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Thirteen core-excited lithium doublet states of the P, P', D, and D' symmetries are calculated with

a multiconSguration-interaction wave function. A variation method is used for the bound states whereas
the saddle-point and saddle-point complex-rotation methods are used for the autoionizing states. A re-
stricted variation method is used for the saturated wave functions. Fine structures, relativistic correc-
tions, and mass polarization corrections are calculated. The quantum electrodynamic corrections are
also estimated. The absolute term energy is predicted with an uncertainty which is much smaller than
that in the literature. Among these core-excited states, ten doublet-doublet transitions and one doublet-

quartet transition have been measured. The largest error bar for the transition energy has been 6.2 cm
whereas others range from 0.5 to 3.3 cm . Our predicted transition wavelengths agree with the experi-
ment for 10 of the 11 transitions. The only discrepancy is about 2 cm . In the case where there is a
disagreement between different experiments, our results show a clear preference in the comparison. The
transition rates calculated in this work suggest that other spectral lines may &iso be observed in future
experiments.

PACS number(s): 31.20.Di, 31.20.Tz, 32.80.Dz, 32.70.Fw

I. INTRODUCTION

Recently, a comprehensive review of multiply excited
atomic systems was given by Mannervik [1]. In the early
1970's, many activities were undertaken in the study of
core-excited doublets of lithium. The experiment of
Ederer, Lucatorto, and Madden [2] reported the Srst ob-
servation of the core-excited LiI P' resonances with syn-
chrotron radiation. The fact that these resonances were
measured with high precision has stimulated considerable
interest. Some of these resonances were also observed
later in electron spectra with a larger error bar [3-5].
Other core-excited doublets were also observed in optical
spectra by Berry„Pinnington, and Subtil [6], Buchet,
Buchet-Poulizac, and Berry [7], and Andersen et al. [8].
The interest in lithium core-excited states continued into
the late 1970's, for example, the high-resolution Auger
spectroscopy of Re(dbro, Buch, and Bisgaard [9] and Ras-
si, Pejcev, and Ross [10]. High-precision optical spectra
were also reported by McIlrath and Lucatorto [11],Can-
tu et al. [12]and more recently, Meyer et al. [13].

Using the data from Refs. [2,11, and 12], the absolute
term energy (T) of many of the lithium core-excited dou-
blets can be determined. However, the most precise mea-
surement in these experiments quoted an uncertainty of
23 cm ' (3 meV). In an effort to substantially reduce the
experimental uncertainty, Mannervik and Cederquist [14]
took a more elaborate approach. They use the
1s2s2p P' term energy determined in their experiment
together with the 1s2s2p P'-1s2p2p P transition ener-

gy observed in Willison et al. [15] to determine the T of
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this 2P state accurately. They also use optical emission
spectroscopy to measure the transitions between the
care-excited bound-bound and bound-autoionizing states
[16, 17]; the most accurate datum quoted an uncertainty
of 0.5 cm '. To our knowledge, this is the most accurate
datum for transitions involving a three-electron autoion-
izing system. Using these results, Mannervik and Ceder-
quist determine the absolute T's for many lithium dou-
blets. The uncertainty of these energy ranges from 6 to 8
cm ' [l8].

The transitions observed in the optical emission spec-
tra involve twelve core-excited doublets, three P, and
D' bound states, and three P', and 2D autoionizing

states, respectively. Theoretically, the most accurate cal-
culation on these core-excited bound states has been done
by Bunge [19] and Jauregui and Bunge [20]. In their
work, the uncertainties of the nonrelativistic energy are
predicted to about 3-7 cm

The accurate calculation of the three-electron autoion-
izing states is more challenging. Although the saddle-
point method [21] and the saddle-point complex-rotation
method [22] provided powerful tools for these states, the
methods have not been carried out to their potential part-
ly due to the limited computation resources in the past.
Early applications of the saddle-point method on the
lowest lithium D and P' autoionizing states give results
which are 0.01 and 0.02 eV higher than the experiment
[23]. Although these "saddle-point energies" are im-
proved somewhat in a later work [24], Mannervik [1]
points out that these results still differ substantially from
high-precision experimental data. Other theoretical cal-
culations on lithium resonances include Bhatia [25],
Wakid, Bhatia, and Temkin [26], and Nicolaides and
Aspromallis [27]. More recently, Jaskolska and
Woznicki use the saddle-point method with correlated-
coordinate wave functions [28,29]. Their energies are
more accurate than the earlier theoretical works. How-
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ever, they did not calculate the width, shift, and relativis-
tic corrections of these resonances. This makes an unam-

biguous comparison with precise experiment difficult.
In the last few years, computation resources have been

much improved. Large-scale computation can now be
carried out on a compact workstation. This further
stimulated the development of new numerical techniques
to fully utilize these resources. The restricted variation
method [30] is one of these methods. It is an effective
method of saturating the functional space with large
numbers of basis functions but it avoids numerical insta-
bility. This method has been successfully applied to some
three- and four-electron atomic systems [30,31]. It will
be used in this work.

The absolute Ps of quantum states are important
quantities in constructing the atomic data tables and
Grotrian diagrams. In establishing these term energies
for the doublets, Mannervik and Cederquist [18] relied on
their measured ls2s2P P' ionization potential (IP).
However, a recent accurate calculation of 1s2s2p P'IP
shows substantial disagreement with the reported experi-
mental result [32].Hence, it would be very meaningful to
calculate explicitly the absolute Ps of these doublet states
and to compare them with those suggested in Ref. [18].
In the existing atomic data tables [33-35],the entries for
each state are made with the fine structure resolved Ps.
In Mannervik and Cederquist [18],center of gravity ener-
gies are given. In this work, the fine structures of the
doublets will be calculated for future data tables.

The precision of experimental results in the autoioniz-
ing states raises some interesting questions. It is well
known that an autoionizing state is the result of the in-
teraction of a discrete state with one or more continua.
In general, the line shape involving an autoionizing state
could be asymmetric with a Fano profile parameter [36].
However, in Cederquist and Mannervik [16,17], "the
recorded spectra were analyzed by a peak-fitting program
in which the lines are approximated with a Gaussian line
profile. The program gives also the opportunity of fold-
ing the Gaussian with a Lorentzian profile. " Since the
maximum intensity spectral line position does not always
coincide with the theoretical "resonance" position [36],
one may question the validity of such an experimental
procedure. This question is especially relevant when the
width of the resonance is orders of magnitude larger than
the quoted experimental uncertainty. For example, the
error bar for the ls2p2p D —[(is2p) P, 3d] D' and
[ls(2s2p ) P] P' ls2p2p P transi—tions is about 1 cm
whereas the widths of the D and P' states are measured
to be about 86 and 21 cm ', respectively [16,17].

In the experiment of Ederer, Lucatorto, and Madden
[2] and Cantu et al. [12], most line positions agree with
each other, the only exception being the position of
[ls(2s2P) 'P] P' state. It is, therefore, important to
know which experimental result is more accurate. This
autoionizing state is conspicuously missing in the optical
emission spectra. What is the reason for this absence?
These should be interesting questions to look into. There
are also other experimental discrepancies in the litera-
ture. For example, the transitions at 2846(2) and 4590 A
in Berry, Pinnington, and Subtil [6] are at 2850.3(5) and

4585.4(1) A in Cederquist and Mannervik [16]. Which
results are better? An accurate calculation may be able
to resolve these discrepancies.

We will try to answer the questions raised in previous
paragraphs. In making accurate calculations, it is always
dimcult to estimate the theoretical uncertainty. In this
work, we hope to carry out a calculation such that the
nonrelativistic energy is accurate to well within 1 cm
By including the relativistic and QED correction, we

hope to determine the absolute term energy to about 1

cm . The calculations are carried out in atomic units,
but in order to make a definitive comparison with experi-
ment, the results are converted into cm '. The reduced

Rydberg constant used is 1 Ry= 109728.731 cm

II. THEORY

The LS coupling scheme is adopted in the computa-
tion. The nonrelativistic Hamiltonian Ho and the Pauli-
Breit perturbation operators [37] Hi (P kinetic-energy
correction), H2 (Darwin term), Hi (electron-electron con-
tact term), H4 (mass polarization), H5 (orbit-orbit in-

teraction), H„(spin-orbit), and H„, (spin-other-orbit)
are the same as those in Wang, Zhu, and Chung [38],
they will not be repeated here. We use the conventional
Slater orbital configuration interaction (CI) basis func-
tions. The explicit expression of the wave function is
given in Chung [23].

The conventional variation method is used to obtain
the basic wave functions for the six bound states con-
sidered in this work. The corresponding energy Eb and
wave function %&(1,2, 3) are obtained by solving the secu-
lar equation from

&q, /H, iq, )

We use a large and flexible wave function for this %'t, .
The wave function contains 464-699 linear parameters
and 63-84 nonlinear parameters. These parameters are

optimized to obtain the lowest energy. A good 4& is im-

portant when it is used to carry out the restricted varia-
tion calculation. We construct a more accurate wave
function as

%'(1,2, 3)=d, +i, + g d;4;(1,2, 3) . (2)

The d's are linear parameters which can be determined

by a new variation calculation in which the 4& from Eq.
(1) is restricted to being a single term, N, 's are basis func-

tions similar to those of 4'b but with different nonlinear
parameters. The advantage of 4 is that if the basis func-
tion in @, is very similar to that in %'&, no numerical in-

stability will occur [30].
For the seven autoionizing states, the saddle-point

method is used [21,39]. The energy E,d, obtained from
the basic wave function is the saddle-point energy. It is a
closed-channel approximation of the autoionizing (reso-
nance) state. To calculate the true resonance energy, we
need to include the open-channel continuum. The open-
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channel wave function in real coordinate space is not
square integrable. In order to use square integrable wave
functions, the saddle-point complex-rotation method
[40,22] is used. The complex eigenvalue obtained is

.r
defined to be E„,—i—where I is the width of the reso-

nance. The difFerence E,~—
E&& is the "shift" of the res-

onance from the saddle-point energy.
The mass polarization is a kinematic effect coming

from the center of mass coordinate transformation [37].
%'e can easily include this as a part of Ho and recalculate
the wave function. This wave function is employed to
calculate the relativistic corrections for the Pauli-Breit
operators [37] with first-order perturbation theory. The
higher-order relativistic effect of lithium is much smaller
than 0.01 cm . They will not be considered in this
work.

Although the nuclear charge of lithium is considered
to be small. The QED efFect cannot be neglected. This
can be seen from the results of Drake [41]. He calculated
the contribution of the QED efFect to the IP of the Li+
two-electron systems and obtained —8.938, —0.775,
—1.013, —0.016, and +0.238 cm ' for the 1s, 1s2s 'S,
1s2s S, 1s2p 'P, and 1s2p P, respectively. The contribu-
tion of QED to the ls 2s IP is approximately —0.4 )tba.u.
(0.08 cm ') [42], which suggests that the QED from the
3p, or 3d electrons in lithium should be negligible.
Hence, the QED contributions to the absolute?'s of lithi-
um core-excited states should range approximately from
—7.9 to —9.2 cm

To calculate the QED correction for the three-electron
core-excited states is very difficult. No such attempts will

be made in this work. The IP (excluding QED) of the Li
ls 2s is calculated accurately to be 0.1981582 a.u. [42].
Using the 1s relativistic energy, —7.2805197 a.u. from
Pekeris [43], the ls 22s relativistic energy becomes
7.478 677 9 a.u. To determine the absolute T, we subtract
this energy from the relativistic energy of the core-
excited states. The QED contribution to the absolute?'s
can be estimated from Drake's results [41]. For example,
for [( ls 2p ) P, 3d ]2D', it is

—8.938—0.08 —0.238= —9.26(20)cm (3)

—9.02+ l.013= —8.01(20)cm (4)

For [ls(2s2p) P] P' and [ls(2s2p) 'P] P', no well
defined core is present. We take the average of 1s2s 'S,
1s2s S, 1s2p 'P, and 1s2p Pto give

—9.02+0.22 = —8.80(30)cm

In this case, a 0.30 cm ' uncertainty is quoted. For
ls2p2p P and D states, a correction of —9.02(30}cm
is adopted.

Where 0.08 is the QED contribution for 2s in ls 2s. A
possible uncertainty of 0.20 cm ' is quoted. The same
correction will also be used for other states with a
(ls 2p ) P core. The correction for systems with a
(ls2s) Score is

III. COMPUTATIONAL ASPECT

The conventional variation method is used to calculate
an accurate but not yet saturated "basic" wave function
for the six bound states and seven autoionizing states of
interest. Double-precision arithmetics is used. Two spin
doublet functions and all possible couplings of the orbital
angular momenta li, l2, and 13 (l &8) which give the
correct total angular momentum L are considered. We
try to use a flexible wave function with ~. large number of
linear and nonlinear parameters. For each normalized
wave function, we examine the sum

s= y &c,y, ~c,y, &, (6)

where C, is the coefficient of the basis function P, . Since
Slater-type orbital basis functions are not mutually or-
thogonal, S could be greater than unity. A very large
number of terms in a particular angular component may
give ai. S which is larger than unity by many orders of
magnitude. This implies that there will be a loss of
significant figrres in the normalized wave function. We
need a reliable %b for the restricted variation calculation.
Hence, we limit the size of our basic function by requir-
ing that Sbe much less than one thousand.

Thirteen states are investigated in this work. We will

only present the detailed results for the P' as an exam-
ple. The detailed results for other states will be supplied
to the interested reader upon request. The energy con-
vergence for the four P' basic wave functions are given
in Table I. The angular components, the number of
linear and nonlinear parameters used, are also given in
this table. The notation [/, 1213] represents the various
possible couplings of l „12,and 13. In this work, we clas-
sify the six bound states as ls2p2p P, [(ls2p ) P, 3p] P,
P(3), [(ls2p ),3d ] D', [(ls2p ),4d ] D', and D'(3).

This is consistent with the classification in Bunge and
Jauregui [19,20]. The classifications for the seven au-
toionizing states are [ls(2s2p) P] P', [ls(2s2p) 'P) P',
[(ls2s) S,3p] P', [(ls2s) S,4p] P; [ls2p2p] D,
[(ls2s) S,3d] D, and [(ls2s} S,4d) D. They are also
consistent with the classification in earlier works [2,11].

The next step is to carry out the restricted variation
calculation. We try to saturate the functional space using
a large number of linear parameters (a few hundred for
each [1,12l3]) and a sufficient number of nonlinear pa-
rameters in O'. These parameters are optimized. We do
one restricted variation calculation for each [l&l213] and
record the corresponding energy improvement which is
the new energy subtracted from E&, the energy of the
basic wave function. The results of energy improvements
for the P' states are given in Table II as an example.
These improvements are all very small. This is impor-
tant. The total energy improvement for each state is ob-
tained by summing the individual [l, lzl3] results. Note
that the final energy obtained in this manner is no longer
an upper bound to the true eigenvalue.

To show that these improvements are additive, we take
the wave functions from the three largest improvements
of each bound state and put them together into one wave
function. We use this wave function to carry out a re-
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TABLE I. Nonrelativistic energy convergence of the basic wave function of the core-excited P' states of lithium (in pa.u.). N is
the number of linear parameters, N' is the number of the nonlinear parameters. [I& Izl3] is the angular component.

[ls(2s2p) P]2P'
2.470

[ls(2s2p ) 'P]'P'
2.526

N'

[ls2s S,3p) P'
2.468

[ls2s S,4p] P'
2.509

[001]
[012]
[111]
[023]
[221]
[034]
[331]
[045]
[056]
[067]
[078]
[441]
[551]
[661]
[113]
[232]
Total

195
156
69
74
77
50
20
24

8

4

15
15
9

15
15
9
6
9
6
3

5 303 097.95
8 029.38
1393.47
367.99
173.37
76.76
28.08
22.56
6.06
2.28

12
12

7.39
2.95

5.12

704 111 5 313212.36

187
196
77

100
62
55
18
27
20
17
17
13
7
7

10
20

833

21
24
9

15
18
18
6
6
6
3

3
3
3
3

6
6

147

5 225 593.98
29 878.75

1291.85
953.30
204.67
232.26
21.11
78.31
33.43
17.51
9.70
5.45
1.21
0.52

22.76
5.86

5 258 350.67

176
166
62

101
47
45
13
20
10
10

12
15
9
9
9
6
3
6
3
3

5 178 641.48
4009.92
1092.10
131.62
77.65
27.89

8.88
8.26
2.62
1.21

188
156
91
65
52
20
13
20

8

12
15
9
9
9
6
3
6
3

5 147 517.12
863.39

1187.15
33.00
74.51
6.35
8.96
1.97
0.48

1.65
0.42

13
7

1.90
0.42

13 3 2.46

677 84 5 184006.15 633 78 5 149 695.27

stricted variation calculation (note that the new energy
obtained in this way gives the lowest upper bound in this
work) and compare the new improvement with the sum
of the three individual improvements. This is done for all
six bound states. We found that the discrepancies
are only 0.55%, 0.33%, 0.19%, 0.29%, 0.26%, and
0.72% for the ls2p2p P, [(ls2p} P, 3p j P, P(3},
[(ls2p) P, 3d] D', [(ls2p) P,4d) D', and D'(3), re-
spectively. They are too sma11 to be significant. Hence,

to sum the individual improvements in Table II for the
total improvement is probably appropriate. However,
there are other sources which may lead to uncertainty in
the predicted energy.

Although we try to saturate the functional space, we
are never certain that the entire functional space is corn-
pletely saturated. We have also tried to make the ener-
gies in Table II small by including basis functions as
much as possible in the basic wave function (provided it

TABLE II. Restricted variation calculation for the core-excited 'P' states of lithium. (in p,a.u. ).

[ls (2s2p) 3P]~P'
—AE (improvement)

[ls(2s2p) 'P] P' [(ls2s) S,3p] P' [(ls2s) 'S,4p] P'

[001]
[012]
[111]
[023]
[221]
[034]
[045]
[056]
[067]
[331]
[441]
[551]
[661]
[113]
[124]
[135]
[232]
[342]
[078]
[452]
Sum

Uncertainty
Total

6.38
7.92
4.93
8.08
6.63
5.56
5.21
6.05
3.87
7.01
4.38
2.14
2.51
3.47
0.86

1.46
0.32

76.77
3.07(307)

79.84(307)

8.75
7.13
3.48
9.54
6.84
6.40
8.12
5.74
2.64
6.14
3.56
2.26
1.31
0.70
1.57
0.28
0.36
0.46
1.37
0.46

77.99
3.12(312)

81.11(312)

6.90
6.31
3.06
6.70
3.71
4.54
3.08
2.49
1.46
1.41
0.74
0.33
0.29
0.18
0.24

0.82
0.14

42.39
1.70{170)

44.09(170)

5.78
5.24
2.47
1.98
3.34
1.37
0.70
0.69
0.60
2.21
0.79
0.45
0.33
0.47
0.06

0.30

26.75
1.07(107)

27.82(107)
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satisfies the criterion mentioned before). A large energy
improvement in the restricted variation calculation is an
indication of the degree of difficulty in reaching satura-
tion. Thus, we estimate the possible remaining error by
the size of the total improvements in Table II. For each
25 pa.u. , we assign a possible remaining error of 1(1)
pa.u. For example, the sum of the improvements for the
[( ls2s ) S,3p ] P' is —42.39 pa.u. The corresponding es-
timated error is —1.7(17) pa.u. The largest improve-
ment is the —77.99 pa.u. for [ls(2s2p) 'P] P', the es-
timated error is —3.12(312) pa.u. Of course, this error
does not include the possibility that some angular com-
ponents are left out of Tables I and II, especially those
with higher orbital momentum 1. The contribution of
these components needs to be extrapolated separately.

The advantage of the CI-Slater orbitals is that the ma-
trix elements are easy to evaluate. However, unlike the
Hylleraas wave function [44], which accounts for the
contributions of high I efFectively, these contributions
must be computed for each [I&1213] in the Slater CI wave
function. Since the energy convergence of these [l, lzl3]
components could be very slow, an efFective method of
extrapolation is needed.

In this work, we will use the same extrapolation
method which is successful in Refs. [31,38,42, and 45].
Namely, we compare the convergence pattern of the
three-electron system with that of the Li+ 1sls state.
Since we know the exact result of Li+ from Pekeris [43],
the three-electron result can be computed. To avoid ex-
tensive discussion, we will not present the details of this
extrapolation. They will be supplied to the interested
reader upon request.

IV. COMPLEX-ROTATION CALCULATION

In the preceding section, the energies obtained for the
autoionizing states are the saddle-point energies. The in-
teraction of the saddle-point wave function with the con-
tinuum shifts the energy to the resonance energy. It also
gives the Auger width. The radiative widths of the lithi-
um resonances considered in this work are very small and
they are negligible. To calculate the shift and width, we
use a complex-rotation method. To check the stability of
the calculated shift and width, three difFerent 1s ls target
state wave functions are tried. They contain 21, 33, and
47 terms. The energy and wave function for the 21-term
and 47-term target states are given in Table III. The
width and shift of the resonances are extremely stable

with respect to the three wave functions. For example,
the shift of the [Is(2s2p) P] P' changes from 267.77
pa.u. to 267.70 pa.u. and the width changes from 120.65
pa.u. to 120.44 pa.u. when we replace the 21-term target
state with the 47-term target state.

The stabilities of the shifts and widths are also investi-
gated by varying the nonlinear parameter and the num-
ber of terms in the open channel, or the rotation angle 8
in the complex scaling. The results are found to be stable
with respect to these variations.

In Table IV, we present the results of complex rotation
calculation. The widths are compared with the theoreti-
cal and experimental data in the literature
[16,24,25,27,46-49]. Although the methods of this work
are similar to that of Davis and Chung [24], the closed-
channel wave functions are much improved. The widths
of three states are reduced slightly. The ls2p2p D width
in this work, 10.63 meV, agrees well with the experimen-
tal result of 10.5(3) meV [16,48]. However, the results for
[ ls (2s2p) P] P' and [(ls2s) S,3d ] D are outside of the
quoted experimental uncertainty [16,49]. The predicted
width for [ls(2s2p) sP]~P', 3.277 meV, agrees well with
the 3.2(6) meV of Pedrotti [47], where a larger error bar
is quoted.

V. RESULTS AND DISCUSSION

If we combine the energy of the basic wave function,
the improvement from the restricted variation calcula-
tion, and the extrapolated higher l contributions, we ob-
tain the nonrelativistic energy of the core-excited sys-
tems. They can be compared with the most accurate
theoretical data in the literature. This comparison is
given in Table V. For the six lithium bound states, the
most accurate nonrelativistic energies were calculated by
Bunge [19] and by Jauregui and Bunge [20]. Their
[(is2p ) 3P, 31 ]2D

' energy, —5.089 291( 13 ) a.u. [20],
agrees remarkably well with the —5.0892927(7) a.u. in
this work. In Ref. [20], an extrapolated correction,
b,Esto= —69(13) pa.u. , due to the truncation of Slater-
type orbitals (STO) is included. For [(is2p) P, 3d] D',
this correction makes the final result extremely accurate.
However, if the results of the present work are reliable,
the b,Esto could be substantially underestimated for
D'(3) and overestimated for [(ls2p) P, 4d] D' in this

reference. In fact, their [(Is2p) P,4d] D' upper bound,—5.061 562 a.u. , is highly accurate and agrees well with
our Eb, —5.061570 a.u. But their predicted energy,

TABLE III. The Li+ 1s ls target states used in the complex-rotation calculation. Energy in pa.u. ,
a,P are the nonlinear parameters.

[II]

[00]
[11]
[22]
[3&l
[44]

Total

16
12
9
6
4

47

3.695
5.436
5.924
8.311
8.825

47-term P„„
P

4.146
6.331
9.206

10.027
13.344

—EE[11]

7 252 382.09
23 286.28

2 662.19
631.88
184.87

7 279 147.31 21

3.436
4.601
6.588
7.508

21-term P„„

3.704
6.051
6.420
9.573

7 252 105.97
23 002.02

2 610.03
495.18

7 278 213.21
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TABLE IV. The shift and width of the autoionizing states of lithium.

2P0 2D

1s(2s2p) P 1s(2s2p) 'P (1s2s) S,3p (1s2s) S,4p 1s2p2p (1s2s) S,3d (1s2s) S,4d

Shift (JMa.u. )

Width (pa.u. )

Width (meV)
Ref. [24]
Ref. [46]
Ref. [25]
Ref. [27]
Expt:
Ref. [16]
Ref. [49]
Ref. [47]

267.7
120.44

3.277
3.71
3.07
7
3.42

2.6(1)

3.2(6)

—14.96
353.31

9.614
10.01
11
11

4.32
7.36
0.200
0.172

0.021

2.55
1.60
0.0436

76.2
390.57

10.63
11.00

123
5

10.0

10,5(3)

11.2
36.85

1.003
1.11

0.75

0.89(4)

4.01
11.16
0.304

—5.061 629(13) a.u., is lower than our —5.061 594(l) a.u.
For D'(3), our upper bound, —5.053853 a.u. is much
lower than the —5.053 668(20) a.u. predicted in Ref. [20].
Our predicted nonrelativistic energy is —5.053 884(2) a.u.

For the P states, all three Eb's in this work are lower
than the suggested energies in Bunge [19]. The predicted
uncertainty in the present work is also an order of magni-
tude smaller than that of Ref. [19]. This is largely due to
the improvement of computation resources. The results
of Refs. [19and 20] must be considered as remarkably ac-
curate and they were not exceeded for over a decade.

Recently, Jask6lska and Woinicki [28,29] used a
correlated-coordinate saddle-point method for autoioniz-
ing states of lithium. Their results for I"and D states
are significantly improved over that of Davis and Chung
[24]. They attribute the improvement to the use of
correlated-coordinate wave functions. The wave function
in Davis and Chung contains about 100 terms and the
wave function in Jaskolska and Woinicki [28,29] con-
tains 200-500 terms. In this work, the number of terms
in the basic wave functions for the seven autoionizing
states ranges from 630 to 833 terms. The corresponding

energy Eb's are substantially lower than the energies in
Jaskolska and Woinicki [28,29] for each of the seven
states (see Table V). This shows that for core-excited
states, the advantage of the correlated wave function over
the Slater orbital wave function is limited. One obvious
advantage of the correlated wave function is that we can
remove the uncertainty due to the higher-l extrapolation.
However, the results in Table V show that this uncertain-
ty is very small. The disadvantage of the correlated wave
function is that the relativistic corrections cannot be cal-
culated easily and the method cannot be easily extended
to a four- or five-electron systems. If these two
diSculties can be overcome, the most ideal wave function
will probably be a combined CI-Hylleraas wave function
as demonstrated in the recent calculation of Pipin and
Bishop [50].

The relativistic energies for the core-excited states are
obtained by summing the nonrelativistic energy, the shift,
the relativistic and mass polarization corrections. They
are given in Table VI. The nuclear mass for Li is taken
from Wapstra and Audi [51]. As mentioned before, the
relativistic energy of the lithium 1s 2s state is

TABLE V. Nonrelativistic energy ( —E) for the core-excited states of lithium and comparison with the best theoretical results in
the literature. (in pa.u. , EE„ is the energy improvement from the restricted variation method. The shift of the autoionizing states is
not included. )

Bound states
1s2p2p 'P
[(js2p) 'P, 3p ]'P
P{3)

[(1s2p)', 3d] D'
[(1s2p),4d ]2D'
ZDo(3)

Autoionization states
[1s(2s2p) 'P ] P'
[1s(2s2p) 'P) P'
[(js2s ) 'S, 3p ]'P'
[(1s2s) 'S,4p ]2P'
[1s2p2p] D
[(js2s) 'S, 3d ]2D

[(1s2s) 'S,4d ]'D

Eupper bound

5 213 702
5 104 364
5 070 284
5 089 285
5 061 584
5 053 853

E

5 213 684.73
5 104 346.87
5 070 264.77
5 089 277.86
5 061 570.39
5 053 835.88

5 313212.36
5 258 350.67
5 184006.15
5 149 695.27
5 234 137.89
5 166434.43
5 142 193.65

35.03(135)
24.61(95)
33.13(127)
14.56(56)
22.84(88)
34.51(133)

79.84(307)
81.11(312)
44.09(170)
27.82(107)
74.93(288)
35.53(137)
23.85(92)

~Ehigher I

12.8(3)
2.8(4)
7.25{20)
0.30(10)
0.25(10)

13.8(10)

20.0(7)
39.5(19)
7.0(5)
1.7(2)

23.1{11)
5.4(8)
2.7(4)

F. (total)

5 213 733.5(18)
5 104 374.3(13)
5 070 305.2(15)
5 089 292.7(7)
5 061 593.5(10)
5 053 884.2(23)

5 313 312.2(38)
5 258 471.3(50)
5 184057.2(22)
5 149 724.8(13)
5 234 235.9(40)
5 166475.4(22)
5 142 220.2(13)

Other work

5 213 650(20)
5 104 290(30)
5 070 120{30)
5 089 291(13)
5 061 629(13)
5 053 668(20)

5 312936
5 257 499
5 183 842
5 149 599
5233789
5 166 187
5 141919

Ref. no.

[19]

[19]
[20]
[20]
[20]

[28]
[28]
[28]
[28]
[29]
[29]
[29]
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—7.4786779 a.u. This energy is used to compute the
(relativistic} T's of the core-excited states. The final re-
sults for the T's are obtained by including the QED
corrections mentioned in Sec. II.

The absolute T's given by Mannervik and Cederquist
[18], and Jauregui and Bunge [20] are given in Table VI

for comparison. Also given in this table are the absolute
T's from the experiments of Ederer, t.ucatorto, and Mad-
den [2], and Cantu et al. [12]. Using the results from the
spin-orbit and spin-other-orbit computation, we also ob-
tain the fine structure resolved T's. These results should
be very useful for future atomic data tables.

TABLE VI. Relativistic energy (—E) and absolute term energy (T) for the core-excited states of lithium (in pa.u. unless otherwise
indicated).

Enonrel

Mass polarization
P and Darwin

e-e contact
Orbit-orbit

relativistic

TRel

TRe](cm )

QED Corr. (cm ')

T this work (cm ')
Ref. [18] (cm ')

Ref. [20] (cm ')

TJ=L +1/2
TJ=L —1/2

Splitting (cm ')

[(1s2p),3d ]2D'

5 089 292.7(7)
—23.472
—550.81

0.0056
13.46

5 089 853.6(7)
2 388 824.3(7)

524 245.33(15)
—9.26(20)

524 236.07(35)
524 229(6)

524 235.5(30)
524 235.95(35)
524 236.26(35)

—0.3224

[(1s2p )',4d ]2D'

5 061 593.5(10)
—23.063
—551.40

0.039
13.26

5 062 154.7(10)
2 416 523.2(10)
530 324.05(22)

—9.26(20)
530 314.79{42)

530 310(7)
530 306.1(30)

530 314.74(42)
530 314.86(42)

—0.1199

2D0(3)

5 053 884.2(23)
17.902

—556.04
1.70

—8.52
5 054 429.1(23)
2 424 248.8(23)
532 019.50(50)

—9.02(30)
532 010.48(80)

531 995(8)
532 058.8(45)

532 010.58(80)
532 010.33(80)

0.2542

1s2p2p 2P

5 213 733.5(18)
12.081

—558.70
1.57

—3.16
5 214 281.6(18)
2 264 396.3(18)
496 938.67(40)

—9.02(30)
496 929.65(70)

496 921(6)
496 927.5

496 930.85(70)
496 927.25(70)

3.603

[(1s2p) 'P, 3p]2P

5 104 374.3(13)
—18.779
—554.07

0.27
11.51

5 104 935.4(13)
2 373 742.5(13)
520 935.51(29)

—9.26(20)
520 926.25{49)

520 925.67(49)
520 927.41(49)

—1.745

[1s(2s2p)'P] P' [js(2s2p) 'P] P' [(1s2s)'S,3p) P' [(1s2p) S,4p] P' P(3)

Enonrel

Shift
Mass polarization
P and Darwin

e-e contact
Orbit-orbit

Erelativistic

TRel

TRet (cm ')

QED Carr. (cm ')
T this work (cm ')

Ref. [18] (cm ')
Ref. [2] (cm ')

Ref. [12] (cm ')

TJ=L +1/2
TJ=L —1/2

Splitting (cm ')

Enonrel

Shift
Mass polarization
P and Darwin

e-e contact
Orbit-orbit

Ere1ativistic

TRel

TRe] (cm ')
QED Corr. (cm ')
T this work (cm ')

Ref. [17] (cm ')
TJ=L],&/2 (cm )

TJ+L —l/2 (cm ')
splitting (cm ')

5 313312.2(38)
267.7(2)

10.189
—591.90

5.83
—4.99

5 313625.3(40)
2 165 052.6(40)
475 136.96(87)

—8.80(30)
475.128.16(117)

475 119(6)
475 150(45)
475 127(23)

475 128.97{117)
475 126.54(117)

2.438

[1s2p2p] D

5 234 235.9(40)
76.2(2)

—19.338
—562.04

0.74
8.71

5 234731.7(42)
2 243 946.2(42)
492 450.75(95)

—9.02(30)
492 441.73(122)

492 435(6)
492 439.52(122)
492 "."."..01(122)

—5.482

S 2S8471.3(SO)
—15.0(2)
—8.5654
—584.04

3.72
6.65

5 259 068.5(52)
2 219609.4(52)

487 109.85(114)
—8.80(30)

487 101.05(144)

487 140(24)
487 094(24)

487 100.48(144)
487 102.19(144)

—1.709

[(1s2s) 3S,3d ]~D

5 166475.4(22)
11.2(2)
1.4383

—611.82
0.13

0.078
S 167074.3(24)
2 311603.6(24)
507 298.67(52)

—8.01{20)
507 290.66(72)

507 285(6)
S07 290.48(72)
507 290.93(72)

—0.4518

5 184057.2(22)
4.3(1)

0.91987
—608.94

0.31
0.001

5 184 660.7(23)
2 294 017.2(23)
503 439.20(50)

—8.01(20)
503 431.19(70)

503 449(25)
503 423(25)

503 430.77(70)
503 432.02(70)

—1.248

[(1s2s ) 'S,4d ]2D

5 142 220.2(13)
4.0(1)

1.6011
—614.57

0.07
—0.287

5 142 829.4(14}
2 335 848.5(13}
512 619.39(28)

—8.01(20)
512 611.38(48)

512 605(7)
512 611.32(48}
512 611.47(48)

—0.1423

5 149 724.8(13)
2.5(1)

0.95973
—612.04

0.23
0.016

5 150 333.1(14)
2 328 344.8(14)
510972.65(30)

—8.01(20)
510964.64(50)

511012(78)
511012(26)

510964.46(50)
510965.00(50)

—0.5486

5 070 305.2(15)

—7.2538
—554.01

0.74
5.02

5 070 860.7(15)
2 407 817.2(15)
528 413.46(33)

—9.02(30)
528 404.44(63)

528 404.64{63}
528 404.04(63)

0.6019
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The transition wavelengths between the core-excited
states have been measured to high precision
[6,8,16,17,52]. They can also be calculated from the T's
in Table VI. To gain a better understanding of the ob-
served spectra, we have also calculated the dipole-length
emission rates. These results are given in Table VII. If
longer than 2000 A, the wavelength in air is quoted. The
index of refraction is 1.000293. The most accurate ex-
perimental wavelengths are also given in the table for
comparison.

The radiative transition between the autoionizing
states is too weak to be detected. Among the possible
transitions in Table VII, ten have been observed. Six of
the predicted wavelengths fall within the corresponding
experimental uncertainties of 0.5-2.9 cm '. The most
precise experimental data is the [ls (2s2p) P ] P'-
ls2p2p P transition at 4585.4(1) A [16]. This error bar
corresponds to 0.5 cm '. Our prediction, 4585.5 A, is
within the experimental uncertainty. One should not for-
get that the predicted [ls (2s2p) 3P) P' energy has an un-

certainty of 1.17 cm '. In spite of this, the agreement
shown in Table VII is still quite convincing. All six tran-
sitions correspond to decays of bound states to autoioniz-
ing states. The calculated resonance position verifies the
experiment to about 1 cm ' level. These results,
4585.4(1), 3144.3(1) and 2639.2(2) A, are particularly re-
markable in view of the fact that the calculated
1s2p 2p D and [ Is (2s 2p } P ] P' halfwidths are 42.90 and
13.22 cm ', respectively. For the [(ls2s) S, 3p ] P',
[(ls2s) S,4p) P', and [(ls2s) S,4d] D, the halfwidths
are 0.808, 0.176, and 1.224 cm '. The agreement be-
tween theory and experiment should be expected. The
saddle-point energies of these states are within 1 cm of
their resonance energies.

The predicted wavelengths for two other transitions,

3661.07 and 2994.47 A, are barely (less than 0.8 cm '}
outside of the error bar of 3660.9(1) [16] and 2994.1(3) A
[52]. But, if we consider the uncertainty in the predicted
energy, we must conclude that the theory agrees with ex-
periment. The predicted 2849.72 A is also 0.8 cm ' o8'
the uncertainty of 2850.3(5}A t16] but it is more than 21
cm ' away from the 2846(2) A of Ref. [6]. Hence, the
theory favors the result of Cederquist and Mannervik
[16]. The experimental uncertainty in 2850.3(5) A is 6.2
cm '. This datum shows that the calculated D'(3) ener-

gy is too high. However, the computation for this state is
at least as straightforward as that of the lower state,
1s2p2p I'. It seems unlikely that the calculated energy
could be too high by 7 cm '. We hope that this error bar
can be reduced in future experiments to clarify the situa-
tion.

The only disagreement between theory and experi-
ment in Table VII is for the [(ls2s ) S,3d ] D
[(ls2p) S,3d ] D', which is also a bound-to-autoionizing
transition. The calculated wavelength is 5899.57
whereas it is 5900.3(2) A in Cederquist and Mannervik
[17]. They correspond to 16945.4 and 16943.3(6) cm
respectively. The uncertainty in the predicted energy is
0.35 cm ' for the upper state and 0.72 cm ' for the
lower state. Hence, the predicted transition energy is
definitely larger than that of the experiment. This means
that either the predicted [(ls2p) 3S, 3d) D' energy is too
high or the [(ls2s) S,3d] D energy too low. Since the
computation for [(ls2p) S,3d] D' is the most straight-
forward among the thirteen states and the other transi-
tions, 3661.07 and 3144.29 A, all suggests that its energy
is not too high. The only conclusion we can draw is that
the predicted [(ls2s) S,3d ) D energy is too low. This is
puzzling because in the saddle-point method it is much
more likely to obtain an energy that is too high rather

TABLE VII. Transition rates and wavelengths between the core-excited doublets of lithium. The first number is the transition
rate (sec '), the second number is the wavelength in A. The number with a parenthesis is the wavelength from experiment [16,17,52].

[1s2p 2p]~P [ls2p 3P, 3p]'P P(3) [ls2p2p] D [ ls2s 'S, 3d ]~D [ls2s 'S,4d ]~D

[ls (2s2)3P]2P'

[ls (2s2p)'P]~P'

[(ls2s) S,3p] P'

[(is2s) 'S,4p J P'

[ls2p P, 3d] D'

[is2p 'P, 4d) D'

9.652 x 10'
4585.50
4585.4(1)
1.127x 10'
10171.4
2.660X 10'
15376.5

6.938 X 10
7122.96

4.070 X 10
3661.07
3660.9(1)
4.583 X 10
2994.47
2994.1(3)
1.594x 10'
2849.72
2850.3(5)

1.624 X 10
2182.86

3.430 X 10
2955.51
4.560x 10'
5714.22
5713.8(6)
&.183X 106

10035.6

1.628 X 10
30204.3

2.654X 10'
10648.2

1.205 X 10
9019.18

5.566x 10'
1877.01

1.521x 10'
2420.40
1.630x 10'
4003.11

1.612X 10'
5732.33
5731.8(6)
9.869x 10'
23983.2

7.980X 10
52331.1

3.877 X 10
27723.1

8.154x 10'
5774.12

6.175x 10'
18718.7
6.815X 10
9096.96

5.810X 10
5397.14

1.062 x10'
3144.29
3144.3(1)
4.642 X 10
2639.63
2639.6(2)
2.279 x 10'
2526.51

7.585 X 10
3108.30

3.458 x 10'
4951.59
3.525 X 10
25902.7

2.203 X 10
27210.5

1.231x 10'
5899.57
5900.3(2)
3.547 X 10
4342.00

1.897x 10'
4044. 15

4.211x10'
2667.08

1.406 X 10
3918.83
1.845 X 10
10899.8

1.157X 10
60708.3

1.358 X 10
8599.86

1.722 X 10'
5646.97
5646.4(6)
2.380X 10
5153.37
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than too low. The calculated width for this state is 1.003
meV (8.08 cm '). It also disagrees with the experiment
of 0.89(4) meV.

Table VII provides some interesting information. For
example, it also predicts the [ls (2s2p) 3P]2P'-[ls2p3p] P
at 2183 A as in Jauregui and Bunge [20]. However, the
transition rate is only 1.6X10 /sec. It is too weak to be
observed. Cederquist and Mannervik [16] examine the
2183 A line in their spectrum and conclude that it does
not involve an autoionizing state. Our result su ports
their conclusion. The transition to the [ls(2s2p) P) P'
state has not been reported in the optical-emission spec-
trum. Since the transition rates of [ls(2s2p)'P] P'-
[ls2p P, 3p] P and [ls(2s2p) 'P] P'- P(3), are very
close to those of the [(ls2s) S,3p] P'-[ls2p P, 3p] P,
and [(ls2s) 3S,4p] P'- P(3), we suggest that it should be
possible to observe these transitions. The lines wi11 be
much broader due to the large width of the lower state
(see Table IV). Another transition that can be observed is
the ls2p2p D D' (—3}. In this case, the transition rate
is slightly smaller than that of the 2850 A line and the
line is also broader due to the autoionizing state.

The main object of the present work is to determine
the absolute Ps of the core-excited doublets. The results
of Table VII suggest that the relative accuracies of the
thirteen Ps predicted in this work are about the same.
To compare with other estimates, we note that the lowest
two Ps in Ref. [18],475 119(6) and 496921(6) cm ', are
lower than the 475128.2(12) and 496929.7(7) cm ' in
this work. The main reason for this discrepancy could
come from the extrapolated 1s2s2p P' IP in Mannervik
and Cederquist [14]. They have used this IP and the

ls2s2p P'-ls2p2p P energy (33871(2)cm ' [15,18]) to
determined the T of the 1s2p2p P and, thereafter, the
rest of the core-excited doublets. Using our 1s2p2p 2P

relativistic energy, —5.214 281 6(18) a.u. , and the
ls2s2p P' energy from Hsu, Chung, and Huang [32], we
obtain a transition energy of 33870 cm ' which agrees
with the experiment. Hence, the transitions derived from
the 1 s in this work are consistent with the precise exper-
imental data.

The three Ps of D predicted in this work are all
within the uncertainty quoted in Mannervik and Ceder-
quist [18]. For D' states, the largest discrepancy be-
tween our T's and those of Ref. [18] is for D'(3). Their
result, 531995(8) cm ', is 16(8) cm ' lower than the
532010.5(8) cm predicted in this work. Since it is rela-
tively easy to calculate the energy of this state to high
precision, it seems unlikely that the prediction could be
ofF by this much.

Jauregui and Bunge [20] predicted the T for the
[(ls2p) P, 3d] D'at 524235.5(30) cm '. The agreement
with our prediction, 524236.1(4}cm, is truly remark-
able. By consulting with precise experimental data, they
have also "assumed" the Ps of the ls2p2p P and D to
be 496927.5 and 492443 cm ', which are also extremely
close to our predictions of 496929.7(7) and 492.441.7(12)
cm '. However, their predictions of [(ls2p), 4d] D' [at
530306.1(30) cm '] and D'(3) [at 532058.8(45) cm ']
are not very close to our Ps at 530 314.8(4) and
532 010.5(8) cm

In principle, the Ps of the lithium core-excited dou-
blets can be determined directly from the experiments of
Refs. [2 and 11—13]. But as pointed out by Mannervik

TABLE VIII. Wavelengths for transition between the 1s 2l states and the core-excited doublets of
lithium (in A).

Transition

1si2s-[ls(2s2p) 3P]iP'

1s 2s-[1s(2s2p) 'P] P'

1s22s-[( Is2s) 'S, 3p] P'

1si2s-[(1s2s) 'S, 4p] P'

1s 2p-1s2p2p D

1s22p-[(js2s) S,3d] D

1s22p —[(1s2s) 'S,4d ] D

ls 22p -1s2p2p ~I'

1s 2p-[(1s2p)'P, 3p] P
1s 2p P(3)
1s23d-[(1s2p) 'P, 3d] D'
1s 3d-[(1s2p)'P, 4d] D'
1s23d —D'(3)

This work

210.470

205.296

198.637

195.708

209.407

203.092

200.921

207.458

197.620
194.742
202.859
200.388
199.709

Experiment

210.47(1)
210.46(2)
210.5(1)
205.30(1)
205.28(1)
198.64(1)
198.63(1)
195.69(1)
195.69(3)
209.39(2)
209.40(3)
203.09(2)
203.06(7)
200.89(2)
200.85(7)
207.44(2)
207.45(5)
207.53(1)
197.62(2)
194.74(2)
202.88(10)

199.6(1)

Ref. No.

[12]
['2]

[54]
[12]

[2]
[12]

[2]
[12]

[2]
[11]
[13]
[11]
[13]
[11]
[13]
[11]
[54]
[12]
[11]
[11]
[54]

[54]

MCT (derived) [53]

210.474(3)

209.410(3)

207.462(3)

202.862(3)
200.390(3)
199.716(3)
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and Cederquist [18], the error bars in these experiments
are 23 cm ' or larger. They are, therefore, not suitable
for high-precision T's. Manner vik, Cederquist, and
Trabert [53] have also derived the transition wavelength
of the Li is 21 to the core-excited doublets to high pre-
cision using the available experimental data. We will use
our prediction to make a critical comparison with these
results. Using the excitation energy of 1s 2p and 1s 3d at
14903.89 and 31 283.10 cm ' [34], these transition wave-
lengths are computed. These results are given in Table
VIII. The wavelengths of Mannervik, Cederquist, and
Trabert [53]are extremely close to our result.

In the reported P' energies of Ederer, Lucatorto, and
Madden [2] and Cantu et al. [12],all the energies overlap
except one, the [ls (2s2p) 'P] P'. This state has not been
observed in the optical emission spectra. In Table VIII,
it shows that our prediction, 205.296 A, agrees well with
the 205.30(l) A of Cantu et al. For the lowest three P'
states, our prediction agrees with Cantu et aj|. perfectly.
But their 207.53(1) A disagrees with the 207.458 A in this
work. The result in Mannervik, Cederquist, and Trabert
[53] is 207.462(3) A. Our agreement with McIlrath and
Lucatorto [ll] is almost perfect except one state, the
[(Is2s) S,4d] D.

VI. CONCLUSION

In this work, we have computed the energy for thirteen
lithium core-excited doublet states. The purpose of this
work is to establish their absolute term energy and to ver-

ify the observed high-precision optical emission spectra.
The estimated uncertainty in the predicted term energy is
about 1 cm '. This is much smaller than the previous es-
timates in the literature. The reason we can obtain this
accuracy is because we have used a restricted variation
method to saturate the functional space for energy and a
quantitative method to determine the energy contribution
from the higher-I angular components.

Seven of the spectral lines observed in the optical emis-
sion spectra are decays from bound states to autoionizing
states [16,17]. Three of them involve resonances whose
halfwidths are more than one order of magnitude larger
than the quoted experimental uncertainty. Since the
Fano profile parameter of the lines is not measured, one
may question whether the experiment is measuring the
true resonance positions. Six of the seven transitions cal-
culated in this work are within the experimental error.
This gives unambiguous support to the experimental data
analysis. There is still one disagreement, however, for the
[(ls2s) S,3d ] D-[(Is2P ) P, 3d] D'. The prediction
difFers with experiment by about 2 cm ', whereas the
halfwidth of this D is about 4 cm '. It would be ex-
tremely helpful if we could pinpoint the source of this
discrepancy. It should be mentioned that the agreement
on the Auger widths is not as satisfactory. Of the three
measured widths, only one agrees with our calculation.
The other two widths are smaller than the prediction by
about 10-20%. The fact that the experimental result
gives a longer lifetime is not expected. More high-
precision experimental and theoretical studies are needed
to clarify the situation.

For transitions between the is 21 and the core-excited
doublets, the calculated wavelengths agree with the ex-
periment of Cantu et al. [12], Ederer, Lucatorto, and
Madden [2], and with McIlrath and Lucatorto [11] in

most cases.
Judging from the calculated transition rates, more

bound-autoionizing transitions may be observed in the fu-

ture. These lines are weaker than the reported ones and
they are broader. Nevertheless, a careful search may lo-
cate these lines in the spectra.
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