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Ionization energy of rubidium Rydberg atoms in strong crossed electric and magnetic fields
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This paper describes the determination of the ionization threshold of rubidium Rydberg atoms in

crossed electric and magnetic fields. An experimental setup is used that allows one to count separately
Rydberg atoms which ionize in the region of optical excitation, and those which leave the excitation re-

gion in a bound state. The obtained spectra allow one to determine the energy and the width of the ion-

ization threshold. For different values of the electric-field strength E the infiuence of the magnetic field

B on the ionization threshold was investigated. It was found that the scaled electric field a=EB ' and

the scaled energy co= WB with excitation energy W are sufficient in order to describe the observed
ionization threshold. This is remarkable since e and co are the classical parameters of the system. For
e 1.5 (atomic units), i.e., a weak magnetic field, the ionization energy does not depend on B and can be
explained classically by direct-path ionization. In the regime 1.5 ~ @~ 0.2, the energy and the width of
the ionization threshold increase with increasing magnetic-field strength. In that regime the observed
ionization behavior is qualitatively consistent with the assumption that the excited states are coupled to
the continuum via free-electron states which exist at and beyond the classical ionization saddle point,
those states corresponding to classical drift trajectories. At a=0.2, the ionization energy takes a max-

imum value, and in the range 0.2~ a~0.06, with increasing magnetic field, both the energy and the
width of the ionization threshold decrease again. A further increase of the magnetic-field strength

changes the tendency a second time: for e(0.06, both the ionization energy and the width increase
again. In this high-magnetic-field regime the ionization energy was explained by classical drift trajec-
tories which almost completely surround the Coulomb center and extend into the continuum. Wave

functions of corresponding drift states were calculated using a Born-Oppenheimer approximation. The
coupling between the inner-configuration-space volume and the drift states, which leads to ionization,
vanishes in the classical limit.

PACS number(sj: 32.60.+ i, 32.30.Jc, 32.80.Fb

I. INTRODUCTION

In recent years, Rydberg atoms in strong static exter-
nal fields have attracted much interest since the classical
dynamics of hydrogenic systems gets chaotic in strong
magnetic fields [1—3]. Rydberg atoms in either strong
magnetic fields or in crossed electric and magnetic fields
are very well suited for theoretical as well as experimen-
tal investigations of the question of how classical chaos
manifests itself in corresponding quantum systems. The
Hamiltonian of hydrogen Rydberg atoms in a strong
magnetic field is comparatively simple due to its time in-
dependence and its conservation of l, . ([1—3], and refer-
ences therein). Thus from the theoretical point of view
this system is ideal for the study of both classical chaos
and quantum mechanical behavior. As a consequence,
there were extensive theoretical investigations of atoms in
strong magnetic fields, most of them being done on atom-
ic hydrogen. (See Ref. [4] for a review. ) Positive energy
spectra of Rydberg atoms in strong magnetic fields were
also calculated using the complex-rotation method [5]
and the R-matrix formalism [6]. Positive energy spectra
of lithium Rydberg atoms in strong magnetic fields were
calculated and compared with experimental results using
the diabatic-by-sector method [7]. The same experimen-
tal results could be theoretically reproduced by a com-
bination of complex-rotation and R-matrix methods [8].

The complex-rotation method was also extended to
crossed fields [9]. There were also many experiments on
Rydberg atoms in strong magnetic fields (as well as in
crossed fields) utilizing high-resolution laser spectroscopy
([10—13], and references therein). Highly resolved spec-
tra of Li above the zero field ionization energy were
recorded by Kleppner and co-workers [14].

There are significant changes in the excitation spectra
as these systems enter the chaotic regime. The nearest
neighbor distribution of the energy levels was found to
evolve from a Poisson distribution to a Wigner distribu-
tion when increasing the infiuence of the magnetic field

[2,3]. The overall structure of the excitation spectra of
Rydberg atoms in strong magnetic fields also exhibits a
prominent change already observed in 1969: in the high-
magnetic-field regime, i.e., in the classically chaotic re-
gime, the excitation spectra of Rydberg atoms exhibit
sinusoidal modulations which are absent in the low-
magnetic-field regime [15]. Since the spacing of the
modulations was close to the electron cyclotron frequen-
cy, these resonances were called quasi-Landau (QL) reso-
nances. Different types of such QL resonances were ob-
served in magnetic fields as well as in crossed electric and
magnetic fields [10—13]. The QL resonances are analyzed
best by a Fourier analysis of the scaled spectra which are
measured by changing the external field values as a func-
tion of the excitation energy. This procedure is described
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in detail in Ref. [13]. In the case of crossed fields, the
scaled spectroscopy utilizes a classical scaling property of
the hydrogen atom: the classical dynamics is solely deter-
mined by the scaled electric field e=EB and the
scaled energy co= WB (with energy W, electric field

E, and magnetic field B). These scaled parameters will be
thoroughly used in this paper. It was first recognized by
Edmonds and Starace [16,17] that the QL resonances are
associated with classical closed trajectories of the system.
In Refs. [10,11,18,19,13] many types of QL resonances
are related to classical recurring trajectories. A formal-
ism describing the QL resonances was developed by Du
and Delos [20,21] which found a quantitative expression
allowing one to calculate the modulation strengths of
different classical orbits. Following Gutzwiller, who
found a semiclassical approximation of the level density
([22], and references therein), they employed a semiclassi-
cal approximation of the Green's function.

With methods similar to that employed in [20—22],
other authors investigated the influence of classical tra-
jectories on wave functions [23—26]. For a chaotic bil-

liard system, Bogomolny derived a semiclassical approxi-
mation for probability distributions slightly averaged
over energy and space, this approximation consisting of a
mean part plus a sum over all periodic orbits. A wave
function may be strongly enhanced along one single orbit.
This "scarring" phenomenon was investigated by
Wintgen and Hoenig [26] for diamagnetic hydrogen. The
theoretical work suggests that properties of Rydberg
atoms depending on the charge distribution of the Ryd-
berg electron may be explained by recurring trajectories:
in Ref. [27], the electric dipole moments of Rydberg
atoms in crossed electric and magnetic fields were mea-
sured, and the observed dipole moments were explained
by classical orbits.

One of the most fundamental properties of a system is
its ionization energy. In this paper the ionization thresh-
old of rubidium Rydberg atoms in crossed fields is inves-
tigated in detail experimentally. %ith a sensitive experi-
mental setup, described in Sec. II, it was possible to
detect separately excited atoms which are not ionized by
the fields present in the excitation region, and those
which are ionized at or close to the excitation point.
Since it is possible to take simultaneously two separate
spectra —one for Rydberg atoms living longer than
roughly 20 ps after the excitation, and one for atoms
which ionize during that time —both the energy and the
width of the ionization threshold can be accurately mea-
sured. The experimental results are presented in Sec. III
where it is also shown that the energy and the width of
the ionization threshold follow the classical scaling laws
to a good approximation. Starting from classical con-
siderations in Sec. IV, the experimental results are ex-
plained in the framework of a Born-Oppenheimer ap-
proximation of the Schrodinger equation. The obtained
wave functions are located on shells around the Coulomb
center which couple the excited Rydberg states to the
continuum and thus lead to ionization.

II. EXPERIMENTAL SETUP
The experimental setup, which is similar to that de-

scribed in Ref. [13], is sketched in Fig. 1. A beam of ru-

bidium atoms effusing from an atomic beam oven (nozzle
diameter =0.3 mm) enters a field region providing homo-

geneous crossed electric and magnetic fields, the latter be-

ing parallel to the atomic beam direction. The Rydberg
atoms are excited by 297 nm UV laser radiation in one
step. Owing to the good collimation of the atomic beam,
Doppler-free spectra are obtained. A superconducting
magnet yields a magnetic-field strength of up to 6 T at
the excitation point. The strong magnetic field is also
used to image the signal electrons onto the surface of a
microchannel-plate (MCP) detector. The homogeneous
electric field at the excitation point is produced by field
electrodes, which also help to provide a controllable
motion of the electrons resulting from atoms which are
directly photoionized in the excitation region. Stable

at the
tion Point

Atomic Beam

FIG. 1. Sketch of the experimental setup. A thermal beam of
rubidium atoms is excited at the excitation point (1) by 297 nm
laser light. The field directions at the excitation point are indi-
cated in the inset. The electric-field electrodes provide a homo-
geneous electric field in the excitation region and lead to con-
trollable motion of the electrons resulting from direct photoion-
ization. The cap electrodes prevent the photoelectrons from es-
caping in magnetic-field direction. Rydberg atoms which are
not photoionized are field ionized at point (3) and the electrons
are detected by the microchannel plate (MCP) around point (4).
Due to the in6uence of the auxiliary electrode which is on the
positive voltage U„„electrons originating from photoionized
atoms leave the electron trap at point (2), and give a signal at lo-
cation (5) on the detector.
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Rydberg atoms are field ionized and detected down-
stream after they have left the interaction region. Ryd-
berg atoms ionizing in the excitation region leave an elec-
tron within the electrode arrangement which has a very
low kinetic energy (in the meV range). The kinetic ener-

gy is composed of a vertical part and a horizontal part,
the latter being normal to the vertical magnetic Geld.
The horizontal motion is an EXB drift motion, i.e., the
electron moves perpendicular to the average horizontal
electric-field component, the average taken over one of
the vertical oscillations depicted in Fig. 2. These oscilla-
tions arise from the repulsive force produced by the cap
electrodes in vertical direction. Due to the low electron
energy the electrons do not penetrate deeply into the
repulsive zone. The action of the fields is very similar to
a Penning trap. During the vertical oscillations the elec-
trons simultaneously perform the transverse drift motion
and approach the auxiliary electrode (see Figs. 1 and 2)
which exerts an attractive force on the electrons. The
vertical component of this force extracts the electrons out
of the trap, whereas the component of the attractive force
perpendicular to the magnetic field only s1ightly changes
the electron energy transverse to the magnetic-field direc-
tion. Once the electrons gained kinetic energy in
magnetic-field direction, they essentially move parallel to
the magnetic field, unaffected by moderate transverse
electric fields (Fig. 1). In effect, the magnetic stray field

images the location where the electrons leave the trap re-
gion onto the MCP detector. On the MCP surface, there
are two well resolved spots where electrons are detected:
one spot corresponding to atoms which have already been
photoionized in the excitation region, and another spot
for Rydberg atoms which are ionized in the field ioniza-
tion region. Figure 3 shows an image which is obtained
by integrating the signal for a few minutes. By defining
two suitable spatial counting windows, separate excita-
tion spectra for stable Rydberg atoms and photoionized
atoms can be obtained.

Since the apparatus utilizes the EXB drift motion it
only works well if the magnetic field exceeds about 0.1 T.
If the magnetic field gets weaker, two disturbing effects
occur: the size of the cyclotron radius of the drifting elec-
trons gets larger, and the drift velocity E/8 becomes im-
portant, especially in the field ionization region where the
magnetic-field strength has already decreased consider-
ably. Nevertheless, the field range where the apparatus
works well is very large (about 0.2 to 6 T with electric
fields between 10 and 10s V/m). Thus, besides ordinary
spectra taken at constant field values, it is also no prob-
lem to take scaled spectra as described in Ref. [13].
Scaled spectra can also be measured in the continuum,
this is planned to be the subject of a future paper.

An important time scale of the apparatus is the time of
Qight of the excited atoms through the electric field in the
excitation region. From the atomic velocity ( =400 m/s)
and the path length of the atoms traversed within the ex-
citation electric field ( =8 mm) this time scale becomes
=20 ps, which is five to six orders of magnitude longer
than the revolution time of the most prominent quasi-

Electron Image:

Stable Atoms~

~%

Image Orientation.

2 v ~

I I

Photoionized Atoms~

FIG. 2. Electron drift motion of the photoelectrons in the
trap region (qualitatively). The electrode orientation relative to
atomic beam, laser beam, and magnetic field can be easily recog-
nized by comparison with Fig. 1. The cap potential —U/4
prevents the electrons from escaping in the direction of the
magnetic field. As the electron approaches the auxiliary elec-
trode which is on the positive voltage U,„„the electron is ex-
tracted from the trap. The enlarged inset shows the electron
micromotion at an upper turning point. The insulating gaps be-
tween the outer electrodes are merely indicated by lines in this
figure.

FIG. 3. The left part of the figure shows a spatially resolved
electron image measured by the MCP detector. The applied
fields and the excitation energy are chosen in a way which pro-
vides comparable numbers of photoionized atoms and atoms
ionized in the field ionization zone. By counting into two chan-
nels associated with the windows indicated in the image one
gets separate spectra for stable and photoionized Rydberg
atoms. The orientation of the image with respect to the elec-
trode arrangement is visualized in the right part of the figure.
The indicated length of 1 mm corresponds to the size of the
electron image at the 6eld ionization zone (see Fig. 1). [(I) inner
electrode, (2) cap electrode, (3) auxiliary electrode, (4) laser
beam, (5) atomic beam. ]
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FIG. 4. Electrode geometry avoiding strong electric fields at

the trap periphery. The displayed arrangement has the addi-

tional advantage that only one nonzero potential is required.

The electrons (represented by thick dots) are trapped via the

vertical force component being present in the outer, inhomo-

geneous part of the electric field. For the extraction of the pho-

toelectrons the outer electrode is extended on one side as indi-

cated by the dashed line.

Landau orbits [13]. If the lifetime of the Rydberg atoms
with respect to field ionization in the excitation region is
about 20 ps the counting rates in the two windows are
comparable (as realized, for example, in Fig. 3). Thus the
critical lifetime which defines the ionization threshold in
this experimental setup is 20 ps.

The electrode geometry presented in Fig. 1 generates
an electric field in the cap region which is parallel to the
magnetic field. If the atomic beam is not well aligned,
and passes too close to the cap electrode, Rydberg atoms
may ionize. The associated field ionization electrons at
least partially reach the detector within the photoioniza-
tion counting window. This phenomenon leads to wrong
results for the ionization threshold. In order to avoid
this effect the atomic beam has to be well aligned. Addi-
tionally the cap potential has been chosen as close to zero
as possible. The potential step can be avoided completely
by an electrode geometry shown in Fig. 4 which has been
used as a good alternative in some of the experiments.
However, most of the experimental results presented in
this paper have been obtained with the setup shown in
Fig. 1. Some test experiments with the geometry shown
in Fig. 4 have confirmed that the presented experimental
results are not influenced by the cap potentials of the
originally chosen setup (Fig. 1).

III. EXPERIMENTAL RESULTS
A. Excitation spectra and fractional ionization probability

With the described setup the ionization energy and the
width of the ionization threshold were measured as a

function of E and 8. Different sets of spectra were
recorded, each set characterized by a different electric-
field value E. Each set consists of spectra taken at
different values of the magnetic-field strength 8, i.e.,
different scaled electric-field values e. During the scan of
the laser frequency across the ionization threshold two
spectra were simultaneously recorded, one spectrum for
the stable Rydberg atoms, and the other for photoionized
rubidium atoms. Figures 5 and 6 show the results for
electric fields of E=9X10 V/m and =3X10 V/m, re-
spectively.

The first important observation is that the sum count-
ing rate (stable atoms plus photoionized atoms) does not
change significantly when passing the ionization thresh-
old. Since the energy-averaged oscillator strength does
not change strongly at the ionization threshold it can be
concluded that the photoionization events are recorded
with the same counting efBciency as the stable Rydberg
atoms. The long zero traces in Figs. 5 and 6 right or left
of the ionization threshold additionally show that there
are only a few dark counts and only a small number of
events which are counted in the wrong channel; the latter
result mainly from imperfections in the imaging fields.

If N;,„ is the number of counts in a certain channel of
the photoionization spectrum, and N„ is the number of
counts in the same channel of the excitation spectrum of
the stable Rydberg atoms, the fractional ionization prob-
ability Pjon is given by

+ion
&on X +Nion at

This holds since two associated data points were actu-
ally taken simultaneously, i.e., without intermediate laser
or field tuning. Figures 7 and 8 show the values of P;,„
derived from the data displayed in Figs. 5 and 6. While
scanning the excitation energy it may happen that the to-
tal counting rate approaches zero (in particular for small
scaled electric-field strength). Equation (1) shows that in
this case even a few spurious counts in the large counting
window for the ionized Rydberg atoms appear as large
ionization probabilities. By visual inspection it can be
recognized that the large "spikes" in Figs. 7 and 8 indeed
occur if the total counting rate approaches zero. The ac-
tual fractional ionization probability is the lower en-
velope of the curves plotted in Figs. 7 and 8.

B. The ionization energy

We first turn to the discussion of the ionization energy
itself, a reasonable definition of which is that 50% of the
atoms are photoionized. This definition depends on the
interaction time of the excited atoms with the field region
which in our case is =20 ps. However, the average life-
time of the excited Rydberg states decreases rapidly with
increasing excitation energy, as follows from the small
width of the ionization threshold. Thus results obtained
with a different interaction time would only be shifted
with respect to our results, but the interpretations (Sec.
IV) would be the same.

Figures 5—8 clearly show that the ionization threshold
does not follow the naive expectation at all: whereas one
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is tempted to assume that the magnetic field should stabi-
lize the atoms with respect to field ionization, the experi-
ments reveal that at @=0.2 the ionization energy passes a
pronounced maximum. As the magnetic field is increased
the following behavior is found.

(i) For very small magnetic fields ionization occurs if
the energy exceeds the energy of the classical ionization
saddle point (which will be called "ISP" throughout the

paper), W;,„= 2&—E. This holds for e~ l. 5, as follows

from the spectra shown in this paper, and other spectra
which are not presented.

(ii) Following the classical expectation in the range
1.5 ~ e ~ 0.2, the ionization energy increases with increas-
ing magnetic field.

(iii) At a certain value of the magnetic field B, the ion-
ization energy W;,„ takes a maximum value. The values
of B and W;,„where the maximum is observed depend on
the constant electric field E which has been applied.

(iv) If the magnetic field is further increased
(0.2~@&0.06) the ionization energy decreases until a
minimum is reached. For each value of the electric field

E, the ionization energy minimum is found at well

defined values of B, and 8';,„.
(v) For magnetic fields above the ionization energy

minimum (e(0.06), the ionization energy smoothly in-
creases with the magnetic field. In the experimentally ac-
cessible magnetic-field range this second increase does
not cease.

The properties of rubidium Rydberg atoms in strong
crossed fields can be interpreted semiclassically to a large
extent. The question arises of whether the observed ion-
ization curve can be explained semiclassically as well. In
order to show that this assumption is reasonable, the
value of (coo —co;,„)/coo was plotted versus the scaled
electric field e, whereby co;,„=W;,„B is the scaled
energy of the ionization threshold, and

2B —&E = —2v e the scaled energy of the classi-
cal ionization saddle point. This plot emphasizes the
magnetic-field-induced changes of the ionization energy
relative to the magnetic-field-free ionization threshold.
Moreover, if the system follows the classical scaling laws,
different experiments should give similar plots. Figure 9
shows the result obtained from Figs. 7 and 8: every ion-
ization probability curve of Figs. 7 and 8 corresponds to
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FIG. 5. The upper part of the figure shows

spectra obtained by counting into the upper
window of Fig. 3, i.e., stable Rydberg atoms
are counted. The electric field was kept con-
stant at 9X 10' V/m. As indicated, the excita-
tion energy W was scanned from —62.2 cm

up to an energy well above the ionization

threshold. The magnetic field and the corre-
sponding scaled electric field e are given for
each recording. The lower part of the figure
shows the spectra obtained in the lower win-

dow of Fig. 3. Upper and lower spectra with

equal magnetic-field values were recorded
simultaneously. In order to cover all the ion-
ization thresholds associated with the different
magnetic-field values, the energy scale has to
be rather compressed. This implies that the
details of the spectra are obscured to a great
extent; one essentially recognizes the ioniza-
tion thresholds and the quasi-Landau structure
in crossed fields, the latter corresponding to
the smooth modulations of the spectra. Only a
few strong spectral lines can be seen on top of
quasi-Landau modulations. The actual resolu-
tion of approximately 30 MHz, which is deter-
mined by residual electric-field inhomo-
geneities, would be accurate enough to give
much more detailed spectral information.
Since only the ionization threshold is of in-

terest here, the spectra have been recorded
only at the high energy end of the ionization
threshold. Since that energy changes with
magnetic field, the spectra are truncated at
difFerent energy values.
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FIG. 6. These spectra are taken at a con-
stant electric field of 3 X 10' V/m. The presen-
tation is analogous to Fig. 5.
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one bar in Fig. 9, the lower bound corresponding to the
20%%uo ionization energy, the circles to the 50%, and the
upper bound to the 90% ionization energy. The similari-
ty of the data obtained from Figs. 7 (full circles) and 8

(open circles) clearly indicates that a classical explanation
of the ionization behavior should exist.

A classical interpretation of the ionization behavior
only makes sense if the two significant points of the ion-
ization curve always occur at the same scaled electric
field e and scaled ionization energy co;,„. Figure 10
verifies that actually the ionization energy maximum al-
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FIG. 7. Fractional photoionization probability as derived
from the simultaneously recorded spectra of photoionized and
stable Rydberg atoms displayed in Fig. 5 (for details see text).
The electric field was E=9000 V/m, and the laser polarization
was parallel to the electric field. The "spikes" on the left side of
the clearly visible ionization threshold are artifacts generated by
spurious counts in the photoionization window. The lower
boundary of the displayed lines thus represents the actual frac-
tional ionization probability. The plots in this figure and in Fig.
8 allow one to determine energy and width of the ionization
threshold.
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FIG. 8. Fractional photoionization probability as derived

from the spectra in Fig. 6. The electric field was E =3000 V/m

and the laser polarization was parallel to the electric field.
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electric field. Due to the multiplication with ~E
different sets of experiments should give the same results
if the behavior can be described solely by the scaled pa-
rameters e and co. Figure 12 indicates that this is the
case. It is concluded that at least for 3X10 Vlm
&E ~9X10 V/m, not only does the energy of the ion-
ization threshold exhibit classical scaling behavior but
also its slope value(s) exhibit thisbehavior. The explana-
tion of the structure of the ionization threshold needs a
fully quantum mechanical treatment, which is not
presented in this paper.

FIG. 9. Ionization energy in scaled variables. The deviation
of the scaled ionization energy co;,„ from the ISP
ct)p= 2B &E, normalized by cop, is plotted versus the
scaled electric field e (note the logarithmic scale for e). The
filled (open) circles are derived from the 50% ionization energy
values in Fig. 7 (Fig. 8). The lower (upper) end of the error bars
correspond to the 20% (90%) ionization energy values. Within
the experimental accuracy the ionization curve is completely
determined by the (classical) scaled parameters. This holds at
least for 3X10 V/m~E&9X10' V/m.
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ways occurs at e=0. 19(+8%) and co;,„=—0.74(+6%);
similarly in Fig. 11 it is shown that the ionization energy
minimum is always found at a=0.058(+10%) and
co;,„=—0.45(+8%). The measurements of Figs. 5 and 6
and data obtained from additional experiments are in-
cluded in Figs. 10 and 11. The classical scaling behavior
of both ionization energy maximum as well as minimum,
which was observed over a wide range of external field
values, is another clear hint that a classical explanation of
the ionization curve should be possible.

(b)

0 I
0

1.5

4000 8000 12000
E (v™

16000 20000

C. The width of the ionization threshold

Figures 7 and 8 also provide information on the width
of the ionization threshold which also depends on the
scaled electric field. In the high scaled electric-field re-
gime(e& 1) the width of the ionization threshold is very
small (approximately 2% of the ionization energy

2&E). In the vic—inity of the ionization energy max-
imum, the width of the ionization threshold also takes a
maximum value. For scaled electric fields a&0.06 the
width of the ionization threshold seems to be more or less
constant; however, both the original data in Figs. 5 and 6
as well as the ionization probabilities in Figs. 7 and 8 for
e &0.06 exhibit two regimes: at low fractional ionization
probability P;,„(i.e., typically P;,„~30—50%) the slope
dP;,„/dW is quite small, contrary to the upper part of
the ionization threshold where in general P;,„approaches
100% quite rapidly. This behavior indicates that there
may be two qualitatively different ways of ionization. If
the width of the ionization threshold was measured
directly, the information on the presence of two slope re-
gimes for a&0.06 would be lost. Therefore the slope
value dP;,„/dW was measured, which was taken at
P;,„=50%for e) 0. 1. For e &0.07 the slope of the ion-
ization curve is double-valued, one value taken at
P;,„=25%,the other at P;,„=70%. Figure 12 shows the
values of 2&E(dP;,„jdW) as a function of the scaled

0.5

0
0 10 20 30 40 50 60 70 80

(-W) (cm 1)

FIG. 10. Scaling behavior of the ionization energy maximum
concluded from two different types of measurements. In the
first type, the electric field was kept constant and the ionization
energy maximum was searched by taking excitation spectra for
different magnetic fields. Data points for this type of measure-
ments exhibit negligible errors of the electric field, whereas
there are considerable error bars in the magnetic field as well as
in the ionization energy. The sets of measurements shown in
Figs. 5 and 6 (corresponding to the filled dots in Figs. 10 and 11)
belong to that group of measurements. The second type of data
points is obtained by taking excitation spectra as a function of
the magnetic field with constant excitation energy and different
values of the electric field. Consequently these measurements
exhibit errors in E and B, and negligible error in W;,„. (a)
shows that the ionization energy maximum occurs at a scaled
electric field e=EB =0.19(+8%),that value corresponding
to the dashed linear regression curve. Similarly, the linear rela-
tion following from (b) allows one to conclude that the scaled
ionization energy at the ionization energy maximum is
~,-.„——W,-.„B-'"=—0.74(+6y ).
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IV. INTERPRETATION
OF THK EXPKRIMENTAI. RESULTS

A. Ionization in the high-magnetic-fielti regime

1. The drift trajectories
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FIG. 12. Slope dP; „/d8' of the fractional ionization proba-
bility P;,„(8'), multiplied by 2&E, versus the scaled electric
field e (double logarithmic plot). When the multiplication by
2&E is performed, the data obtained with different electric
fields E should yield similar plots if the ionization behavior is
determined solely by the classical scaled parameters e and ~.
As explained in the text, for small e two values dP;,„/d W can be
derived from Figs. 7 and 8.

FIG. 11. Investigation of the ionization energy minimum.

The diagrams are obtained analogously to the way Fig. 10 was

obtained. The scaled parameters of the ionization energy

minimum are found to be e=0.058( +10%) and

~;,„=—0.45(+8%). The errors are larger than in Fig. 10 since

in the experimental data the minimum of the ionization energy

is not as well defined as the maximum.

In the preceding section new data on the ionization
threshold of rubidium in crossed fields are presented.
The classical scaling behavior of the results suggests that
it should be possible to explain the ionization of Rydberg
atoms in crossed fields classically. Though a classical
technique cannot give accurate results on ionization
rates, the coarse features such as the existence of an inter-
mediate ionization energy minimum at a=0.06 should at
least follow from the classical treatment. In this section,
the experimental results are interpreted starting from
classical trajectory calculations. It will be seen that the
main features of the ionization curve can be explained
classically, and that the basic principles of the ionization
in crossed fields can be understood. The discussion
which will be given here can be used as a starting point
for future quantum mechanical calculations.

In a classical picture of the ionization process, an elec-
tron is launched from the core with an energy above the
ionization threshold and disappears in the continuum. In
order to find the ionization energy one has to determine
the energy above which this direct-path ionization is pos-
sible. With trajectory calculations one easily finds that
for the range e & 1.5, the ionization energy resulting from
direct-path ionization would by far exceed the actually
observed ionization energy. Thus a "more effective" ion-
ization mechanism must exist.

When considering ionization, it is useful to get a feel-

ing on the excited state wave function. Trajectory calcu-
lations reveal that in the presence of a magnetic field and
a crossed electric field, the classical motion of electrons
launched at the Coulomb center in any direction is re-
stricted to a certain inner fraction of the energetically al-
lowed configuration space, i.e., the classical excited elec-
trons do not explore the whole energetically allowed
space, but only a fraction limited by a certain surface.
With increasing magnetic-field strength, the region which
is accessed by classical excited electrons contracts more
and more. In the limit E~O the classical excited elec-
trons moves within the well-known cigar-shaped equipo-
tential surface of the diamagnetic potential in the sym-
metric gauge plus the Coulomb potential. The
correspondence between classical trajectories and wave
functions (see [23—26]) allows one to conclude that the
spatial extension of the excited wave functions coincides
to a good approximation with the region occupied by the
classical excited electrons.

In the following, a brief empirical discussion of
different regimes of the classical dynamics of the system
is given. For simplicity we take the external electric field
E= —Ee and the magnetic field B=Be,. The Hamil-
tonian in the symmetric gauge is

0=—p'+ —1,+ (x +y )
—«—

2 2 ' 8
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where an infinite mass of the Coulomb center has been as-
sumed. Figure 13 shows for different scaled electric-field
values two classical trajectories with equal energy, one
with the electron launched at the core, and the other with
it launched far outside. The energy was approximately
the experimentally observed ionization energy. First, the
inner trajectories which correspond to classical excited
electrons will be discussed. It can clearly be seen that the
inner trajectory contracts with decreasing scaled electric
field. The dynamics of the inner trajectories is regular for
co& —0.5, whereas the trajectory at co= —0.203 gets
chaotic. This has to be compared to Refs. [2,3], where in
the electric-field-free case chaotic motion develops in the
range —0.5 & co & —0.2. Figure 13 allows the assump-
tion that the additional electric field does not dramatical-

ly change the chaos limit.
Now we turn to the discussion of the outer trajectories,

where the electron has been launched far from the
Coulomb center. For a=0.723, no basic difference be-
tween inner and outer trajectory is evident. Both are reg-
ular, and due to the weak influence of the magnetic field
there is no magnetic-field-induced limitation of the acces-
sible space region, i.e., the energetically allowed
configuration space cannot be divided into different parts
which can be exclusively reached by trajectories started
at or far off the center. For decreasing e the situation
completely changes: whereas the trajectories starting at
the Coulomb center are gradually restricted to a small
central part of the energetically allowed configuration
space, the outer trajectories avoid gradually the vicinity

Trajectories Launched at the Center
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FICx. 13. Trajectories for different values of the scaled electric-field strength at the ionization energy. For each parameter set, two
trajectories are shown: one is launched from the Coulomb center, and the other is started in the outer region of configuration space.
The spatial extension of the orbits is visualized by the indicated position of the classical ionization saddle point {ISP),which is locat-
ed at (13 100a0,0,0) for an electric field of E=3000 V/m. Due to the classical scaling property the depicted trajectories correspond
to one-dimensional manifolds of trajectories with constant parameters e and co. For each trajectory a view in magnetic-field direction
and a side view is shown. %'ith decreasing e the trajectory with the electron launched at the Coulomb center reduces in size and gets
chaotic. The outer trajectory with decreasing e completely changes its shape: it avoids more and more the vicinity of the Coulomb
center and develops a regular drift motion on an approximately cylindrical shell around the center.
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of the Coulomb center. Thus with decreasing e the inner
and outer trajectories differ more and more. As a conse-
quence the spatial overlap between outer and inner types
of trajectories gets smaller. For @=0.0153 in Fig. 13 no
overlap is left at all. In effect, the initial conditions of a
trajectory already determine which fraction of the
configuration space is covered by the trajectory. The ob-
served behavior can also be seen as a consequence of the
fact that with @~0, the z component of the angular
momentum, /„ tends to be conserved, i.e.,

(~,') —(~, )'-0.
Figure 13 and other trajectory calculations clearly

show that in the low-e regime, the motion of the electron
launched in the outer configuration space is a drift
motion around the Coulomb center. This motion is regu-
lar and spatially restricted to a more or less cylindrical
shell around the Coulomb center, the height, thickness,
and other parameters of the shell depending on the indi-
vidual initial conditions. These drift trajectories are ex-
pected to have a quantum analogue which can be called
drift states. They seem to play a major role in the ioniza-
tion process of Rydberg atoms in crossed fields for
e &0.06.

It should be noted that for E =0 the quantum analogue
of the drift trajectories can be obtained in a quite simple
way: in this case the Hamiltonian in the symmetric gauge
is partially separable, leaving a two-dimensional Hamil-
tonian with conserved paramagnetic term (B/2)l„and a
potential

B2 1V= + p2 ——with p2=x2+y2
2p2 8 p

For high magnetic field and large l„ i.e., large centrifugal
term, the classically allowed region following from the
potential is a quite thin cylindrical shell around the
Coulomb center. In the shell the electron performs a rap-
id oscillation in the p direction, and a slow oscillation in

the z direction. In the p direction, the centrifugal term
prevents the electron from entering the central
configuration space region. For I, and B large enough
the oscillation frequency in p direction approaches the
cyclotron frequency. The z oscillation frequency is given

by po with po being the position of the minimum of
the p potential. For high enough B the z-oscillation fre-

quency is much lower than the cyclotron frequency, and
a Born-Oppenheimer separation of the variables p and z
can be performed. The quantization of the resulting
one-dimensional motions can be done semiclassically us-

ing the WKB approximation, or the adiabatically
separated Schrodinger equation can be solved. The re-
sulting quantum numbers n and n, can be used to
characterize the drift states by ~

n, n„t, ). The energy of
this state is (B/2)l, plus the energy of the z oscillation
plus the energy of the p oscillation. The drift states are
realistic for large l, and B, since in this case the adiabati-
city between p and z motion is fulfilled, this being the
condition of the Born-Oppenheimer approximation. In
the low-l, regime there is no adiabaticity between p and z
motion, and thus no states )n, n„l, ) exist. In the classi-

cal treatment for small values of I, the increasing

influence of the nonlinearity of the Coulomb potential
and the loss of adiabaticity between p and z motion lead
to chaos [2,3].

The trajectories with outer starting points in Fig. 13
for large magnetic fields correspond to a regular drift
motion around the core similar to electron orbits in a
Penning trap or the electron orbits in our experimental
apparatus. The dynamics of an electron in a drift trajec-
tory has three time scales: the fastest being the cyclotron
motion, an intermediate one corresponding to the oscilla-
tion parallel to the magnetic field, and a very slow EXB
drift motion. In a Penning trap the drift motion is called
magnetron motion. For a large magnetic field B the di-
ameter of the cyclotron motion of an electron moving far
apart from the Coulomb center is so small that the elec-
tron essentially is affected by a homogeneous electric
field, i.e., locally in properly chosen coordinates x, y and
time t the velocity of the electron is

v„=—
U, sin(co, t),

—6
U = +u, cos(co, t),

(3)

where G=Ge is the local electric field and B=Be,.
Equation (3) includes the slow drift velocity (

—G/B)e
and the rapidly oscillating cyclotron motion. Both com-
ponents are perpendicular to the magnetic field. The
kinetic energy 8'j perpendicular to the magnetic field,
averaged over one cyclotron period, consists of the cyclo-
tron energy W, =U, /2 (in atomic units) which is connect-
ed with the oscillating terms in Eq. (3), and the drift ener-

gy Wd=G /2B . The drift motion is a fast periodic
motion which has an adiabatic invariant proportional to
8', (see also Appendix A). Additionally, if e «0.06, the
drift energy 8'd can be neglected for an approximate
description of the ionization energy, i.e., 8'~ is solely
determined by the homogeneous magnetic field. The
motion within the intermediate time scale is the oscilla-
tion in z direction. The time scale in which the energy of
the z oscillation changes is long compared to the frequen-

cy co, of the z oscillation, and short in comparison to the
time scale of the magnetron motion. The z oscillation
takes place in a z-dependent potential U with parameters
x, y:

1
U(„)(z)= —Ex —W+ Wj,+x +y +z

(4)

where W is the total energy (usually &0). The potential
Eq. (4) goes to zero at the classical turning points of the z
oscillations.

For parameters corresponding to the spectra shown in

Fig. 6, three electron trajectories in the outer
configuration space are depicted in Fig. 14. The elec-

trons, the trajectories of which are represented by thin

lines, are launched at a location ( —xo, 0,0) with a large

value xo (xo=3500ao). The upper trajectory is planar

(z =—0) and describes an EXB drift motion along an equi-

potential line. Since there is no z oscillation, the cyclo-
tron energy is quite high, resulting in a large cyclotron
radius. The lower trajectories correspond to electrons
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with maximum possible energy in the z oscillation, i.e.,
8'~=0. In order to show the extension of those three-
dimensional trajectories in z direction, in Fig. 14 in addi-
tion to the projections onto the z =0 plane three-
dimensional plots are displayed on the right. The loca-
tions where the electron crosses the plane z —=0 are indi-
cated by circles. Between successive circles there are
many cyclotron cycles; this shows that cyclotron motion
and z oscillation can be adiabatically separated. The elec-
tron passes the plane z =0 many times as it moves from
(
—x0, 0,0) towards the ISP; this shows that the drift (i.e.,

magnetron) motion and z oscillation can be adiabatically
separated. The upper three-dimensional trajectory is
bound, whereas the lower one is an ionizing trajectory.
The latter approaches the Coulomb center closest at its
"back side, " i.e., opposite to the ISP. The drift trajec-
tories performing wide z oscillations exhibit an important
feature: as the electron moves from ( —x0,0,0) towards
the ISP, energy is transferred from the z oscillation to the
potential energy of the electron in the electric potential
(i.e., the potential of external electric and Coulomb field

together). This means, although the electron starts quite
deeply inside the Coulomb attraction region at
( —x0,0,0), the energy transfer may enable the electron
to leave the Coulomb attraction zone, as shown by the

lower trajectory in Fig. 14. For fixed distance xo there
exists a critical energy value above which there are free
drift trajectories starting at ( —x0,0,0). With increasing
energy in the z oscillation, more energy is transferred to
potential energy. Therefore the drift trajectories with
maximum energy in the z direction result in the lowest
value of the critical energy. If the total energy is given,
the trajectory which has maximum energy in the z
motion and which is just able to leave the atom deter-
mines how closely free classical electrons may approach
the Coulomb center.

In order to reduce the numerical effort, it is useful to
consider the motion of a "substitute" particle which
moves in the plane perpendicular to the magnetic field.
The substitute particle motion approximates the projec-
tion of the real three-dimensional electron trajectory onto
the plane z=0, that projection being averaged over a
couple of cyclotron periods. Therefore the substitute
particle gives information on the projected electron posi-
tion on time scales larger than the revolution time on a
cyclotron orbit. An advantage of the substitute particle
is that its equations of motion are faster to integrate than
the real electron motion. The substitute particle per-
forms a 0X8 drift motion, where 0 is the time-averaged
electric field which acts on the real electron, this average

Comparison of Electron Trajectories and

Substitute Particle Trajectories

S = 30OO~

B = 3.6T

W = -27.6cm ~

Initial Conditions: r = (-3300sO, 0, 0)

ep =SO

Initial Conditions: r = (-3400so, 0, 0)

Initial Caaditione: r = (-3500ap, 0,0)

ep =16

ep =16

ep =OO

FIG. 14. Drift trajectories with no and max-
imum energy in the z motion (thin wiggled
curves) and with the indicated initial parame-
ters. On the left side the figure shows the tra-
jectories projected onto the z=0 plane. The
lower two trajectories are also shown in a
three-dimensional plot on the right side,
whereby the point (z,&„0,0}is three times far-
ther away from the origin that the ionization
saddle point (ISP). The figure also contains the
equipotential lines corresponding to the elec-
tric potential —1/r —Ex at energies
W; = 8'[1+i(0 15)] with. i =0, . . . , g and
z =0. The points where the trajectories cross
the z=0 plane are marked by circles. The
enhanced curves, which follow those circles,
are trajectories of the substitute particle intro-
duced in the text. It can be seen that the sub-
stitute particle can be used in order to describe
the drift motion of the real electron.
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D„= E—+xf(x,y), D =yf(x,y),
with the external electric field E directing in —x direc-
tion, and

1 1f(x,y)= f r Q —U(„)(z) Q —
U(„,y)(z)

(7)

U taken from Eq. (4) and zo being the position of the
turning point defined by U~„~(zo)=0.

It is also interesting to consider the action integral
along one z oscillation which is

S,(x,y)=4f Q —2U~„ i(z)dz . (8)

By considering a small variation Ax in x and taking the
limit hx ~0 it is found that

BS,(x,y) =4f Q —2U~, ,i(z)dz
Bx o Bx

being taken over one z oscillation. Hence the equations
of motion of the substitute particle are

x=D /B, y= D—„/B,
with

beyond the space region which is accessed by classical ex-

cited electrons. The excitation energy W determines how

far the classically accessed region extends towards the
—x direction. We denote this extension by x, (W). A hy-

pothetical value of the ionization energy is uniquely
determined by demanding that a free drift trajectory
starting at (

—x„0,0) must exist. If this is the case, the
atom is assumed to ionize via a coupling between the free
drift trajectory and the configuration space region which

is accessed by classical excited electrons.
It is important to note that this "ionization process"

z]&

&sc

( ~&0~0) ( +cs )
Vigil ' p,

%111I \

XE——
=4f '

Q —2U(„,y)(z)
dz .

Quantum Mechanjcai

Coupling Region
v

The derivative in y direction gives an analogous expres-
sion; Since for zp z ~+0 the integrands are
—1/(gaza —z ), the integrals are well defined. The varia-
tion bS, (x,y) as a function of bx and hy also contains
higher order contributions depending on the shift of the
integration limit zo, that being hzo=(Bzp/Bx)kx
+(Bzo/By)by. The gradient V~„~S,(x,y) can be recog-
nized to be parallel to D (D is the total electric field aver-
aged over one z oscillation). Thus the action S, does not
change along the trajectory of the above introduced sub-
stitute particle. This is already a clear indication that S,
becomes important in the semiclassical quantization.
However, the conservation of S, only holds in the regime
where 8'~ =const can be assumed.

In Fig. 14, the validity of the substitute particle ap-
proximation is also demonstrated. The thin electron tra-
jectories have to be compared with the corresponding
substitute particle trajectories (thick curves) which were
numerically calculated using Eqs. (4)—(7). The projected
electron motions [x(t),y(t), z =0] exhibit the expected
agreement with the corresponding substitute particle tra-
jectories. Since for the planar electron trajectory (upper
trajectory in Fig. 14) the z-averaged electric field equals
the electric field in the plane z =0, the corresponding sub-
stitute particle moves on an equipotential line of the elec-
tric potential.

In the high-magnetic-Geld regime, the atoms are sup-
posed to ionize in the following way (see Fig. 15): accord-
ing to the above considerations the amplitude of the wave
function of the excited Rydberg atoms is usually small

B = 3.6T W = -27.6cm

FIG. 15. Description of the ionization process for a small
scaled electric field (in this example @=0.0153). The upper plot
shows an inner, chaotic trajectory for the indicated energy 8',
the extension of which coincides with the extension of most
wave functions which exist in the vicinity of the indicated set of
parameters and can be excited from the ground state. The point

y„,&, is displaced twice as far from the origin as is the ISP. The
extension of the space region which is occupied by the chaotic
trajectory in the direction opposite to the ISP is denoted by x, .
The value of x, ( W) can be found by an iterative search for the
simple planar orbit shown in the lower part of the figure. The
enhanced line shows an ionizing substitute particle with the
same energy as the chaotic trajectory. The plotted substitute
particle trajectory corresponds to an electron drift trajectory
with maximum energy in z direction, i.e., among a11 drift trajec-
tories with equal energy 8' it exhibits the smallest value of xo.
The value xo(8') is found by following the substitute particle
backwards from (x„0,0) to ( —x0, 0,0), whereby (x„,0,0) is
defined as the zero of the average electric field, the average tak-
en over one z oscillation. If xo does not exceed x, too much, the
excited wave function is weakly coupled to the continuum via
free drift states which correspond to the displayed substitute
particle trajectory. Thus ionization occurs if x xp.
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does not happen in classical mechanics because a large
momentum kick would be necessary in order to bring the
electron from an inner trajectory onto a drift trajectory.
However, in quantum mechanics, there is a weak cou-
pling between the inner region p &x, where the excited
wave functions have a large amplitude and the quantum
mechanical drift states (see Appendixes A and B). This
means that this momentum kick occurs with a small
probability. The situation is similar to the tunnel effect of
a particle through a potential barrier. In the tunnel effect
as well as in our problem, a quantum mechanical cou-
pling is required to explain a classically forbidden jump
in phase space.

The simple ionization model was tested in the follow-

ing way: from the experiment shown in Fig. 6, the 90%
ionization energy W9o% was taken with the error estimat-
ed to be +1 cm '. For 8'90% the value x, was numeri-

cally determined. This value, with error bars following
from the uncertainty of W9II%, is plotted in Fig. 16. For
the same energy, substitute particle trajectories with
maximum energy in the z direction and zero cyclotron
energy were calculated yielding values xII(W9II%) (xo is
explained in Fig. 15). Since the cyclotron energy was
zero, the values xII(W9o%) coincide with the minimum

distance which is possible between the Coulomb center
and a free classical electron with energy W9p%. The
values xp( W9p% ) are also plotted in Fig. 16. In the upper
part of the figure the drift energy W& was neglected,
whereas in the middle of the figure Wz has been taken
into account by subtracting Wz = ( G~(z) ) /2B from the
energy which is available for the z oscillation [the average
is taken over one z oscillation, and Gt(r) is the com-
ponent of the external plus the Coulomb electric field
normal to B]. The reduction of the energy in z direction
results in an increase of xo which becomes evident for
e) 0.02. From Fig. 16 it is concluded that in the high-
magnetic-field regime (e(0.06) the ionization model is
reasonable. The constant shift between x, and xo may be
due to the quantum effects being discussed below. In the
low-magnetic-field regime there is an extreme discrepan-
cy between xo and x, . This is no surprise since in that re-
gime the conditions which are necessary in order to make
an adiabatic approximation are not fulfilled. The adia-
batic separation of the different types of motion is not
possible, i.e., the calculated values of xo are artificial and
do not correspond to really existing drift trajectories. In
the lower part of Fig. 16 the most critical adiabatic pa-
rameter co, /co, is plotted for the outer turning point
(x,y)=(x„,0) (see Fig. 15) and for the point ( —xII, O).
The z potential associated with a substitute particle tra-
jectory is steepest at ( —xo, 0); therefore, at that location,
the adiabaticity is worst. Obviously the simple classical
model of ionization applies if the adiabaticity parameter
co, /co, exceeds the value of 2 anywhere along the substi-
tute particle trajectory. It is also concluded that for
co, /co, &2 quantum states exist which correspond to the
drift trajectories.

2. Quantum mechanical considerations

Within the adiabatic approximation the classical
motion can be quantized in a straightforward way, yield-

ing semiclassical quantum numbers for the three different
types of motion (see Appendix A). Due to the adiabatici-
ty between the different types of motion, it is also possible
to treat the system quantum mechanically in the frame-
work of a Born-Oppenheimer approximation. The results
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FIG. 16. Test of the classical ionization model described in
the text. The energy values used for the calculations are the
90% ionization energies +1 cm ' taken from Fig. 8. The values
x, denote the extension of the configuration space volume in—x direction which is accessible to classical electrons starting
from the center. In the upper plot these values are compared to
values xo obtained by calculating the free substitute particle tra-
jectory which penetrates deepest into the Coulomb potential.
The error bars result from the uncertainty on the ionization en-
ergy. Except for a constant shift there is good agrecrncnt for
6(0.06. The values xo for e& 0. 1 are artificial (see text). In the
middle, the energy which is available for the z oscillation was
reduced by the amount of the drift energy Ws=

2 (Gq)/B .
The drift energy slightly increases xo, that increase being only
evident for e& 0.02. For e & 0.04, the drift energy results in the
disappearance of free solutions of the substitute particle equa-
tions at the observed 90% ionization energy. The lower part of
the figure shows the adiabaticity parameter co, lcm, at the points
( —x0,0,0) and (x„,0,0) indicated in Fig. 15 (drift energy
neglected).
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are quantum numbers of one-dimensional motions and
corresponding wave functions. Starting with the fastest
(i.e., cyclotron) motion, the wave functions corresponding
to the fast motion(s) are used as input for the integration
of the equations for the slower motions. As described in
more detail in Appendix B, one obtains quantum num-
bers n, and n, for the cyclotron motion and the z oscilla-
tion. In the case of bound states, an additional quantum
number n for the drift motion is obtained, whereas free
drift states are additionally labeled by the (continuous)
value of W. Thus in the high-magnetic-field regime the
states can be classified in the following way.

(i) States if, ) which are more or less centered at the
Coulomb potential. As already discussed, the extension
of these states is approximated by the configuration space
volume which is accessible to classical excited electrons.
The states i/, ) can only be calculated by an exact quan-
tum treatment.

(ii) Bound drift states in„n„n ).
(iii) Free drift states in„n„W), whereby W must

exceed a continuum threshold 8'„„.c' z

(iv) There exist quantum states which appreciably ex-
tend beyond the space region accessible to classical excit-
ed electrons, but which also have large amplitude in re-
gions quite close to the Coulomb center where the adia-
batic approximation is not possible. The description of
these "intermediate" states requires a complete quantum
mechanical analysis of the problem which is not given in
this paper.

We assume that a state i g, ) and a free state

ig, )= n„n„W) with similar energy W overlap in a
small region around (

—x0,0,0). The state ig, ) can be
thought of as an (approximate) solution of the
Schrodinger equation in the inner-configuration-space
volume p (x, +5, with p =+x +y, x, explained in Fig.
15, and 5 on the order of I/&8. The states iP, ) can be
found, for example, by solving the pure magnetic-field
case for the low-l, manifolds and treating the weak elec-
tric field by perturbation theory. Ionization of ig, ) via

in„n„W) occurs if the coupling term ( Q, lH i „nn„W)
is nonzero. For certain combinations the coupling will be
zero due to the discrete symmetries of the Hamiltonian
(P, and TP» symmetry). However, with the restriction to
proper subsets of states the coupling wi11 be nonzero.
Based on qualitative approximations of the states if, )
and P, ) in the overlap region, the coupling can be es-

timated to be very small (this just refiects the fact that in
the overlap region the classical momentum vectors corre-
sponding to l f, ) and i/, ) are perpendicular to each oth-
er). Nevertheless, the fact that the coupling is nonzero
suffices for ionization. If one assumes A'~0, the coupling
matrix element more and more can be considered as a
product between plane waves with orthogonal wave vec-
tors. Working that out in more detail reveals that the
coupling goes to zero if R~O. This is consistent with the
result that classically, the atoms do not ionize via drift
trajectories even if there is a spatial overlap between an
inner trajectory and a free drift trajectory with equal en-

ergy.
In analogy to Fig. 16, the values x, and corresponding

values xo derived from the quantum mechanical drift
states are compared in Fig. 17 (see also Fig. 18). The
lowest continuum drift state carries the cyclotron zero-
point energy. Thus, in order to interpret the experimen-
tally observed ionization energy, it is sufficient to consid-
er drift states in the zeroth Landau band. The cyclotron
zero-point energy raises the ionization energy consider-
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FIG. 17. Test of the semiclassical ionization model described
in the text. The comparison between x, and xo is done in analo-

gy to Fig. 16, except that the values xo were obtained by search-

ing the quantum drift state which penetrates deepest into the
Coulomb potential. Again, as in the classical calculations, re-

sults for e&0. 1 are artificial. The value xo —2/&8 (i.e., xo
lowered by the "thickness" of the zeroth Landau state) has also
been plotted in the figure. In the uppermost plot the drift ener-

gy is neglected, whereas in the plot below this energy has been
taken into account. As explained in the text and contrary to
classical consideration, xo is lowered by the drift energy. The
deviations between classical values of xo (Fig. 16) and the quan-

tum values shown in this figure result to a large extent from the
cyclotron zero-point energy. In the third plot, the values n,
found in the calculations where the drift energy was taken into
account are shown. With decreasing e there is a rapid increase
of n, . The labels 1 and 2 indicate the data points for which

wave functions are shown in Fig. 18.
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ably: in the measurement taken at 8=5.2 T (Fig. 6) it
amounts to 10% of the observed ionization energy

~ W;,„~. In the calculation the quantum number n, is first
determined. This is done by calculating z-wave functions
for different n, at and inside the ISP along the positive x
axis (i.e., the ISP side}. The averaging of the z potential
in X direction [see Appendix B, Eq. (B2}] was not per-
formed, since for large B this only gives minor correc-
tions. The wave function with the lowest value n, which
has an average electric field in the negative x direction
corresponds to the lowest continuum drift state. Since n,
is a good quantum number of the drift states, the z-wave
function is also identified by n, at the left turning point
( —x0,0). This condition is utilized to fix the value of xo.
In the upper plot of Fig. 17, the drift energy Wd is
neglected, whereas in the plot below it has been taken
into account. Since the "thickness" of the drift states in
the lowest Landau band is -2/i/8, ionization may al-
ready occur if xo —x, -2/i/8. Therefore the values

xo —2/~8 are also shown in Fig. 17. As in the classical
considerations the model only makes sense for e(0.06.
In this regime, there is qualitative agreement between the
values xo and x, . Deviations may arise from the most
obvious imperfection of the idealized model: the fact that
with increasing e the adiabaticity co, /co, gets worse must
be expected to cause effects already for @=0.06, where
drift states start to exist: at @=0.06 there will be diabatic
couplings between drift states with different adiabatic
quantum numbers. This higher order coupling would
lower the values of xo. In particular, the states ~1t, ) may
also be indirectly coupled to free drift states via the above
so-called "intermediate" states. The mentioned effects
would explain why, in Fig. 17, the values of xo are larger
than x, in the relevant range of e.

Finally it also has to be noticed that in principle, the
infinite mass approximation of the Coulomb center can-
not be applied if the electron has left its attraction zone.
However, the electron motion is much faster than the
motion of the Rb+ ion. During the time which a classi-
cal electron needs to travel from ( —x0,0,0) to the ISP
the Rb+ ion typically travels about 50ao. Thus the in-

clusion of the Rb+ motion should not change the results
concerning the ionization process. An influence on the
energy spectrum, however, must be expected. In the case
of hydrogen, where the mentioned value of 50ao would
have to be multiplied by 85, there may even be an
influence on the ionization behavior.

In conclusion of this subsection, it can be stated that in
the high-inagnetic-field regime (a & 0.06) the presented
model of ionization at least qualitatively reproduces the
experimentally observed ionization energy.

B. Low-magnetic-field regime

The discussion of the high-magnetic-field case showed
that the adiabaticity parameter co, /co, is of crucial im-

portance when constructing the drift states. In the low-
magnetic-field regime e) 0.06, the adiabaticity between
cyclotron motion and z oscillation is lost. This provides
an argument why for e)0.06 the ionization energy in-
creases again: the drift states which lead to ionization
simply do not exist anymore.
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FIG. 18. The figure shows z-wave functions for y =0 and two
values of x. The plots to the left (right) correspond to the data
point labeled by 1 (2) in Fig. 17. The negative value of x corre-
sponds to (x,y) =(—x0,0), the positive value to (x„,O) (see Fig.
15). Since the wavelength of the z wave function at (x„,O) is
larger than the wavelength at (x0,0), the adiabaticity is less
fulfilled for ( —xo, O) than for (x„,O).

For 8=0, it is reasonable to assume that ionization
occurs similar to the magnetic-field-free case: in the clas-
sical picture the electron is excited at the core and direct-
ly propagates into the continuum. Trajectory calcula-
tions reveal that for e) 1.5, this direct-path ionization
explains the experimentally observed ionization threshold
which in this regime does not deviate significantly from
the zero magnetic-field ionization energy.

More interesting is the range 1.5~a~0.2, the lower
bound being determined by the ionization energy max-
imum. In this regime, the experimentally observed ion-
ization energy is well below the energy value above which
classical direct-path ionization would be possible. As in
the case a&0.06, the ionization should occur via free
states which spatially overlap with the configuration
space region accessible to classical electrons starting at
the Coulomb center. From Fig. 16, it is clear that the
adiabatic conditions are reasonably well fulfilled in the vi-
cinity of and beyond the ISP. This is easy to understand
since with increasing distance from the Coulomb center
both the z electric field (which is exclusively caused by
the Coulomb electric field) and co, decrease. For exam-
ple, at the ISP the adiabatic parameter co, /co, is equal to
1 for a=1. Thus as e & 1 one can expect continuum drift
states corresponding to the classical trajectory depicted
in Fig. 19. This trajectory is similar to the outer part of
the free drift trajectories which exist for @& 0.06 (see Fig.
14). The difference is that in the high-e regime, the tra-
jectory does not exhibit the features of a drift trajectory
any more if it is continued inside the ISP (due to the lack
of adiabaticity). In the following, it is assumed that ion-
ization takes place via a coupling between the
configuration space region accessible to classical excited
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Initial Conditione:

r =(6360eo, 0, 0)

eo =i64

Oo =90'

-- Electron Trajectory
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FIG. 19. Low-B escaping trajectory. In the regime a&1.5
one finds free drift trajectories starting in the vicinity of the
classical ionization saddle point (ISP). The depicted electron
trajectory corresponds quite well to the associated substitute
particle trajectory. In the three-dimensional plot the point

(y„,i„0,0) is two times farther away from the origin than the
ISP.

electrons and continuum states corresponding to the tra-
jectory depicted in Fig. 19 which do not approach the
Coulomb center much closer than the ISP.

At the actually observed ionization energy, the exten-

sion x, of trajectories towards the ISP is numerically
determined. For the free drift trajectories beyond the
ISP, it is again found that maximum energy in the z oscil-
lation leads to minimum distance to the Coulomb center.
The minimum distance x„(x„&0) is determined via the
condition that the average electric-field component D,
the average being taken over the z oscillation, has a zero
at (x,y) =(x„,O). The values x„have to be compared to
x„as done in Fig. 20. For e)0.2 the agreement is
reasonable. Similar to the discussion of the high-
magnetic-field case, the model can be extended towards a

quantum mechanical description. However, since this
would not bring any further insight, these considerations
are not presented.

In the transition region between low and high magnetic
field (0.2 & e & 0.06) the configuration space region where
the adiabaticity parameter satisfies co, /co, & I gradually
increases. In order to explain the gradual decrease of the
ionization energy between the ionization energy max-
imum and the minimum, one could speculate about the
existence of "incomplete" drift state wave functions,
which would have large amplitude only at locations
where co, /co, is high enough. Such states would be I
shaped, the X centered on the x axis in the vicinity of the
ISP. More precise statements in this e regime require an
exact quantum mechanical treatment.

V. CONCLUSION
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In this paper an experimental apparatus was presented
which allows one to record spectra of Rydberg atoms in
crossed fields, simultaneously below and above the ioniza-
tion energy. Experimental results on the ionization ener-

gy and the width of the ionization curve are shown. The
ionization energy as a function of the scaled electric-field
strength exhibits a pronounced maximum at a=0. 19.
The ionization energy in the regimes e & 0.2 and e & 0.06,
i.e., the regimes where the ionization energy increases
with the magnetic field, was explained by electron states
which correspond to different types of classical drift
motions of electrons in the outer-configuration-space re-
gion.
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FIG. 20. Classical test of the ionization model for e)0.2.
The experimental parameters were taken from Fig. 7. The value

x, which describes the maximum extension of trajectories

launched at the center towards the ISP is found numerically. In

the calculation of x„, the drift energy IId = —'((G~)/8 ) has

been included; however, this has little effect since x„ is defined

by (G~)=0. For e&0.2, x, and x„qualitatively agree. The

adiabaticity parameter at {x„,0) is shown in the lower part of
the figure.

APPENDIX A: SEMICLASSICAL QUANTIZATION
OF THE DRIFT TRAJECTORIES

The classical action integral J p.dq of a drift trajecto-

ry (B large enough) over a certain time can be split up
into different contributions each being associated with a
semiclassical quantum number. For low e and sufficiently
large distance from the Coulomb center, the classical
motion r(t) can be written as r(t)=z(t)e, +r, (t)+rd(t),
whereby r, (t) describes the fast circular drift motion

(r, , —=0), z(t)e, the z oscillation which takes place on the
intermediate time scale, and rd(t) the drift motion which
exhibits the slowest time scale and which is also two di-
mensional (r„,=O). The drift motion rd(t) has to be



IONIZATION ENERGY OF RUBIDIUM RYDBERG ATOMS IN. . .

identified with the motion of the substitute particle dis-
cussed in the text. The action integral becomes

f p dq= fp;dq +fp, dz . (Al)

We use p=v —A(x), decompose r(t) in the above-
mentioned way, take into account that A is a linear func-
tion of the coordinates, apply Stokes law, and use
8=rot A to obtain the action integral over one magne-
tron period Td,

f p dq= f v, dt —f A(r, ) dr, +f v, (t)dt
Td Td Td

' '
Td

D't

+ 2v, t .vd t —vd t -A r, t
Tg

v,—(t) A(rd(t))]dt , (A2)

where D is the electric field averaged over one z oscilla-
tion [see Eq. (6)], and Fd is the area enclosed by rz(t) All.
the terms in the last integral of Eq. (A2) are neglected be-
cause they are rapidly oscillating [with sin(dv, t)]. The
other terms in Eq. (A2) are grouped as action integrals of
periodic motions with different time scales. In the adia-
batic approximation each action integral integrated over
the corresponding oscillation period is an adiabatic in-
variant. The cyclotron integral is

2
2 277 vcS= vdt BI' =—

C Z C C (A3)

where F, = v, is the area inside a cyclotron circle.
B

Equation (A3) simply means that the cyclotron energy
8; is constant. The z motion yields the adiabatic invari-
ant

S,=It) v,'dt,
z

(A4)

which is identical to Eq. (8). Finally the drift motion cor-
responds to the adiabatic invariant

B
(A5)

A test of whether the adiabatic separation is done
correctly is to check whether in the limit of the external
electric field E~O the well-known constant of motion 1,
in the symmetric gauge can be recovered as a linear com-
bination of the values S, and S . This is possible: in the
case of large 8 and 1„we get 1,= I /2m (S,—S~ ).

With the known adiabatic invariants, the system is
semiclassically quantized by S,=2m ( n, +—,

' ),
S, =2qr(n, + —,'), and S =2mn . Appendix B shows that
it is not necessary to include a zero-point value m of the
action S

APPENDIX B: ADIABATIC SEPARATION
OF THE SCHRODINGER EQUATION

The local Hamiltonian at a given point (x,y, z) in the
outer configuration space of the system of interest is in-
vestigated. For the calculation of the cyclotron wave

g= 00

V(„„)(z)=P1,X,P

1 —Ex'
Vx' +y' +z

X
~ lj'd„„,(x }~

dx . (B2)

The values x', y' are coordinates in the usual coordinate
system, and are obtained by retransforming from the lo-
cal coordinate system associated with the point (x,y, z).

WKB quantization or solution of the one-dimensional
Schrodinger equation in the potential Eq. (B2} yields z-
wave functions P„„„»(z}and energy values W, (n„n, )

which depend on the coordinates (x,y). In the Born-
Oppenheimer approximation, n, is a goad quantum num-
ber and can be identified with the value of S, [see Eqs. (8)
and (A4)]. In the WKB approximation the energy
W, (n„n, ) is found by

function the local electric field in the vicinity of (x,y, z) is
assumed to be homogeneous: G=(G„,G, G, ). Then the
coordinate system. is rotated in such a way that the elec-
tric field Gi perpendicular to the magnetic field directs in
x direction. Additionally (x,y, O) is chosen as new origin.
In the coordinates (X,y, z) (note that z did not change)
and with Gi=+6, +G„ the local Hamiltonian in the
gauge A=(0,8x,0) is

B2
H, = ,'(P„+—P„}+BY@„+ 2 +G,X+—,'p2+G, z .

2

(Bl)

The motion transverse to B [upper line in Eq. (Bl)] and
the z motion separate (this results from the assumption of
locally constant electric field G}. The Hamiltonian Eq.
(B1) conserves P». The remaining one-dimensional
motion in X direction takes place in an oscillator poten-
tial with frequency 8, which equals the cyclotron fre-
quency (in atomic units}, the potential minimum located
at X, =(—Gi —

BP» )/8 . The cyclotron energy levels are
W, =B(n, +—,') which correspond to the semiclassical
quantization condition for the classical adiabatic invari-
ant S,. According to the Born-Oppenheimer approxima-
tion a quantum mechanical drift state has a good quan-
tum number n, . The wave functions in X direction, i.e.,
in direction of the local electric field G, are the well-
known Landau functions centered at the value X, . The
square of the lowest one falls off proportional to
-exp[ 8(X—X, )

—], i.e., the "thickness" of the drift
states in the lowest Landau band is on the order of
1/v B. Due to the symmetry of the Landau functions
the velocity in y direction, i)', is (V„)= (P»+BR )
=p»+BY„=—Gi/8 which is the classical drift velocity.
For a cyclotron wave function centered at (x,y, z}, i.e.,
x, =0,P = —Gi /8 has to be chosen.

The z-wave function P„„(z)is calculated for fixed cy-

clotron energy W, =8 (n, +—,') at fixed coordinates (x,y).
The potential V&„„~for the z-wave function is obtained

via averaging the potential Eq. (4) over the already
known cyclotron wave function g„„,(x ), where X, g
are the above introduced local coordinates at (x,y, z):
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S, =2vrR(n, + —,
'

)

zo[8' (n, n )j
=4f Q W, (n„n, ) —V„„„(z)dz, (B&)

where G(r) is the sum of external and Coulomb electric
field. Due to the symmetry of G(x,y, z) and P„„(z),
D(x,y) is perpendicular to B. It should also be perpen-
dicular to the curve

~ n„n, ) since this curve corresponds
to the magnetron drift resulting from D(x,y). For
e(0.06 it was found numerically that D(x,y) is perpen-
dicular to the corresponding curve ~n„n, ) in fact to a
good approximation. The situation gets worse for
e) 0.06; however, in this regime the key feature, which is
the adiabaticity, gets lost anyway.

The magnetron motion is considered in curved coordi-
nates u, u which are adapted to the curves ~n„n, ). The
direction perpendicular to the curve ~n„n, ) gives the
coordinate u, the length along

~ n„n, ) will be called u. In
order to get a quantization condition for the magnetron

whereby zc( W, ) is the classical turning point in the po-
tential V„„„~(z).For large magnetic-field values the

cl zl

dependence of W, (n„n, ) on n, is very weak. The sum

energy W, (n, )+ W, (n„n, )+ Wd(n„n, ) is the total ener-

gy W, whereby the drift energy Wd is much smaller than
the other contributions. Solutions fulfilling this boundary
condition are found on curves in the z=0 plane, which
can be labeled by the quantum numbers n, and n, . For
simplicity in the following each curve will be identified
with a "state" ~n„n, ). The analogues of those curves in
the classical considerations are the substitute particle tra-
jectories. At each point along the curves the electrons
have a certain velocity parallel to the curve which follows
from the actual electric field G averaged over the fast
motions, denoted by D(x,y):

D(x,y)= f" f "
G(x', y', z)lf. .. „«(z)l

X itj'j„„,(x)i dzdx,

du+BFi„
D(u)

(B5)

where F~„„)is the area inside the closed curve
~ n„n, ).c' 2

Since the phase accumulation must be an integer times
2m, the magnetron quantization condition is analogous to
Eq. (A5),

S~„„&=n~2n . (B6)

The gauge independence of the results should be ex-
plicitly noted. Since the total energy Wis uniquely deter-
mined by Eq. (B6), the quantization based on the Born-
Oppenheimer approximation is complete: the spectrum is
obtained by calculating the energy values of the states
~n„n„n

There are also ionizing drift states which correspond to
the lower trajectory depicted in Fig. 14. They do not
have to fulfill the magnetron condition Eq. (B6). Thus in
this case there is no quantization by which only distinct
curves

~ n„n, ) are physical. Each number set (n„n, ) has
a continuous spectrum of free drift states ~n„n„W),
whereby the energy W must exceed the ionization thresh-
old W„„associated with n, and n, . The ionization

C' 2

threshold 8'„„ increases with n„and decreases with n, .
C' 2

It should be noted that the drift energy can be iteratively
taken into account by adding the average drift energy
(6j l2B ) to the potential Eq. (B2), [averaging integral
analogous to Eq. (B4)].

motion, the phase accumulation of the magnetron wave
function along u =0 can be calculated. As already men-

tioned, the drift velocity [D(u) XB]B to a good approxi-
mation is parallel to the direction e, . Thus the
infinitesimal phase accumulation of the wave function in
u direction is da=[D(u)/B]du —A(x(u), y(u))dv. The
total phase accumulation along the curve ~n„n, ) is the
curve integral

)
=f du f A(x,p)'dvD(u)

C 2
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