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Inequivalence between the Schrodinger equation
and the Madelung hydrodynamic equations

Timothy C. Wallstrom
Theoretica/ Dioision, Ios A/amos Nationa/ Laboratory, Los A/amos, ¹wMexico 875/5

(Received 2 June 1993)

By difFerentiating the Schrodinger equation and separating the real and imaginary parts, one ob-
tains the Madelung hydrodynamic equations, which have inspired numerous classical interpretations
of quantum mechanics. Such interpretations frequently assume that these equations are equivalent
to the Schrodinger equation, and thus provide an alternative basis for quantum mechanics. This
paper proves that this is incorrect: to recover the Schrodinger equation, one must add by hand
a quantization condition, as in the old quantum theory. The implications for various alternative
interpretations of quantum mechanics are discussed.

PACS number(s): 03.65.Bz

I. INTRODUCTION

Classical interpretations of quantum mechanics are
as old as quantum mechanics itself. In 1926, Erwin
Madelung showed. that if one writes the wave function in
the form e +', the Schrodinger equation implies that 8
is governed by a classical Hamilton-Jacobi-like equation,
or alternatively that v = VS is governed by a Newton-
like equation [1]. The only formal difference between
these equations and their purely classical counterparts
is the existence of an additional quantum" potential.
One also easily derives a continuity equation for v and p.

Since that time these equations have provided the ba-
sis for numerous classical interpretations of quantum me-
chanics, including the hydrodynamic interpretation first
proposed by Madelung [1—10], the theory of stochas-
tic mechanics due to Nelson and others [11—34], the
hidden-variable and double-solution theories of Bohm
and de Broglie, respectively [35—38], and quite possibly
other interpretations as well [39,40].

In some of these theories, such as the hydrodynamic
interpretation and stochastic mechanics, the Madelung
equations are taken as fundamental, and the Schrodinger
equation is viewed as a mathematical consequence. This
is based on the belief that the two equations are
mathematically equivalent, a claim which goes back to
Madelung himself [1].

The purpose of this paper is to demonstrate the fol-
lowing: the Madelung equations are not equivalent to the
Schrodinger equation unless a quantization condition is
imposed. This condition is that the wave function be sin-
gle valued; translated into the quantities of the Madelung
equation, this means that

v. dl = 2',
L

interpretations are incapable of explaining perhaps the
central mystery of quantum mechanics, the emergence of
the quantum.

This inequivalence has undoubtedly been noticed many
times. In the stochastic mechanics literature, however,
the necessity of a quantization condition appears to
have been completely unknown until it was recently ob-
served by the present author [41]. It turns out, how-
ever, that in 1952, the very year that Fenyes intro-
duced stochastic mechanics [18], this same observation
had been made by Takabayashi, working in the hydro-
dynamic interpretation. Takabayashi, moreover, under-
stood its physical implications perfectly: "We are led to
a new postulate. . .which is so to speak the 'quantum con-
dition' for fluidal motion and of ad hoc and compromising
character for our formulation, just as the quantum con-
dition for old quantum theory" [7, p. 155].

This observation has not previously been discussed in
any detail, and in my experience many of those accus-
tomed to regarding the Madelung and Schrodinger equa-
tions as equivalent tend to suspect, initially, that some-
thing crucial must have been overlooked. It seems worth-
while, therefore, to provide a thorough discussion. After
developing the basic result in the context of the Newton-
Madelung equation, I show how explicit solutions to the
Madelung equations not satisfying the Schrodinger equa-
tion may be constructed (Sec. III), and discuss the na-
ture of the problem for the Hamilton-Jacobi-Madelung
equation (Sec. IV) and the gauge invariance of the re-
sults (Sec. V). I conclude with a discussion (Sec. VI).

II. THE MADELUNC EQUATIONS AND THE
SCHRODINGER EQUATION

where j is an integer and I is any closed loop. To the
best of my knowledge, this condition has not yet found
any convincing explanation outside the context of the
Schrodinger equation. And yet, without it, alternative

We begin by showing how the Madelung equations are
obtained &om the Schrodinger equation. Then we re-
view the usual argument for recovering the Schrodinger
equation, and indicate where it breaks down.
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A. The Madelung equations

We write the Schrodinger equation in units where h =
m= 1:

(2 I)

Now write the wave function in so-called Madelung form
(the "de Broglie ansatz"), Q = exp(R+ iS), insert into
the Schrodinger equation, divide by g, and separate into
real and imaginary parts. This yields two coupled nonlin-
ear partial difFerential equations, valid wherever g g 0.
The first is a differentiated form of the continuity equa-
tion. The usual form,

Bp
(v p),

Ot
(v = V'S), (2.2)

BS
V —U -—

2 (V'S),1 2 (2.3)

where U is the so-called "quantum-mechanical potential"

(2.4)

can be derived directly from the Schrodinger equation
without differentiation, and we use that instead. The
more interesting equation is the second,

assumption that v is the gradient of a function S, which
was stated somewhat imprecisely. In general, we must
allow S to be a many-valued function, so v is only lo-

cally a gradient. S is many valued, for example, in wave

functions with angular momentum, which typically con-
tain a factor like e' ~, where m is an integer, y is an
(azimuthal) angle, and S = mp. [We can make S single

valued only at the price of making it discontinuous at
some point. But then VQ = (V'R+iVS)g would de-

velop a singularity. ] Once we allow S to be many valued,
however, there is nothing in the Madelung equations to
constrain tP = eR+'s to be single valued. For a generic
solution to these equations, it will not be, and the con-

nection to the Schrodinger equation breaks down.
From a more abstract perspective, note that S is un-

defined wherever g = 0. If, once the nodal surface is

removed, the space on which g is defined is no longer

simply connected, the fact that v is locally a gradient
no longer implies that v is globally a gradient, i.e., that
v can be expressed as the gradient of a globally defined

single-valued function. S will therefore be many valued

in general, and so will g = e +'s.
In order for the wave function to be single valued, the

different values of 8 must differ by integral multiples of
2n. In terms of v, this condition is $& v dl = 2mj, where

j is an integer and L is any closed loop. It appears that
this condition re-establishes the formal equivalence of the
Madelung equations with the Schrodinger equation.

Equation (2.3) is sometimes called the Hamilton-Jacobi-
Madelung (HJM) equation. Often, another differentia-
tion is performed; this leads to the so-called Newton-
Madelung (NM) or stochastic Newton equation, ex-
pressed in terms of v = V'S:

Ov—= —V'V —(v V') v —V'U(p).
Ot

(2.5)

If we write this in terms of the hydrodynamic deriva-

tive, D = 0/Ot + v V', the NM equation reads Dv =
—V'(V + U). The similarity to Newton s law is striking.
The question is whether either the NM or HJM equa-
tion, coupled to the continuity equation, is equivalent to
the Schrodinger equation. When considering the coupled
system, we speak of the NM or HJM equations (plural).

III. A WORKED EXAMPLE

The question now arises as to whether the non-

quantized solutions of the Madelung equations can be
excluded in any natural way. One possibility is that non-

quantized solutions are simply pathological, from a math-
ematical point of view.

This turns out not to be the case. Consider the solu-

tion of the Schrodinger equation for a particle in a well-

behaved two-dimensional central potential V(r). V(r)
could, for example, be the harmonic oscillator potential

2kr . This problem is solved by separation of variables;

we substitute for Q (r, p) the ansatz R (r)e' ~, where

(r, y) are polar coordinates. The Schrodinger equation
then implies that R (r) is the solution of the radial equa-

tion:

B. Recovering the Schrodinger equation from the
Madelung equations

1 d a
+ V(r) R (r) = E R (r) (3.i)

To recover the Schrodinger equation from Eqs.
(2.5,2.2), it is necessary first of all to assume that v is

equal to a gradient, since this is the case for all v derived
&om a wave function. Substitute v = V'S, and integrate
(2.5). The integration constant can be set equal to zero,
because it will only contribute a global phase to the wave
function. We thus obtain (2.3). Now add (2.3) to i times
the gradient of (2.2), multiply by g = e +', and for-

mally identify Vg with (VR+ iVS)g, and similarly for
other terms. The result is the Schrodinger equation.

The difFiculty with this derivation has to do with our

If we insist that g be single valued, we have that

Q (r, P) = g (r, P+ 2vrj) (j an integer), and this implies

that a must be an integer.
Note, however, that in the context of the Madelung

equations, there is no requirement that g be single val-

ued. And indeed, all of the solutions p = ~R (r)~2 and
v = (a/r)P satisfy the Madelung equations for the po-
tential V, regardless of whether a is an integer. They
are certainly local solutions of the Schrodinger equation
with potential V, and the derivation of the Madelung
equations from the Schrodinger equation is local.
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The solutions to the NM equations contain the solu-
tions to the Schrodinger equation as a proper subset, and
smoothly interpolate between them. Clearly (p, v ) only
corresponds to a single-valued solution of the Schrodinger
equation when a is an integer. The angular momentum is
a, which takes on a continuum of values, and the energy
can also be shown to assume a continuum of values.

IV. THE HAMILTON- JACOBI-MADELUNG
EQUATION

where U is again the quantum potential, B = VxA is the
magnetic field, and E = B—A/Bt —VV as usual. Note
that the force —VV has been replaced by the Lorentz
force, and that the vector potential does not occur di-
rectly in the expression.

The inequivalence between the Schrodinger equation
and the Madelung equations persists in this setting. In
any well-defined physical problem, n =

$& A . dl is fixed,
since it is equal to the magnetic Hux through L. There-
fore, if v corresponds to a single-valued solution of the
Schrodinger equation, then

V. ISSUES RELATED TO GAUGE INVARIANCE

We re-examine our results when a vector potential is
added to the Schrodinger equation [32]. We then have

.Bg 1
i = ——(—iV —A)+V@,

Ot 2
(5.1)

where we have absorbed e and c into the potential terms.
Again taking Q = e++', we find that the continuity
equation has the usual form if we take v = VS —A,
which is gauge invariant. Adopting this definition, we
can derive the Madelung equation for v in the presence
of a magnetic field, by taking derivatives as before:

|9v

Ot
—=8+v x B —v-Vv —VU (5.2)

We now discuss formalisms which are based on the
Hamilton- Jacobi-Madelung equations. In general, any
solution to the NM equations will also satisfy the HJM
equations, because there is nothing in the HJM equa-
tions to enforce a single-valued wave function. Occa-
sionally, however, such a formalism is developed under
the assumption that S is single valued, and the for-
malism winds up actually excluding the possibility of
a many-valued phase. Then g is indeed single valued,
but all wave functions which require many-valued phases,
such as those possessing angular momentum, are ex-
cluded [22,25]. Again, the elegant quantization proper-
ties of the Schrodinger equation have broken down.

For example, in the Guerra-Morato variational ap-
proach to stochastic xnechanics [22], a quantity J is de-
Gned as a conditional expectation on the manifold of the
stochastic process. A variational principle is then pro-
posed, with the intention that the physical states will
be critical states of the variational problem. It is then
proven that a diffusion is critical if and only if pe'~ sat-
isfies the Schrodinger equation. Since J is single valued,
however, this also proves that wave functions with many-
valued phases S are not critical; if they were, we would
have S = J, where J is single valued. For an in-depth
analysis of the Guerra-Morato theory, including worked
examples where diffusions with angular momentum are
proven to be not critical, see [41]. This problem is worse
than having too many solutions, because there is no way
to recover the correspondence with the Schrodinger equa-
tion, even with ad hoc assumptions.

v dl = —a+2vrj,~
~

L
(5.3)

where we have replaced $& VS by 2m'j (j an integer).
Even though $& v dl can now achieve nonintegral values,
it is still quantized, and this still cannot be explained
by the Madelung equation. There will be solutions to
the Madelung equation which lead to nonintegral j. The
value of n is given by the physics. It cannot be adjusted
for each v, to make j an integer or even zero [21,42], even
in the context of a multiply connected space.

We have assumed throughout that g is single valued. It
is possible, in the context of multiply connected spaces, to
use many-valued wave functions in a carefully controlled
way. It is not necessary, however, so we lose nothing in
generality by assuming Q is single valued [43].

VI. DISCUSSION

The problems described in this paper only arise in di-
mensions two or greater, since it is only in 2 or more
dimensions that the removal of the nodal set can lead to
a nontrivial topology. (They can arise in one dimension
if the topology of the space is nontrivial. ) Nevertheless,
space is three-dimensional (and configuration space is 3n
dimensional), so we expect these problems to arise quite
generally.

It is sometimes observed that if $ v . dl is quantized
initially, this condition will be maintained by the time
evolution. This is analogous to Kelvin's law in hydro-
dynamics, and is easily proven in the present context as
well. Is it really reasonable to suppose, however, that
quantization is entirely the result of initial conditions?
Why do these conditions just happen to correspond to a
single-valued "wave function"? Would these conditions
be preserved in interactions? Would they be stable?

The Madelung equations seem classical, but they are
inherently nonlocal. The "quantum-mechanical poten-
tial" U exists in configuration space, which gives it a
very different character than a typical physical potential.
It is this feature that gives rise to nonlocality, so that
the change in the density of one particle can affect U,
and hence the motion of another correlated particle, no
matter how distant.

Many theorists who study hidden variables, however,
accept nonlocality as a fact of nature that is no more
an indictment of hidden variables than it is of conven-
tional quantum mechanics. The present work shows that,
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even if one is willing to accept nonlocality, theories based
on the Madelung equations simply do not reproduce the
Schrodinger equation; they fail on technical grounds, re-
gardless of how one feels about the esthetics.

The significance of this result for the formalisms con-
sidered in the introduction depends on the formalism, as
discused below.

A. Stochastic mechanics

The theory of stochastic mechanics was first discovered
by Fenyes in 1952 [18], and was rediscovered in a some-
what difFerent form by Nelson in 1966 [30]. (We should
note, incidentally, that stochastic mechanics is distinct
from stochastic quantization [44].) In stochastic mechan-
ics, it is assumed that the quantum particle possesses an
actual trajectory, and that this trajectory is described
by a stochastic differential equation, consisting of a drift
term and a diffusion term:

tion in hydrodynamics, although as we have just seen,
the Madelung equations do not lead to quantization.

Interest in the hydrodynamic interpretation waned
for many years, but was reawakened by Takabayashi in
1952 [7], who was in turn stimulated by Bohm's then re-
cent work on hidden variables. It has continued to be
studied since that time [2—6,9,10,53,54].

As noted in the introduction, already in 1952 Tak-
abayashi realized the necessity for the quantization con-
dition, and understood clearly its implications for the
hydrodynamical interpretation. This problem appears
to have been largely or completely forgotten in the hy-
drodynamic literature, however. While the quantization
condition is usually mentioned as an auxiliary condition,
its significance is not emphasized, and I have been un-
able to find any real attempts to justify it in terms of a
classical model. The uses of the hydrodynamical model
range from the foundational to the very practical. The
issues raised in this paper are of importance primarily
to those seeking to provide a hydrodynamical foundation
for quantum mechanics.

d((t) = b(g(t), t)dt + d~(t), (6 1) C. Other theories

where ((t) is the random variable describing the particle's
trajectory, b(z, t) is the drift, and m(t) is a Wiener pro-
cess with covariance given by dm(t)dm(t) = 5/mdt Nel-.
son postulates a plausible definition for the acceleration
of this diffusion process, and invokes Newton s law. This
yields the Newton-Madelung equation, where the quan-
tum potential U arises naturally f'rom the definition of the
acceleration. (For a xnore thorough discussion, see [32].)
Many similar derivations of either the NM or HJM equa-
tions have been given [11—17,22,23,25—27,33,34]. Similar
derivations corresponding to other equations, such as the
Klein-Gordon [45] and Pauli [46,47] equations, have also
been provided; these have the same diKculties.

In the context of stochastic mechanics, it is very dif-
ficult to see how the circulation of the current velocity
might be quantized in a natural way. The wave equation,
for example, is understood as a technique for linearizing
the more fundamental equations of the stochastic theory,
and the wave function is seen as a mathematical artifact.
Because of this, however, the constraint that $ v dl be 2'
times an integer looks totally ad hoc. There seems to be
nothing within the particle-oriented world of stochastic
mechanics which can lead to what is effectively a con-
dition on the "wave function". For other critiques of
stochastic mechanics, see [8,41,48—52].

B. The hydrodynamic interpretation

Finally, there is the hidden-variable theory of Bohm
[35,36] and the pilot wave theory of de Broglie [37,38].
Both of these theories postulate the existence of an un-

derlying particle motion obeying the Newton-Madelung
equation. Furthermore, the probability density of the
particles corresponds to the density of the wave function.
These theories are different &om those considered above,
however, in that they also assume the existence of a "g
field" which evolves in accordance with the Schrodinger
equation. Significantly, the Q field is assumed to be what
determines the value of the quantum potential. The evo-
lution of the particle density does not influence the dy-
namics of the problem. Indeed, the dynamical evolution
of the system is given by the Schrodinger equation, not
the Madelung equations, and the Madelung equations are
used only to provide an interpretation of the density evo-
lution in terms of particle motion. As a result, the results
of this paper do not seem to apply. We note, however,
that these theories assume the Schrodinger equation as
a physical principle, rather than seeking to derive it or
explain it in classical terms.

These results do not apply to the current algebra for-
malism [55,56]. In this setting, one does arrive at what
are essentially hydrodynamic equations governing p and

j, where j is the current density. p and j are operators,
however, and act on the Hilbert space of single-valued
wave functions. Here, the introduction of a single-valued
wave function enforces quantization, and what we really
have is a rewriting of conventional quantum mechanics.

The hydrodynamic interpretation was pioneered by
Madelung. Madelung does state that his hydrodynam-
ical equations are equivalent to the Schrodinger equa-
tion: "Die hydrodynamischen Gleichungen sind also gle-
ichwertig mit denen von Schrodinger" [1]. He concludes
that the quantization problem has thus found its solu-
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