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%e present a calculation of the second-order process of electron-positron pair creation by the elec-

tromagnetic fields of two relativistic heavy ions for impact parameter b zero. Total probabilities as well

as differential ones are presented. A comparison with the results of the double equivalent-photon ap-

proximation {DEPA) shows explicitly the inapplicability of this approximation in the case of total proba-

bilities. We discuss the creation of pairs with large invariant mass. The DEPA results are too high,

which can be traced back to the mass singularity of the photon cross section at very sma11 angles, giving

a discrepancy, whereas the agreement between our result and DEPA is good for larger angles.

PACS number(s): 12.20.—m, 34.10.+x, 14.60.Cd

I. INTRODUCTION

We investigate the electromagnetic production of
electron-positron pairs in the collision of two relativistic
heavy ions. The interest in this is mainly based on the
fact that the impact-parameter-dependent total probabili-
ty of the pair creation in lowest order exceeds one for
realistic accelerator parameters, so that higher-order
effects —especially the multiple pair production —may be
of importance [1—3]. These probabilities were mainly
calculated using the so-called "equivalent-photon approx-
imation" (EPA) also known as the Weizsacker-Williams
method [4,5]. This approximation is only justified for im-
pact parameter b larger than the Compton wavelength of
the electron. As the probability increases with smaller b,
better calculations in this area are needed. Therefore the
double equivalent-photon approximation (DEPA) was
proposed to do the calculations. But the DEPA needs a
cutoff parameter, too, whose value is not given a priori.
An exact treatment of the pair production should give
some insight into the applicability of the DEPA. For a
review of the existing calculations see [6].

In Sec. II we derive the matrix element for the pair
production by an external field in second order. We use
the field of two colliding heavy ions with impact parame-
ter b —with and without form factor —and then special-
ize to the case b=O. In Sec. III this matrix element is
further reduced and the Feynman integrals occurring in
it are solved analytically. This gives us the differential
probability P(p+,p ). In Sec. IV, we derive the corre-
sponding result for the DEPA. In Sec. V, we discuss the
total probability P, „&. Results for some realistic heavy-
ion accelerators are presented. We compare the total
probability of our calculation with the DEPA. We find
that the DEPA result exceeds our result, as soon as the
parameter A controlling the width of the form factor be-
comes larger than the electron mass. In Sec. VI, we show
results of our calculation for a number of single-
differential probabilities.

It has been argued that DEPA should again be usable
for pairs with large invariant mass. In Sec. VII, we dis-

cuss this special case, finding that there is a discrepancy
between our results and DEPA. The reason for this is
the mass singularity of the photon cross section at very
small angles, whereas for larger angles we find good
agreement with DEPA.

In the future, more calculations will be done, in order
to study systematically the dependence of the probability
on the different parameters (m„A, y, b) in different sec-
tions of the phase space.

In the Appendices we summarize how to calculate the
Feynman integrals occurring in our calculation and dis-
cuss the two form factors for the heavy ions we use in our
calculations.

Throughout this paper, we use the following conven-
tion: the metric is (1,—1, —1, —1), and the Dirac spi-
nors are normalized as

d4f (x")=J f(p")exp( ip "x„)—,(2~)'

f(p" ) = J d xf (x")exp(ip "x„),

(2a)

(2b}

to be consistent with the decomposition into free solu-
tions. Since we write the wave equation of the elec-
tromagnetic potential as

2 3"(x)=j"(x} (3)

the fine-structure constant has to be defined as
cet 2 i(4~).

II. THE MATRIX ELEMENT IN SECOND ORDER

We describe the interaction with the heavy ions as an
interaction with the external field produced by both ions.
We restrict ourself to lowest order, which for this process
is the second. This has been studied for the first time by
Landau and Lifshitz [7], see also [8,9]. The process is
shown in Fig. 1. Its matrix element is

u„(p)u, (p)=2m6, u, (p)u, (p)= —2m5„, .

The four-dimensional Fourier transformation is chosen as
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FIG. 1. General form of the second-order diagram for pair
creation in an external field.

M= ie —u(p )

X 4 p p 2 ~ P++pv P+
d'p P+m

(2n) p» —m»

=:u(p )QU(p+ ) .
Here we have introduced the matrix element without
Dirac spinors 1k From this the unpolarized differential
probability to produce an electron with momentum p
and a positron with p+ is given by

»dP+dPp= y IMI»
4e+s (2~)

=Tr((gf +m)Q(P+ —m HF)
dp+dp
4E+e (2m )

using the standard method to rewrite the polarization
summation as a trace.

The external electromagnetic field is produced by the
two heavy iona, i.e., we neglect the effect of the process
on the ions itself, as well as the Coulomb repulsion of the
ions on each other. The heavy ions are then moving on a
straight line. The potential of a point charge Q, moving
along a straight line with four-velocity u" and at distance
r from the origin, is

A "(q)= —2n Qu" 5(qu)exp(iqr) .1

q

As we will see later, the total probability to produce a
pair diverges, if we use a point charge. We therefore in-
troduce a form factor to describe the extended charge
distribution of the heavy ion:

A "(q)= —2lrQu)' 5(qu)exp(iqr) .F(q )

The form factors used throughout the calculations are
the dipole form factor

(~)

FIG. 2. The two diagrams contributing to the pair creation
in the heavy-ion collisions, where {1)and {2)denote the interac-
tion with the field of ions 1 and 2, respectively.

2 = A
Fdipole( q

A —
q

and a form factor, which is the sum of two dipole form
factors

Ai A2F doub e)( q )=C1
2 2 +C2

A&
—

q A2 —
q

called by us the "double dipole form factor. "
In Appendix 8 we show how to choose the parameters

in the form factors. The dipole form factor is that of a
Yukawa charge distribution, which is surely not very
realistic. On the other hand, the probabilities are nor-
mally not very sensitive to the detailed form of the form
factor, and we can treat Q analytically using (8) and (9).

The field produced by both ions is then

F( )A„(q)= 2ne —[Zlu„"'5(qu"')exp(iqb/2)

+Z»u„' '5(qu' ')exp( iqb/2)] —.
(10)

In the following, we consider only symmetric
configurations, where both ions are identical: Z =Z,
=Z2 and choose the c.m. system, so that y=y&=y2.
This corresponds to yL =2@ —1 for one ion in the labo-
ratory system of a fixed target machine. We will neglect
at the moment the form factor F(q ), as its inclusion in
the formulas is straightforward, but come back to it at
the end.

With this potential, there are four possible combina-
tions in 1&, but only two of them are allowed kinematical-
ly (see Fig. 2). Therefore we have

g (1)fd4 P™
g (2)5((p p)u(1))5((p +p)u(2))

(p —p)'(p' —m ')(p+ +p)'
X exp( —ipb)exp[i (p —p+ )b /2]

+li '"fd'p 2, »
li "'5((p —p)u"')5((p++p)u"')

(p —p)'(p '—m ')(p+ + p)'

f P A "'(p —p),™,A "'(p +p)+ f A '"(p —p), , A "'(p +p)
(2n. )4 p —m (2m) p —m

Ze
l

277

Xexp(+ ipb)exp[ —i (p —p+ )b/2]
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st
("f d p

~ g ' '5((p —p)u'")5((p++p)u' ')
(p — p}'—(p' m'—)(p++p»'

We now restrict ourself to the case where the impact parameter b is zero. In 4, b only occurs in the exponent, multi-
plied by some transverse momenta p~. As we will see later in the discussion of P„„&,mainly small p~ contributes to the
total probability, smaller than A (of the form factor) and also mainly smaller than m, . The case b=0 can therefore be
seen as the first term of an expansion in p~b, which should surely be good, as long as b is smaller than the nuclear radius
and should not be to different for b smaller than the Compton wavelength: b & Kc = 1/m, . 4 for b =0 is then

2

2~

+4 ' 'f d p 2{ '"5((p —p)u' ')5((p +p)u'")
(p p)-(p m }(p++p}

(12)

III. EXACT SOLUTION OF THE MATRIX ELEMENT

In order to find an analytical form for the matrix ele-
ment, we have to integrate over the internal momentum.
First we define

d4 tm, p, )

(p —p) (p —m )(p +p)

u'"=y(1, O, O, P) =:yw"',
u' '=y(1, 0,0, —P)=:yw' '.

(1Sa)

(1sb)

Evaluating them determines the zero and z component
of the internal momentum. For the "direct" diagram,
they are

e=eD:= —,'(e —e+) —
—,'p(p, +p+, ), (16a)

X5((p —p)u '")5((p+ +p)u "'), (13a)

I( ')= 4p
Im, p;)

(p —p}'(p' —m'}(p +p}'

&&5((p —p)u"')5((p++p)u'"), (13b)

1
Pz PD' 2(P —z P+z} (~—+ +)

2

and for the "exchanged" diagram

e —ex:——,'(e —e+)+ —,'p(p, +p+, ),

(16b)

(17a)

+g (2)( I(i) +I(m))g (1)
j (14)

Now we use the two 5 functions to reduce the four-
dimensional integration. The four-velocities u "' and u ' '

in the c.m. frame are

which are the integrals occurring in the "direct" and "ex-
changed" diagram, giving for 4

ZQ I ~g (1)(I(I)+I(m))g (2)

2~

1
p. =px:= (p . p+—.)+-(~—+~+} .

2
(17b)

and the same with p and p+. The integral ID "is now

The only difference between both formulas is the sign be-
tween the two terms, which comes from the exchange of
P~—P in the four-velocities.

We now split p into its longitudinal and transverse part
defining

pDI. —(&Dro, O~PD)~ pxl' (E&&0~0&p )x

(m, i) 2
Im, p; j

((P i PDI } +(P ).—PI. )'fjtPDI+P-l —m jl (P+!+PDI ) +(P+J+P'I.)'1.
and similar for Ix ", changing pD& to p&I. Note that pj only has spatial components; evaluating the scalar products
gives then an extra minus sign. The factor 1/2y p comes from the evaluation of the 5 functions.

Examining ID and I~ for m, 0, and z, we find that the numerator of the integrand does not depend on p~ and there-
fore we can rewrite them as

(m, O, z) = 2 1
ID 2 ImEDPD) dp) 2 22y P ((P —I PDI } +(P —). Pl ) j(PDI +Pl jl(p+I+PDI } +(P+1.+Pl )

and the corresponding result for I~ ".As we show in Appendix A, the integral on the right side is just one of the
standard integrals, the scalar three-term integral. Therefore we can write

y(m, O, z)iD

with

1 S 2 2 2
I m, eD,PD II (k2D, k3D, m 1D,m 2D, m 3D )

2y2P

1 SIm, eD,PD )ID
2y P
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2D P —l ' 3D P+l 1D PDI 2D (PDI P —I ) 3D (PDI+P+I )
2 2 2 2 2 2 2 (22)

and the same for Ix ' *' by changing the index to X.
On the other hand, for x and y, the numerator depends on p~, over which we have to integrate. This integral is the

simplest type of a so-called tensor integral, and it is clear that it can be split into two parts:

ID ' ' —
2 ( P —

I ID+P+IID )
2y2P

(23)

and the corresponding result for Iz"'~'. Iz and ID are again standard Feynman integrals found in Appendix A:

D (k2D& 3D&m)D&m2D&m3D)
(2 3) (2 3) 2 2 2

and the corresponding result for I& ' '.
We finally get

2Z 2. 2(Z&) [~ ())(P + )g (2)IS g (1)P g (2)I2 +g (1)P g (2)I3

(2)(P + )g (1)IS g (2)P g (1)I2+g (2)P g (1)I3 ] (25)

An alternative form for 4 can be found by using the properties of the Dirac spinors:

(P+ +m )v (p+ )=0,
u(p )(gf —m) =0 .

(26a)

(26b)

Rewriting them as

P+iv(p+ )= —4+I+m)v(p+»

u(p )I(,= —u(p )(P' I
—m),

(27a)

(27b)

we get

a=i [16"'(p,+m)L6' 'I —(I( I
—m)lb'"ll' 'I +u'I"'l6' '(gf, +m)I. 2(Za)

(2)(P +m)g (1)Is (P' m)g (2)g (1)I2+/ (2)g (1)(P +m)I3 ] (28)

This form for 4 has been used to test the correctness of our calculations, as well as its numerical stability.
Let us now come back to the inclusion of the form factor I' (q ). It is easy to see that this only changes the form of

ID to

+ p- —p + p++pID"
2 plm. p 2 2 2 22r'P (p ——p) (p —m )(p++p)

(29)

and similar for Iz, using p&I instead ofpDI.
Now we can use the property of the dipole form factor

q
2

(+2
q

2
)q

2
q

2 +2
q

2 (30)

which allows us to rewrite the integrals as the sum and difference of four integrals of the type, which we have already
solved in terms of the elementary Feynman integrals. The scalar and tensor integrals corresponding to (21) and (24) are

ID ' =I ' ' (k2D, k3D, m, D, m2D, m3D) I ' ' (k2D, k3D, m, D, m2D—+A, m3D)
(S,2, 3) (S,2, 3) 2 2 2 (S,2, 3) 2 2 2 2

I ' ' (k2D, k3D, m)D—, m2D, m3D+A )+I ' ' (k2D, k3D, m)D, m2D+A, m3D+A )
(S,2, 3) 2 2 2 2 (S23) 2 2 2 2 2 (31)
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which we use in formulas (25) and (28) for 1k
The same can be done with the double dipole form fac-

tor (see also Appendix B)

F(q )

q

1 1 1
1 2 2 2 2 2

q A) —
q A2 —

q

giving a sum total of nine standard Feynman integrals.
is now used in order to calculate the trace

Tr[(p +m )Q(gf+ —m )9]. For this tedious, but
straightforward calculation, we have used a symbolic cal-
culation program (FORM [10]).

Some care has been taken in evaluating these long ex-
pressions numerically, in order to avoid some of the large
cancellations which normally occur in the scalar prod-
ucts. That these cancellation do occur can be shown,
e.g., in m zz, where they can be seen very easily:

m 2D (PDI P —I )
2 = 2

(PD P &)—
1 1

2 2 [(e +e+)+p(p, +p+, )]~,
4 )"p' (33)

V«+» Vo+V &
V«» Vp V (34)

The scalar product between longitudinal vectors is then

(u, w)= —(u. +,.w. . +u. „w«+ ),—1 (35a)

(35b)

Generally, one of the variables "+","—"is small, the
other large. For example, w«+-=1+p is large, and(1)

w.'.",. = 1 —p is very small, because p is close to one. We
calculate it using

1 —P 1+P
(1+0) 2 (1jw cc + 71

(36)

where we have used the fact that 1 —p =y . We see
that for large values of y, mza becomes very small,
which means that the cancellations in the first expres-
sions are very large.

To avoid these cancellations in the scalar products, we
did not use the longitudinal parts of the four-vectors
directly, but transformed them into light-cone vanables.
The longitudinal vectors we have are w'", w' ', p+I, p
p&D, and pix, transverse vectors only p+J p J.

For the light-cone variables, we define a "+"and a"—"component of an arbitrary vector v:

IV. PAIR PRODUCTION IN DOUBI.E
EQUIVALENT-PHOTON APPROXIMATION

The equivalent-photon approximation (EPA) or
Weizsacker-Williams method has been used in the past to
calculate electromagnetic processes in heavy-ion col-
lisions [4,5]. It consists of replacing the electromagnetic
field of the fast moving ion by a spectrum of real photons.
Then one folds the photon cross section with the number
of equivalent photons N(co) to get the cross section for
the heavy-ion process. In the double equivalent-photon
approximation (DEPA), one replaces the field of both
ions by equivalent photons, then folds with both photon
distributions. Normally, one uses the total equivalent
photon number, the one integrated over all impact pa-
rameters [11,12]. Recently also the b-dependent DEPA
has been investigated by Baur and Ferreira Filho [13,14]
and also by Vidovic et al. [15]. One of the problems of
the DEPA is—because the virtual photons with q %0
are all replaced by real photons —we have to introduce a
cutoff in q, to avoid the logarithmic divergence, even
though the main contribution comes from that part
where q is small. The cutoff can also be interpreted as a
cutoff in the impact parameter (in the case of the EPA,
where only one ion is replaced by the photon spectrum),
or a cutoff in the distance between the ion and the place
where the interaction with the electron or positron takes
place. Also, contributions coming from scalar photons
are neglected. There has been some discussion about the
choice of the cutoff. On the one hand, the form factor of
the ion decreases the number of photons with large q ~

On the other hand, the matrix element decreases, if the
momentum of the internal electron line ~p~ is greater than
m, . Therefore we are not allowed to replace this matrix
element with the one for the photo process (see, e.g. , the
discussion in Sec. VI in [12]).

The DEPA gives us, on the one hand, an independent
check for the correctness of our results and, on the other
hand, a test of the applicability of the DEPA in this case,
especially to see if the cutoff is given by the form factor.

For our calculation, we use the formula given by Baur
and Ferreira Filho [13]. For b=0 their result is

dt's~

d N2
dP(b =0)=

CO~ C02

(38)

where o.
~I

is the total cross section for pair production
with the two photons with parallel polarization. N(~, p)
is the p-dependent equivalent-photon number. In the ul-
trarelativistic limit it is given by

The same can be done with the other vectors, e.g., if
p+„p, &0, we calculate p+ "+» and p «+» directly
and the other as

Z a P(x,p)N(co, p =
77 p

with x:=cop/yc and

(39)

2 2~+ p+z
&++p+z

2 2
p —z

E +P z

m +p+g2 2

p + cc+os

m +p
p —,"+»

(37a)

(37b)

~( ) y d 2~( )F{—(x+u )/p) (40)

With a dipole form factor [Eq. (8)], we are splitting
again F( —(x +u )/p )/(x +u ) into two parts:
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pA 1 1 1

P2A2+~2+g2+2+Q2~2+g2p2A2+~2+Q

(41)

rewriting P as

p+, = [exp( t, )
—1]cosy,

p, = [exp( t, )
—1]sing,

p+~ = [exp(tj ) —1]cosy(1,0),
p ~

= [exp(t~) —1]sing(cosg, sing) .

(48)

00 1 1
P(x,p)= du u J&(u)

p
1 X2+g2 2A2+~2+g2

(42)

The integral

f du u J&(u) =zK&(z)z+u (43)

(()(x,p)= ixE, (x) +p A—+x K, (+p A +x~)i

and using the definition of x, we find

(44)

Za ~ co
N(u, p}= 2 E, —p-

y iy
' I/2

2

+A
. y'

2

+A
. . r'

(45)

The cross section for real photons is [12]

4~a 4m 12m 1 6m

s s s s

(46)

with

s —4c01c02,
' 1/2

4mbt=s 1—
s

(47)

can be solved analytically, giving for P the result for a
point source, which is known. Therefore P(x,p) is given

by

The integration boundaries in t, and t~ were incre-
mented, until the MC integral converges. A good esti-
mate for the boundaries is given by ln[y max(A, m, )+1]
for t, and by in[max(A, m, }+1]for tz. The accuracy of
the MC integrals was again 1% or less. A was chosen ac-
cording to Appendix B as A=83 MeV for the dipole
form factor and similarly for the double dipole form fac-
tor. In this section we will only discuss the probability
divided by (Za), as this is a common factor in our for-
mula.

Figure 3 shows the dependence of the total probability
on A for two different values of y (100 and 3400}. We see
that there is a logarithmic dependence on A, so that the
result seems to be divergent for a point charge. This
divergence is, of course, no contradiction to the fact that
the total cross section for a point charge

tr =f 2nbdbP(b. ) (49)

is finite.
Figure 4 shows P„„&/(Za) as a function of y. We use

the dipole form factor as well as the double dipole form
factor. The difference between both is very small. This
confirms our assumption that the detailed form of the
form factor is not important, as only small q contributes
considerably to the total probability. Together with our
calculation, we also plot the results of the EPA calcula-
tion for different values of the impact parameter b (for-
mula 7.3.10 in [11], where we have neglected the term
with f ). One sees that our calculation for b=0 only in-
creases linearly with lny, whereas the EPA result in-
creases with (lny) . Even for b =Ac the EPA result is
larger than our result for b=O. As the probability should

60

l. =2ln +&s
2m

s —1
4m

1/2

50

For the total probability we integrate over dao„dco2,
and d p using a Monte Carlo (MC) integration routine
(vEGAS [16,17]). The integration variables we use are
lnp, lnco2, and lns and the boundaries of the integral have
been increased until the result does not change. The ac-
curacy of the MC integrals is always 1% or better.

5

A„

40 .

30

20

V. THE TOTAL PROBABILITY Ptota

The difFerential probability is now integrated over all
six momentum variables. For this we used again the
Monte Carlo integration routine [16,17]. The integration
over one of the angles is trivial and an integration over
five variables remains to be done, for which we used t„
tj, P, g, and y. The momenta of electron and positron
expressed in these variables are

10

0
lO

A (MeV)

FIG. 3. P„„&/(Za) for b=0 as a function of A for y =100
(lower curve) and 3400 (upper curve). The logarithmic increase
shows that a form factor is needed, as the result for a point
charge seems to diverge.
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35

30

TABLE I. Predicted values of P„„&for different accelerator
parameters. AGS is the alternating-gradient synchrotron and
SSC the superconducting supercollider.

25

20-

15

AGS
CERN SPS
RHIC
LHC
SSC

2.35
10
100
3400
8000

Ion

Au
Pb
Au
Pb
Pb

P total

0.06
0.63
1.6
3.9
4.4

5

FIG. 4. P„„&/{Za) for b=0 as a function of y for the
creation of an electron-positron pair. The solid line is the calcu-
lation for a realistic dipole form factor, the dotted line for a
realistic double dipole form factor (see Appendix B). The
dashed lines are EPA results for impact parameters b =0.5kc,
b =1.0P«, and b =1.5%c (from left to right), respectively.

always increase with smaller impact parameter, we con-
clude that the EPA result cannot be used for small im-
pact parameter and that the range, where it is not appli-
cable, even increases slowly for larger values of y. This
result is, of course, well known, therefore formula 7.3.10
in [11] has always been used only for impact parameter
I »c

We also note, that the total probabilities are not very
large. Values smaller than 35 have to be multiplied by
(Za) &0.2. Therefore the total probability is smaller
than 7 for realistic parameters

Figure 5 shows again the total probability, but now to-
gether with those for p and ~ pairs. Their probabilities
are much smaller due to the larger mass of the p and the

Also shown are the results of the DEPA calculation
for the heavy iona. As their masses are much larger than
A, the DEPA is in good agreement with the exact calcu-
lation. The deviation at small y is due to the fact that the
DEPA can only be used for relativistic collisions.

Finally, in Table I we give our predictions for the total
probability for the electron-positron pair production for
some heavy-ion accelerators.

We now compare the calculation with the DEPA re-
sult. Now each of the ions has its own form factor in-

dependent of the other, in order to study the inhuence of
the individual form factor on the total probability.

In Fig. 6 we compare our calculation with the DEPA
at relativistic heavy-ion collider (RHIC) energies
(@=100). We show P„„i/(Za) as a function of A, (the
parameter controlling the width of one dipole form fac-
tor); A2 for the other ion has been kept fixed. This com-
parison clearly shows that the DEPA massively overesti-
rnates the Born calculation, as soon as one and even more
if both A's are larger than the electron mass. Therefore
the reduction in q due to the form factors does not
suffice, the decrease of the matrix element of the process
itself as soon as the internal momentum of the fermion
gets larger than m, is more important. But even then,
this decrease alone does not suffice, as the total probabili-
ty still depends on the form factor.

We see also that the probability becomes independent
of A„ if it is much larger than m, and A2. This corre-

10o- 10

10

10
10'-

10o-

10-10

10-15

P

/
/

/
/

/
4 /

/
/

/

10'-

10

10

104 .-
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FIG. 5. P„„&/(Za)" for b=0 as a function of y for the
creation of an electron (solid), p {dotted), and ~ pair {dashed).
Results of the calculation with a dipole form factor. Also
shown are the results of the DEPA calculation for p and ~ pairs
(diamonds), also for a dipole form factor.
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FIG. 6. A comparison of our calculation (solid) and the
DEPA (dotted) for y = 100 as a function of A& of one ion. A2 of
the other ion has been kept fixed at A2=0. 1, 1, 10, and 100 MeV
(from bottom to top).



RON-POSITRONAGNETIC ELECTELECTROM 159149

~ f apairbyato the result tha
'

independent of t
rod uct

e size
spond o

field of a nucleus
than the Co P

hoton in the e
'

uch smaller t anjf the size» m
th.ton waveleng

10
I

10',
I

L PRO&+ABILITIESLE-DI~~@RENTIVI. THE SINGLE- L PR

lcula tedilit, we have also ca
webilities. For this, w'1 b

h f ct that withused the ac
be calculate v'b tiontial distri

oints in o
'

idual integration p
'

in the indivi ua
'

can be use o
e ta pro

t ome accuracyog
d. A

previous ca, ommon accase, a common ac

Su er Proton
mP.

=10, 100,
Sync '" '""""'y '

1 f fa~d the doobie dido e oe simple dipole an
difference for t e wy

he real situation w
f theh

th 1 to). Tthis is the same or
h h t it'.it has the c a

g

d h b
h 1

Th"' '" 'hmomentum P =p++p . e
M =~P and the rapidity

100

10

10 10-' 10
e (deg)

10

5

C4

10'-
I

I

10

10
M (MeV)

10

as a function of the invariant mass M.FIG. 9. P(M)/(Za) as a function o

y and ormf factors as in Fig. 7.

'
n of the angle 8 of p+ with(Z ) as a function o

thezaxis. y and form ac

10
I

I

10

105
5

10-' .-

C4

10 10

10
E (Me V)

'
n of the energy of the posi-as a function o e

to top) are
FI

(f b
in the realistic dipin i ole form

ole form factor.
4

1factor, od tted lines using the rea is

10
10

idity of the pair. yas a function of rapi i yFIG. 10. P(Y)/(Za) as a
and form factors as in Fig.



1592 KAI HENCKEN, DIRK TRAUTMANN, AND GERHARD BAUR

Po+P,
Y =-'ln

Po —P,

They are shown in Figs. 9 [P(M)] and 10 [P(Y)]. We
show only P(M) for relatively small values of M. A dis-
cussion of the behavior of P(M) for large invariant mass
can be found in the next section.

10

10

104 .-

10

VII. A COMPARISON WITH DEPA FOR LARGE
INVARIANT MASS

Finally we want to discuss the case where the invariant
mass of the two leptons is large. It has been argued that
in this case the DEPA approximation, which failed at
low invariant mass, should again be applicable. This is
based on the fact that in this case the only relevant
momentum scale is the invariant mass, so that one may
neglect effects coming from the electron mass.

Figure 11 shows a comparison of P(M) between the
DEPA and our calculation. Even though the difference
between both is not that bad for large invariant mass, the
DEPA is

off

b about a factor of 2.
The same can be seen in Fig. 12, where we compare

P(M, Y) for rapidity Y=O.
For the calculation of P(M, Y=O) we have used the

fact that for Y=O (which means that p+, = —p, ) and
with fixed M, p+, and p, can be calculated as a func-
tion of the transverse momenta p+j and p z together
with their angle P. The remaining three-dimensional in-

tegration was again done with the MC integration routine
with an error of 1%. For the DEPA calculation, Y=O
and fixed M means that co, and co2 are fixed at M/2, and

only the integration over p has to be done. As 0. is a
function of M alone, we can use formula (46} again; see
also [18]. We see again that the result of the DEPA is
too large by a factor of 2.

This seems to be in contradiction with the arguments
given above. In order to see where the discrepancy

1D6-

10

lo8
10

I

10
M (MeV)

FIG. 12. P(M, Y=O)/(Za) as a function of M. Compar-
ison for y =100 (lower curve) and 3400 (upper curve) of our cal-
culation (solid line) with the DEPA (dotted line). Results for
the realistic double dipole form factor are shown.

comes from, we calculated also P(M, Y, Q). For the Born
calculation we used again the sorting of P into bins. For
the DEPA calculation, the differential cross section for
the photon-photon process [8] has been used; see also
[19].

We show P(M, Y =0,Q) in Fig. 13 as a function of 8,
the angle ofp+ with the beam axis. For large angles, the
DEPA and our calculations agree quite well, but for
small angles the DEPA calculation is too high. As one
may object that this is an effect of the integration over
the transverse momenta in the DEPA, which should
smear out the angular distribution, we show in Fig. 14
P(M, Y=O, Q&} as a function of 8&, the angle of
(p+ —p ) with the beam axis. For the DEPA, in the
form used by us, the two particles are produced with
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FIG. l l. P(M)/(Za) is shown as a function of M for pairs
with large invariant mass M. Comparison for y = 100 and 3400
of our calculation (solid line) with the DEPA (dotted line), using
a realistic dipole form factor in both cases.

FIG. 13. P(M, Y=0,Q)/(Za) as a function of the angle 0
between p+ and the z axis. Compared are the results of our cal-
culation (solid line) and the DEPA (dotted line). y=3400,
M=500 MeV (upper curve), 3500 MeV (lower curve). Results

for the realistic double dipole form factor are shown.
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q~, this is only justified, as long as qz is smaller than m„
whereas the form factor of the ions allows qz to be as
high as 83 MeV. That is, we are not allowed to neglect
m, compared with M even for very large M, because set-
ting m, =0 would make our cross section divergent.
There are always three momentum scales given by M, A,
and m, . The equivalent photon method has to be
modified in the region of small angles. This explains why
the calculations of P (M) and P (M, Y=O) are too large, as
they are integrated over the whole 8 range. But as this
error only shows up in a logarithmic term, the deviation
of the DEPA is not that large, compared, e.g., with P„„&,
where the DEPA overestimates the result by orders of
magnitude.

ACKNOWLEDGMENTS
FIG. 14. Same as Fig. 13, but now P(M, Y =O, Q&)/(Za) as

a function of the angle Hq between (p+ —p ) and the z axis.

their momenta exactly opposite to each other, so the
curve is identical with the previous one (see [18] for a
better calculation, where the transverse momentum dis-
tribution has been included in the DEPA). But in our
calculation, we should be able to unfold with this approx-
imately the transverse mornenturn distribution corning
from the virtual photons. Here again, we find good
agreement at large angles, but the DEPA is too large at
small ones.

The reason for this can be explained as follows: The
total cross section for the pair production in lowest order
by a photon in the electromagnetic field of a nucleus is
given by the Bethe-Heitler formula [20]

28 Z (y Ey
CT = ln

9 m m,
(50)

The logarithmic term in this formula is due to the pairs,
which are produced at very small angles. This behavior
is due to a so-called mass singularity in the matrix ele-
ment, the fact that the propagator of the internal particle
is very large, and even would become singular for m, ~0.
But this behavior is connected to the fact that we are
looking at a real photon with q =0. In the DEPA or
EPA we neglect the dependence of the matrix element on
the transverse momentum. But as q is mainly given by

We would like to thank Jos Vermaseren, Mario Vido-
vic, and Niels Baron for their help and advice during
some stages of this calculation.

APPENDIX A: THE TWO-DIMENSIONAL
FEYNMAN INTEGRALS

In this section, we calculate all the two-dimensional in-
tegrals needed for the matrix element. The only integral
that must be solved in terms of analytic functions is the
one with a two-term denominator; the others can then be
reduced to this one.

1. The two-term denominator

This is the integral of the form

I(kz, m&, mz):= fd q

X [[q +m, ][(q +kz )z+ m zz]]

Introducing standard Feynman parameters, we find

I=f dxfd q[[qz+mf]x

(A 1)

+[(q+kz) +mz](1 —x)] . (A2)

Rearranging the term in brackets, the integral is

I=f dx fd q{[q +kz(1 —x)] +kzx(1 —x)+mfx+mz(1 —x)]
1=m f dx [kzx(1 —x)+m tx +mz(1 —x)]

The evaluation of the last integral is straightforward and we get

(kz+m, +mz+s)
I(kz, m f,mz )=m ln

4m (7' 2

[(mz mz)z+kz(kz+2mz+2mz)]&rz

with

s:=[(k +m +m ) —4m m ]'

Note that the final result only depends on the values of k 2, m &, and m 2.

(A3)

(A4)

(A5)
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2. The three-term denominator

This is the integral

I (kz, k3, m„mz, m3):= f d q{[q +m, ][(q+kz) +mz][(q+k3} +m3]] (A6)

In principal, an analytic form can be found directly by doing the integration over the two auxiliary variables, using
the trick described by t'Hooft and Veltman [21]. This calculation is rather tedious and it is easier to use a formula by
van Neerven and Vermaseren [22] for the reduction of an (N+ 1)-term integral in N dimensions into N+ 1 N-term in-
tegrals.

Their formula (20) in our notation is

I (kz, k3, m„mz, m3)={(rzk3 rzk—z) +4[kzk3 —(kzkz) ]m f]
X({2[kzk3—(kzk3) ]

—rzkz —r3kz+(rz+r3)kzk3]I(k3 kzymzlm3)

+(rzk 3
—r3kzk3)I(k3, m f, m 3 )+(r&k z

—rzkzk3)I (kz, m f, m z ) ),
with

(A7)

rz=rnz+kz —m, , r3 =m 3+2 2 2 2 2 2 (AS}

Note again, that the final result only depends on m, , m z, m 3, kz, k3, and kzk3.

3. The tensor integral

The only tensor integral which appears in our calculation is the one with one momentum in the numerator. General-
ly, all tensor integrals can be reduced to the scalar integrals. Here we use the method which is described, for example,
in t'Hooft and Veltman [21].

The standard form of the integral is

I'(kz, k3, m&, mz, m3)= f d qq'{[q +m f][(q+kz) +mz][(q+k3) +m3]] (A9)

As kz and k3 are the only variables in the integral with a vector character, the integral can be split into

kl Iz+k2 3

To find expressions for I and I, we multiply with kz and k 3 and solve for I and I:
(A 10)

I =[kzk3 —(kzk3) ] '[k3(kzI) —kzk3(k3I)],

I'=[k', k', —(k,k, }'] '[ —k, k, (k,I)+k,'(k, I)) .

(Al la)

(A 1 lb)

Now with the help of

qkz= —,'{[(q+kz) +mz] (q +m—, ) —rz]

and similarly for qk3, we get

(A12}

(kzI)= f d q(kzq}{[q +mf][(q+kz) +mz][(q+k3) +m3]]

,'I(k 3m], mz) ——,'I(k3 —kz, mz, m3—)—,'rzI (kz, k3—,m, ,mz, m3)2 2 l S 2 2 2 (A13)

and similarly for k3I. We find finally for I and I

I ={2[kzk3—(kzk3) ]] '[(kzk3 —k3)I(k3 kz, mz, m—3)+k3I(k3, m, , m3)

—kzk3I(kz, m f, mz)+(r3kzk3 —rzk3)I (kz, k3, m f, mz, m3)],

I'={2[kzk,—(kzk, ) ]] '[(kzk3 —kz)I(k, k, , mz, m,—)+kzI(kz, m', , mz)

kzk3I(k3, m, , m 3 )+ (rzkzk3 —r3kz )I (kz, k3, m f, m z, m 3 )]

(A14a)

(A14b)
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All integrals have been tested, using the symmetry of
the formulas with respect to the exchange of the terms in
the denominator and also using an identity between three
integrals with different parameters, based on the property
(2.2) of [21].

APPENDIX 8: DISCUSSION OF THK FORM FACTORS

1.0

0.8

06-

Normally a Gaussian form factor or that of a homo-
geneous charged sphere are used. They are given by
(note that in our metric q (0):

Fo,„„(q )=exp lq'I
(Bl)

2QO

3j,(+lq lR )
FHcs(q )=

lq'IR,
(B2)

with Qo =60 MeV and Ro = 1.2 fm A ' =7 fm.
We are using two different form factors, which have

the advantage that our matrix element can be expressed
analytically with them. One is the dipole form factor

04-

0.2

0.0
20 40 80

q (Mev)
100 120 140

FIG. 15. A comparison of the different form factors. The
dashed line is the gauss form factor and the dashed-dotted line
the form factor of a homogeneously charged sphere. The solid
line is the simple dipole form factor, the dotted line the double
dipole form factor with parameter c& = 10.

2 = A
Fdipole ( q

A —
q

(B3)

which is the form factor of a Yukawa charge distribution
CI

A2= — AI .
C2

(BS)

p(r) = A exp( Ar)—
4m r

(B4)

=1 fm A'

giving a A of about 83 MeV. This value has been used
throughout the calculations, even though it varies slight-
ly with A, for example, for Pb to Au.

A comparison of the different form factors can be
found in Fig. 15. The disadvantage of the dipole form
factor is that it decreases too slowly and overestimates
the real value, if q is larger than about 50 MeV. To see if
our result depends on the exact form of the form factor,
we use a second one, which has a better behavior for
large q. It is a sum of two dipole form factors:

AI A,'
Fa,„b«(q )=cl

2 2+c2 z z
. (B6)

Therefore we call it a "double dipole form factor. " With
F(0)=1, we have c, +cz=l. The behavior of this form
factor for large values of lql is

A, A2 (c,A, +c2A2)—q
F(q )- (B7)

q4

For that the form factor vanishes faster than 1/q, the
coefBcient in front of q has to be zero, therefore A2 has
to be chosen as

A has been determined so that the root mean square of
the electric radius is equal to the experimental value

1/2

V'&r'& = (B5)
A

As we do not want to have a singularity in the form fac-
tor, we have to choose A2&0, that is, CI & 1. Finally, we
want (r & to again be the same as the experimental one.
As the density corresponding to this form factor is a sum
of two Yukawa charge densities, ( r & is

(r'&=6 ' + '
A A

(B9)

Therefore

AI= 6 12—
( '&

(B10)

Fap ««')
q

1 A 1 1

q2 A2-q2 q2 A2 —q2
(B1 1)

having a term of the form 1/(q~+m2) again. Therefore
our momentum integrals can be written as sums and
differences of the standard Feynman integrals.

and c, is the only parameter, which can be varied. For
c

&

= 1, we have the normal dipole form factor; for c,~ 00

it decreases faster than it. In Fig. 15 we have plotted
F~,„b«(q) for c, =10, a value that we have also used
throughout the calculation, because the cancellations be-
tween the two dipole terms are not too large.

The reason why these form factors can be treated
analytically is due to the fact that with the dipole form
factor, we can write
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