) First one generates an ensemble of configurations
according to F(R,O) from the guiding wave function. The
parameters in the guiding wave function are optimized
through variational Monte Carlo simulations.

(2) Then each configuration is moved by a drifting term
and a Gaussian random step R' = R+ Uw + y, where

y is a 3N-dimensional Gaussian random number with a
variance of v on each component.

(3) The move is accepted with a probability
min[1, A(R', R; x)], with

with

4'(R, t) = exp
~

E„(t')dt' —Ht
~

4 (R),
0

(3.2)
4(R') G(R, R', ~)
4 (R) G(R', R; T)

' (3.9)

where E„(t) is an adjustable constant which can be con-
sidered as a normalization factor at the moment. If one
writes the Schrodinger equation in an imaginary time
form and multiples the equation by the guiding wave

function, one has

OF 1

Ot 2
V' F —(7.—FU —[E„—E(R)]F, (3.3)

(4(R)]Hi@(R,t)) f dRF(R, t)E(R)
(e(R) ~@(R,t)) f dRF(R, t)

which becomes the exact ground-state energy of H as t
goes to infinity. What one has to do now is to simulate
the configuration R according to the distribution func-

tion F(R,t) and then let the time evolve to a target time
where the dominant error is from statistics.

In practice, the simulation is done by rewriting the
diffusion equation for F(R, t) into an integral form:

(3.5)

where G(R', R;r) is the Green's function of Eq. (3.3). If
~ is very small, the Green's function can be approximated
as

G(R, R;7) W(R, R;T)G (Ro, R;7), (3 6)

where

with U as a drifting velocity U = V' ln 4'(R) and E(R) =
4 i (R)H4(R) as a local energy of a given configuration
R. As long as 4(R) is not orthogonal to the exact ground
state of H, 4((R, t) will approach the true ground state of
H when t goes to infinity. If one defines a time-dependent
expectation value E(t)

to ensure detailed balance. When the guiding wave func-
tion has a nodal structure, we use the fixed node ap-
proximation which eliminates the configurations with at-
tempted moves across a node. This fixed node approx-
imation still gives the upper bound energy and can be
released if needed [12].

(4) The new ensemble is created &om branching by
placing M = [W(R', R; v ) + (] copies of the the config-
uration R' into the new ensemble, where ( is a uniform
random number between [0,1] and v is the efFective diffu-

sion time which is proportional to w with a coeKcient as
the ratio of mean square distance accepted to the mean
square distance attempted kom a simple argument of
random diffusion. Since we treat the whole configuration
as one point in the configuration space and all the coor-
dinates in that configuration are either updated at the
same time or kept unchanged after attempted move, the
effective diffusion time 7 then is either equal to v for the
configuration which is moved or zero for the configuration
which is unchanged. In practice, one can simply choose

= 7. if w is small enough since the equilibrium configu-
rations will have an approximate acceptance probability
of 1.

The average local energy E(R') is then calculated from
E(R') weighted by W(R', R;v) in the whole ensem-
ble. The parameter E„(t) is then adjusted to [E(R) +
E(R') ]/2.

Repeat the above steps to a target time when the er-
ror is dominated by statistics; then start taking data for
calculations with a frequency which is determined from
the autocorrelation function of the quantity evaluated.
Group the data and average them to the desired accu-
racy. Several independent runs should be carried out to
ensure that the averaged data is free from an acciden-
tal Auctuation. The ensemble can be also saved for the
longer runs to generate more blocks of data.
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IV. THE GUIDING WAVE FUNCTION

In this work, we choose a simple singlet wave function
for the two electrons in the system as the guiding wave
function:

O(R) = f(r )~(r )g(») (4.1)

where f(r) is the two-body Jastrow correlation factor

f( ) = P 2(1+P„) (4.2)

with P as an as yet undetermined variational parameter.
g(r, ) is a single-particle wave function given by

g(r) = [e
" + e "'][A(r) —1], (4.3)

with

X y Z2
A(r) = —+ —+ —.

$2 b2 a2
' (4.4)

Here a is determined from a = 1/[1+ exp( —R s/a)] to
fu1611 the cusp condition for an electron moving in the
field of two protons separated by a distance R s. Then P
is the only variational parameter left in the guiding wave
function. The parameter P for a given setup is then deter-
mined variationally by doing a variational Monte Carlo
simulation first and then the wave function is used as a
guide to carry out the diffusion Monte Carlo simulations
described in Sec. III. The wave function outside of the
spheroidal box is set to zero, of course. The cusp condi-
tions fu16lled by the Jastrow correlation factor and the
single-particle wave function are extremely important in
inhibiting the numerical Buctuations during the simula-
tion.

Here we show some parameters used in the simulations
in this work. As one can see from the data in Table I,
the variational parameter P in the guiding wave func-
tion increases approximately linearly with the decrease
of a and the random walk step Ar decreases approxi-
mately linearly with the decease of a in order to have
about a 50% acceptance rate in the random walks of the
variational quantum Monte Carlo simulations. This is
expected because the semimajor axis a determines the
length scale of the system and both P and 6r reflect
that length scale. A smaller time step is taken for the
case of a = 1 because of the strong confinement there

and the step of each attempted move has to be small in
order to keep the system stable in the initial runs.

V. SIMULATION RESULTS

We have performed diffusion quantum Monte Carlo
simulations on RISC/6000 computer workstations and
on a Cray-YMP supercomputer for a hydrogen molecule
con6ned in a spheroidal box. We have calculated the
ground-state energy of a molecule in a spheroidal box
with a fixed semimajor axis. The equilibrium bond
length and minor axis of the spheroidal box are searched
by optimizing the ground-state energy of the molecular
system. In Table II, we show the optimized ground-state
energy and the optimized bond length with a given semi-
major axis. The variational calculations [9] done on the
same systems are also listed for comparison. As one can
see from the table, the variational calculations on both
energy and bond length are quite accurate.

We also plot the results of the molecular energy of a
hydrogen molecule in a spheroidal box in Fig. 1. Clearly
the trend of the molecular energy versus the inverse of the
semimajor axis of the spheroidal box, the measure of the
con6nement, is well described by the variational calcula-
tions of LeSar and Herschbach [9]. This is an indication
that the calculations on the pressure dependence of the
bond length and vibrational frequency from the varia-
tional method [9] may have given a good description of
the system. The variational calculations of the pressure
dependence of the vibrational frequency and the equilib-
rium bond length of a hydrogen molecule [9] is, in fact, in
qualitative agreement with the recent experimental mea-
surements of the pressure dependence of the vibrational
frequency and bond length of hydrogen molecules in neon
and other matrices under high pressure [8].

We search the equilibrium bond length and semiminor
axis by optimizing the molecular energy as follows. First
we use variational Monte Carlo simulations to determine
the parameters in the guiding wave function and estimate
roughly the equilibrium bond length. Then we use dif-
fusion quantum Monte Carlo simulations to obtain three
sets of data around the points determined in the varia-
tional Monte Carlo simulations. With the three sets of
data for different bond lengths and energies, we assume
that they fu1611 a quadratic curve

E' = E +a(R's —R s)

TABLE I. The parameters used in the calculations. At is
the time step used, Ar is the space step used in the varia-
tional calculation to set up the configurations, and P is the
variational parameter used for the given semimajor axis a.
All quantities are given in atomic units.

TABLE II. The comparison of ground-state energies and
optimized bond length for a given semimajor axis. R & and
E" are the variational calculations of LeSar and Herschbach
[9] and R q and E are the results of the DQMC calculations
of the present work. All quantities are given in atomic units.

5
4
3
2
1

At
0.0010
0.0010
0.0010
0.0010
0.0010
0.0002

Ar
1.90
1.50
1.35
1.15
0.90
0.70

0.11
0.13
0.14
0.15
0.16
0.18

5
4
3
2
1

R ~

1.403
1.395
1.355
1.208
0.893
0.455

+tl

-1.1716
-1.1638
-1.1440
-1.0441
-0.4749
4.5947

R g

1.4010
1.3895
1.3503
1.1771
0.8949
0.4493

-1.1746(5)
-1.1702(3)
-1.1533(5)
-1.0523 (9)

-0.4790(10)
4.5944(30)
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FIG. 1. The plot shows the optimized ground-state energy
versus the inverse of the semimajor axis of the spheroidal box.
The crosses are variational results of LeSar and Herschbach [9]
and the dots are the quantum Monte Carlo simulation results
of the present work.

with E, o., and R g to be solved from three sets of
E' and R'&. The data shown in Table II are the opti-
mized energy E and the equilibrium bond length R b

in Eq. (5.1). In Table III, the data E' and R'& for each
given semimajor axis obtained from the simulations are
shown.

VI. CONCLUSIONS

In this work, we have calculated the equilibrium
ground-state energy and bond length of a hydrogen
molecule confined in a spheroidal box with a given semi-
major axis. Most of the exact molecular energies that
we have obtained are about 1' lower than those of the
variational calculations done by LeSar and Herschbach
[9]. Most of the equilibrium bond lengths that we have
obtained are shorter than those calculated &om the vari-
ational method for a given semimajor axis. The trend of
the molecular energy as shown in Fig. 1 are in good agree-
ment with the variational calculations. For this system,
the diffusion quantum Monte Carlo can in principle give
exact results within the statistical errors and therefore
are useful to check any variational methods developed
for electronic systems.

One important aspect which is still under investigation
is how well this model describes the behavior of hydrogen
molecules in an actual matrix under high pressure, such

as hydrogen molecules in a neon matrix [8]. Experimen-
tally, the vibrational &equency is increased and the bond
length is decreased with the increase of the pressure.

There has been a recent quantum Monte Carlo sim-
ulation study on the properties of two-electron atomic
system under a spherical confinement [13]. The calcu-
lations on the ground-state energy versus the radius of
the sphere in Ref. [13] have some similar features of the
ground-state energy which we have obtained for the hy-
drogen molecule here versus the semimajor axis of the
spheroidal box. Electronic systems under confinement
have shown some other interesting phenomena too. The
most noticeable are the structural phase transitions ob-
served experimentally in solid hydrogen [6,7] and solid
helium [14] and the metal-insulator transitions in solid
hydrogen under high pressure [1,2]. A diB'usion quan-
tum Monte Carlo simulation study was carried out for
the solid hydrogen system [3] and this has been the most
impressive work of quantum Monte Carlo simulations to
date. It is our hope that further development of the quan-
tum Monte Carlo simulation will allow its use to study
larger and more complicated systems, especially clusters
and solids under high pressure. This includes the devel-
opment of the Monte Carlo simulations on parallel and
distributed computer environments.

Quantum Monte Carlo simulations [15] have pene-
trated into many areas of physics and chemistry now.
Recent examples include studies of the vibrational states
of molecules and clusters [16) and the barrier height in the
reaction H + H2 ~ H2 + H [17]. Another important de-
velopment in the past few years is the implementation of
the quantum Monte Carlo simulations to a parallel com-
puter [18]. The aspect of doing quantum Monte Carlo
simulations on distributed and parallel computers will
be explored in future work on this project.
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Q2

-1.1702
-1.1533
-1.0507
-0.4790
4.5945

R b

1.390
1.350
1.195
0.895
0.450

TABLE III. The ground-state energies and corresponding
bond lengths for a given semimajor axis calculated from the
diffusion quantum Monte Carlo simulations. All quantities
are given in atomic units.

a R' E R b E
5 1.395 -1.1698 1.385 -1.1699
4 1.355 -1.1522 1.345 -1~ 1515
3 1.200 -1.0497 1.190 -1.0515
2 0.900 -0.4745 0.890 -0.4749
1 0.455 4.5974 0.445 4.5962

APPENDIX: ADOPTED RANDOM-NUMBER
GENERATOR

z;+, = (ax;+ 6) mode. (Al)

In this work, we have used a linear congruential
method to generate the random numbers Deeded for the
simulations. The sequence of the random numbers in this
method is



49 HYDROGEN MOLECULE UNDER CONFINEMENT: EXACT RESULTS 1713

We have chosen a = 7 = 16807, b = 0, and c = 2 —1 =
2 147483 647 as suggested by the minimum standards for
good random-number generators [19]. It was also shown
in a recent Monte Carlo simulation study [20] of liquid
helium with several random-number generators that the
random-number generator which we have adopted is a
good one. To implement this random-number generator
on any machine with 32 bits or more, one can use the
following algorit~~:

a mod (x;, q) —r int (z;/q), if z;+r ) 0'+ c + a mod (x;, q) —r i nt (x;/q) otherwise,

~

~

~

~

(A2)
where q = int (c/a) and r = mod (c, a). In the main
program, in order to start the program every time with
a difFerent seed, one can use the time statement from the
c library on the UNIx systems, or Cray time on the Cray
computers.
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