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We present a complete analysis of variance matrices and quadrature squeezing for arbitrary states of
quantum systems with any finite number of degrees of freedom. Basic to our analysis is the recognition
of the crucial role played by the real symplectic group Sp(2n,R) of linear canonical transformations on n
pairs of canonical variables. We exploit the transformation properties of variance (noise) matrices under
symplectic transformations to express the uncertainty-principle restrictions on a general variance matrix
in several equivalent forms, each of which is manifestly symplectic invariant. These restrictions go
beyond the classically adequate reality, symmetry, and positivity conditions. Towards developing a
squeezing criterion for n-mode systems, we distinguish between photon-number-conserving passive
linear optical systems and active ones. The former correspond to elements in the maximal compact U(n)
subgroup of Sp(2n,R), the latter to noncompact elements outside U(n). Based on this distinction, we
motivate and state a U(n)-invariant squeezing criterion applicable to any state of an n-mode system, and
explore alternative ways of expressing it. The set of all possible quantum-mechanical variance matrices
is shown to contain several interesting subsets or subfamilies, whose definitions are related to the fact
that a general variance matrix is not diagonalizable within U(n). Definitions, characterizations, and
canonical forms for variance matrices in these subfamilies, as well as general ones, and their squeezing
nature, are established. It is shown that all conceivable variance matrices can be generated through
squeezed thermal states of the n-mode system and their symplectic transforms. Our formulas are
developed in both the real and the complex forms for variance matrices, and ways to pass between them
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are given.
PACS number(s): 03.65.—w, 42.50.Lc, 42.50.Dv
I. INTRODUCTION

Squeezed states of the radiation field are distinctly non-
classical in nature [1]. Over the past decade their study
has developed into a major area of quantum optics [2].
Their experimental realization by several groups [3-5]
has certainly contributed to the enormous interest and
activity in this area. In addition to quadrature squeezing
[6-10], attention has also been focused on amplitude [11]
as well as higher-order [12] squeezing. While many of
these studies have centered around states of single- and
two-mode systems [9,10] of immediate relevance to
current experimental activity, there nevertheless has been
interest in the multimode case as well [13,14].

All the information regarding the quadrature squeez-
ing properties of any state of a multimode (quantum) sys-
tem is contained in the noise or variance matrix of that
state. In the single-mode case this is a 2X2 real sym-
metric positive-definite matrix V: the diagonal entries are
the expectation values ((§—{(@))*) and ((p—(p))?*)
while the off-diagonal one is (1(gp+pq))—(q)(p),
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where ¢ and p are the quadrature operator car/n_ponents of
the mode annihilation operator @ =(q +ip)/V'2

For a classical probability distribution over a classical
two-dimensional phase space with variables g and p, any
real symmetric positive-definite matrix is a valid, that is,
physically realizable, variance matrix. In the quantum
case, however, the variance matrix has to satisfy the addi-
tional condition det¥ = 1. This is a precise and complete
statement of Heisenberg’s uncertainty principle for one
pair of operator canonical variables.

The group of real linear canonical transformations
Sp(2,R)=S1(2,R)=SU(1,1) plays a basic role [1,2] in the
study of squeezing in a single-mode system. (This is so
whether or not one wishes to make explicit use of the
language and machinery of Lie groups.) This group has
as its maximal compact subgroup a one-parameter group
U(1) corresponding to phase-space rotations; its genera-
tor is the harmonic-oscillator Hamiltonian
(@aa+aa’) /2. An important aspect of the definition of
squeezing in the single-mode case is that it has a basic
built-in invariance under this U(1) subgroup, which is
physically reasonable and justifiable.

Our interest in this paper is in n-mode systems. We
present a comprehensive analysis of the properties of
variance matrices for states of such systems. Such ma-
trices are real, symmetric, 2n dimensional, and positive
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definite. In addition, they obey certain specifically
quantum-mechanical inequalities in the Heisenberg sense.
We make effective use of elementary concepts and results
related to the group Sp(2n,R) of real linear canonical
transformations in 2n-dimensional phase space, which is
naturally available, to analyze both the Heisenberg in-
equalities and the notion of squeezing for n-mode states.
While, as noted above, Sp(2,R) is isomorphic to the pseu-
dounitary group SU(1,1) in the single-mode case,
Sp(2n,R) is not isomorphic to the pseudounitary group
SU(n,n) but rather to a proper subgroup of it when n = 2.

The material of this paper is organized as follows. In
Sec. II we address the following basic question: Given a
2n X2n real symmetric positive-definite matrix, how do
we test whether it qualifies to be the variance matrix of
some physically realizable state of the (quantum) n-mode
system? Clearly this is the same as asking for a complete
statement of the Heisenberg uncertainty relations for
such systems. We solve this problem by making use of a
classic theorem due to Williamson [15] on the normal
forms of real symmetric matrices under symmetric sym-
plectic transformations. The nontrivial aspect of this
theorem hinges on the facts that only some phase-space
rotations are canonical transformations, and that a sym-
metric symplectic transformation in general is not a simi-
larity transformation. It thus turns out that the normal
form is diagonal only for some special subsets of sym-
metric matrices, and there are several distinct normal
forms. What is relevant for our problem is the fact that
for symmetric positive-definite matrices the Williamson
normal form is a diagonal one, and variance matrices are
positive definite.

As can be seen from the work of Caves and Schumaker
[6], it is important to be able to describe the variance ma-
trix and squeezing in terms of the real (Hermitian) quad-
rature components §;,p; as well as in terms of the com-
plex (non-Hermitian) operators 6j,6j, and to switch easi-
ly between these two descriptions. While a given canoni-
cal transformation is specified in terms of a real matrix in
the former description, it is specified by a complex matrix
in the latter. These two matrices are related through a
similarity transformation by a fixed numerical matrix.
Similarly the real variance matrix becomes a complex
Hermitian one when transcribed to the @, al description.
We formulate our complete characterization of the vari-
ance matrix in Sec. II in the form of necessary and
sufficient conditions, and these are expressed in both
descriptions. Transformation formulas for passing easily
between them are presented. Our notations are some-
what different from those of Caves and Schumaker [6] for
the single-mode and two-mode cases, but we believe they
are more convenient, typographically and otherwise.

The role of U(1) in the single-mode squeezing group
Sp(2,R) is played by the U(n)=K(n) subgroup of
Sp(2n,R) in the n-mode case. This subgroup consists of
all those phase-space rotations which are also canonical
transformations. It should be appreciated that for n =2
most phase-space rotations are not canonical. Motivated
by the U(l)-invariant squeezing criterion in the single-
mode case and by the familiar division of quantum opti-
cal systems into passive and active types, we formulate, in

R. SIMON, N. MUKUNDA, AND BISWADEB DUTTA 49

Sec. III, a U(n)-invariant squeezing criterion for n-mode
systems and explain why it is reasonable. Since the K(n)
subgroup of Sp(2n,R) is too small to diagonalize a gen-
eral variance matrix, it would appear at first sight that
our squeezing criterion is not expressible in terms of the
eigenvalue spectrum of the variance matrix. However,
the identity of the two coset spaces
SO(2n)/80(2n —1)=U(n)/U(n—1)=8>""',  where
S§27 71 is the unit sphere in the 2n-dimensional Euclidean
space R?", enables us to establish that a state is squeezed
if and only if the smallest eigenvalue of the corresponding
variance matrix is less than 1.

We take up in Sec. IV the question of K(n) canonical
forms for variance matrices. Though it is true that a gen-
eric variance matrix cannot be diagonalized by K(n)
transformations, there are two special families §; and
&y whose K(n) canonical form is diagonal. The family
&8¢ consists of variance matrices which, apart from a fac-
tor of %, are also elements of Sp(2x#,R). Members of the
family & are built up from n Xn Hermitian matrices H
obeying a positivity and spectrum condition. Both fami-
lies §; and &y are contained in the larger family &5 of
all those variance matrices whose K(#n) canonical form is
diagonal. We state and prove a simple matrix algebraic
necessary and sufficient condition characterizing the ele-
ments of &§x. Finally, we also develop canonical (nondi-
agonal) forms for variance matrices which are not con-
tained in 8.

In Sec. V we construct examples of n-mode states and
their variance matrices to render transparent the physical
meanings of the K(n) canonical forms and the families
&6, Sy, and . It turns out that any acceptable vari-
ance matrix can be realized through a suitable squeezed
thermal state (zero-mean Gaussian state). Finally, in Sec.
VI we present some concluding remarks.

At several places throughout the paper we make use of
properties of the symplectic groups Sp(2n,R). We take
care to state and explain them clearly at first encounter.

II. CHARACTERIZATION OF VARIANCE MATRICES
BY UNCERTAINTY PRINCIPLES

Consider an n-mode quantum system with annihilation
and creation operators fij,ﬁjf, j=12,...,n, obeying the
standard boson commutation relations

ti—
[aj’ak ]—611( )

@.1)
[@;,a,1=(a],a]1=0.

In terms of the Hermitian operators §;,p; defined in the
usual manner,

40D, —iD.
@ZM , T_—:Lp_f_ , 2.2)
/ V2 / V2
we have the equivalent commutation relations
(9,Px 1= 18 »
pre 2.3)

[apak]:[ﬁj’ﬁk ]:0 .
It should be noted that these §; and p; differ from the fa-
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miliar quadrature components of @; by a factor of V2.

It will prove convenient to arrange the Hermitian §;,p;
and the non-Hermitian aj,a} into 2n-component column
vectors as follows:

q, a,
q, a,
é(r)z N R A(C)___ (2.4)
D s aJ{
P a)
The associated row vectors are
ENT=E""=@, 9Py )
(2.5)

gC)TZ(ﬁI .. '6161 ea) .

Therefore £ ”E’” and £'“8'" are 2n X 2n Hermitian ma-
trices with operator-valued entries. The columns £”,£
(and hence the rows ?"*,E‘"*) are linearly related by a
fixed numerical matrix Q) determined by Eq. (2.2):

o— BN  Aat_antat
£7=a8", £ =",

2.6)
I l
O=— PR S
va |1 —il
Since () is unitary,
1 1
1= 1—= _1__

Q Q 75 | =it i1 (2.7
we have the reverse relationships

gr)=QT§C) E(r)‘r___gc)‘rﬂ . (2.8)

This matrix Q will play an important role in the sequel.
The fundamental commutation relations (2.1) and (2.3)
can now be compactly written as

[E(pr) ’ A(vr)]ziﬁluv ’ (2.98)
(S, 8M=i(2y),,, wv=12,...,2n, (2.9b)
where the 2n X2n matrices B and 25 are given in block
form by

0 1 1 0

é-‘(c)

Actually, since consists just of the @;’s and their ad-

joints, Eq. (2.9b) could be equally well expressed by
[ £c) "(C)] — B
n o v uv
Consider now a real linear transformation on the vari-
ables §;,p; specified by a 2n X 2n real matrix S0

gﬂ__}g-\r'=s(r)§(r) .

(2.11)

(2.12)

The condition that this be canonical means that 5‘”’ must
obey the same commutation relations (2.9a) as do £”.
This places the following condition on the matrix S":

SpsiT=g (2.13)

This is the well-known defining property for the elements
of the real symplectic group Sp(2n,R): the set of all ma-
trices S'” obeying Eq. (2.13) gives us in fact the defining
representation of this group [16,17]. Thus real canonical
linear transformations in 2n dimensions and Sp(2n,R)
matrices are in one-to-one correspondence.

The importance of such transformations for squeezing
problems arises from the well-known fact that unitary
evolutions generated by Hermitian Hamiltonians which
are quadratic in §;,p; (equivalently, in 6].,6;) produce
these very transformations on the canonical variables:

iy — 2(r —
Jii _é‘( )Th (r)g(r)_z er) 2r)Etr)

vou Sv
M,V

(r) —=p (1) —=p ()

hy=hy=hn*,

U =exp(—ifl)
=0T€rlﬁzs(r)(h(r))§(r)

Sk ")eSp(2n,R) .

(2.14)

Expressions for S”(h (") in terms of 4" can be found in
Ref. [14]. The converse is also true: Given any
S"eSp(2n,R), there exists a unitary evolution of the
above type, fixed up to a phase which can be narrowed
down to a sign ambiguity, which transforms §‘” by S,
The relevance to squeezing problems is now clear, since
squeeze operators belong to this class of evolutions.

It is clear that when & undergoes the linear canonical
transformation (2.12), £'°) behaves as follows:

’g‘(c)__}g-‘(c)'zs(c)g-‘(c)
S(c)=ns(r)nf ,
S"esp(2n,R) .

(2.15)

This is determined by the relationships (2.6) and (2.8). It
is important to realize that S'?, though complex,
represents the same real linear canonical transformation
S that appears in Eq. (2.12): it is a complex representa-
tion (in the complex ﬁj,ii} basis) for the real transforma-
tion.

A. Real form for the noise matrix

Squeezing deals with second-order noise moments. We
want to be able to deal collectively with the set of all
second-order moments for any state of a multimode sys-
tem. Earlier studies of such systems have largely concen-
trated on the squeezed coherent states, or two-photon
coherent states (TCS). We shall, however, build up a for-
malism capable of studying noise and squeezing in an ar-
bitrary (pure or mixed) state specified by a density opera-
tor p, with the expectation value of any observable O be-
ing given by {( Q) =Tr(p0O).

Let us assume without loss of generality (see below)
that the state p has zero-mean values for the basic vari-
ables: (£")=(£9)=0. Consider the operator matrix
5"5”’. A general element can be written in terms of the
anticommutator and commutator of its factors thus:
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nanTy  _angtr
(E‘ )E) )yv_gu)gv)
r 2r ]
=HEDE )+ 2B - 2.16)

We now define the 2n X2n real variance (noise) matrix
V") for the state p by

<§m§xnr) =Tr(ﬁ§(r)§(r)r)

:V(r)+i
2B

(2.17)
ytn =~Tr(ﬁ{§”, "(vr)} ).

1
pv 2 H

We can decompose V'” usefully into n X blocks in this
way:

Vi Vs,
Vi v,
vy )jkz(@jak> )

(Vz)jk=%<{@j»ﬁk}) ,

(VJ)jk_—_(p\jﬁk> , j,k=1,2,...,n .

V(r):

’

(2.18)

Thus V', gives the noise and correlations among the §
variables, V; among the p variables, and ¥, comprises
the correlations between §’s and p’s. The submatrices V),
and V; are individually symmetric, and so is V" as a
whole.

The restriction that the state 5 have zero means is easi-
ly removed. For, if p is such that (£”)0, we simply
replace £ by AE"=E"—(£") in Eq. (2.17) in defining
the variance matrix V'”. This corresponds to a rigid
translation of the state in the (quantum) phase space by
an amount —{&"), implemented by the displacement
operator D(—(&'?)) familiar from the context of mul-
timode coherent states. Also, such a rigid translation
does not affect variances.

As we have mentioned in the Introduction, if we had a
classical probability distribution over a classical 2n-
dimensional phase space, the only restriction on a 2n X2n
variance matrix, for it to be realizable, is that it be posi-
tive definite (apart from being real and symmetric). In
the present quantum case, however, V" has to satisfy ad-
ditional uncertainty inequalities. We wish to now derive
them, keeping in evidence always their Sp(2n,R) invari-
ance.

For a single-mode system, the 2 X2 variance matrix is

(@*  a.p})
V(r)= 2 ,

A (2.19)

1({a.p})  (®*
the means being assumed to vanish. The naive statement
of the uncertainty principle,

(@»(p*» =1,

is, as is well known, a necessary consequence of the com-
mutation relation between g and p. It is, however, not
sufficient to characterize the variance matrix completely.
The correct statement for this purpose is

(2.20)

detV'"=(q*)(p*) —[L({a.p}) P =1 . 2.21)
Any V'” obeying this condition is physically realizable as
the variance matrix of some state p. Moreover, the in-
equality (2.21) is explicitly Sp(2,R) invariant (see below).

A special canonical case, which may appear trivial, will
turn out to be the most important case in the multimode
situation, since any multimode variance matrix will be
seen to be reducible essentially to this case. This occurs
when the 2X2 matrix V" in Eq. (2.19) has the diagonal
form

k 0

(r) —
4 0 «

(2.22)

Clearly, the statement (2.20) is adequate in this case, and
the necessary and sufficient condition for this V" to be
acceptable is

k=1 (2.23)
Indeed, for any such k, we can exhibit a thermal state
with variance matrix (2.22) (see Sec. VI).

Now we turn to n-mode systems. Given a state
p with variance matrix V7, _consider the state
pSM=0(s")p0(S"), where 0(S'”) is a unitary
operator implementing the symplectic transformation
S"eSp(2n,R) in the sense of Eq. (2.14). Let V" be the
variance matrix of this latter state:

Tr[p\(s(r))g(r)g(r)T]=V(r)'+%iB . (2.24)
Making use of the cyclic invariance of traces, and Eqgs.
(2.14) and (2.17) in that order, we have

V(r)'+éB=Tr ﬁﬁ(s(r))fgr)gr)Tﬁ(S(r))
=Tr([)‘S(’)§(’)§(’)TS(’)T)

=s(rI+Lip)sIT (2.25)
Finally making use of the defining property (2.13) for
symplectic matrices, we obtain the important result

yirr =g nping(nT (2.26)

We term V" the symmetric symplectic transform of V"
under S'”. This then is the connection between the vari-
ance matrices of two states p and 5(S'”) related unitarily
through the canonical evolution S'”. Incidentally we can
now appreciate the Sp(2,R) invariance of the uncertainty
principle (2.21): indeed, for any n, every symplectic ma-
trix is known to be unimodular, so from Eq. (2.26) the
determinant of V" is a symplectic invariant.

We now tackle the question: Given a real symmetric
positive-definite 2n X 2n matrix V", what are the neces-
sary and sufficient conditions that ensure that it is the
variance matrix of some state of the quantum n-mode
system? A similar question was raised by Littlejohn [18]
in the limited context of Gaussian Wigner distributions,
and solved subsequently by some of the present authors
[19]. The basic principles behind that solution apply to
the present problem as well.

From the arguments leading to Eq. (2.26) it is clear



49 QUANTUM-NOISE MATRIX FOR MULTIMODE SYSTEMS: ... 1571

that if a given V" is physically realizable, then so is its
symplectic transform V'”" given by (2.26), for every
S"esp(2n,R). Conversely, the invertibility of S i
plies the opposite statement as well. If V") does not qual—
ify to be a variance matrix, neither can V" for any
SV esp(2n,R).

This suggests the following approach to solve the prob-
lem: Given V", we look for a symplectic transform V"
which has a particularly simple (canonical or normal)
form allowing us to test by inspection whether it is physi-
cally realizable or not. Then the given V" is a variance
matrix if and only if ¥"" is a bona fide variance matrix.

The existence of such a canonical form is guaranteed
by Williamson’s theorem [15]: For any real symmetric
positive-definite 27 X2n matrix V) there exists an
SV eSp(2n,R) such that the symplectic transform of V"
by S'” has the canonical scaled diagonal form, unique up
to the ordering of the «;,

“’/(r)zs(r)V(r)(s(r))T

=diag (K{,Kpy « « o KprK15Kgy o oo 3Ky ) o (2.27)
Clearly, in the canonical form of V" the 2n phase-space
variables aj, fﬁl are not correlated with one another, and
what we have here are simply n copies of the two-
dimensional example (2.22). It follows that V", and

hence V", is a bona fide variance matrix if and only if

K21, j=1,2,...,n (2.28)

=70
It now remains to write these conditions in a more con-
venient Sp(2n,R) invariant form, so that in implementing
or checking them we may deal directly with V7.

We must note that the transformation (2.26) is in gen-
eral not a similarity transformation, so the «; appearmg
in Eq. (2.27) are in general not the elgenvalues of v
However, Eq. (2.26) combined with Eq. (2.13) 1mp11es
that the product matrix V"B does undergo a similarity
transformation:

(r) (Ny(ng(nT
| 0SS A N

— pig_snylngsn-1 (2.29)
Therefore also the square of V"B transforms by
(VB2 Sy g)s(n)~1 (2.30)

Now when V" takes the canomcal diagonal form V' of
Eq. (2.27), the product V"B takes an off- -diagonal form,
while V(’)B is diagonal:

(VB2 = —diag(k},Kk2, . . ., K2, K5 KE, .. ., K2) . (2.31)
We deduce that k3,2, . . ., k% are the (at least doubly de-
generate) eigenvalues of —(V{"B)?=v"gr"gT Now
this last matrix is in general neither symmetric nor mani-
festly positive definite, and it would clearly be convenient
to have such a matrix for which the eigenvalues are the
Kf for j=1,2,...,n. This is easily achieved. We let
(V"1 denote the unique real symmetric positive-
definite square root of V'”, and subject V'"gy"gT
to a similarity transformation applying (¥"”)~!/2 on

the left and (V'”)!2 on the right. This will not alter
the eigenvalue spectrum at all, so we can say that
k2,63, . .., k% are the (at least doubly degenerate) eigen-
values of the real symmetric positive-definite matrix
(ViN172gyNgT(y(7)1/2 We can now express condition
(2.28) in the following invariant manner.

Theorem 1. The necessary and sufficient condition for
a real symmetric positive-definite 2n X 2n matrix V" to
be a bona fide (quantum) variance matrix is that

4( V(r))]/ZBV(r)BT( V(r))1/2 >1. (2.32)

In passing we note that the conditions (2.28), namely,
k3> 1 for j=1,2,...,n, can be written in an Sp(2n,R)
1nvar1ant form in terms of the Sp(2n,R) invariant traces
Tr(VBVIBTY 1=1,2,...,n. These traces are evi-
dently the sums of even powers of the Kj, aside from a
factor of 2 for /=1, we have the sum of K for =2, the
sum of K ; and so on. The procedure for expressing the
1nequa11t1es (2.28) in terms of these traces is the same as
that developed earlier for a related problem. The details
are given in Ref. [19], so we do not pursue them here.

Let us instead show that our necessary and sufficient
conditions (2.28) and (2.32) can be cast in yet another in-
structive form. For this purpose, consider the Hermitian
matrix

1
Kl ’5

if"’+é/3= (2.33)

~.

The eigenvalues are easily determined because each @; is
coupled only to its own p;, and not to any §; or p, for
k#j. Thus this matrix has the spectrum of eigenvalues

i‘ for j=1,2,...,n. It follows that our condition
(2 28) amounts to demanding that VI +(i/2) )B be posi-
tive semidefinite. Now the transformation

V4 p=st ST (2.34)

V(r)+_i_
23

connecting the two Hermitian matrices is not a similarity
transformation but a real symmetric one by a nonsingular
matrix. Thus,, while it may not preserve the spectrum of
eigenvalues, it certainly preserves positive semi-
definiteness (in fact, it preserves the signature of the ei-
genvalues and the rank of the concerned matrix). We
have thus established the following result as fully
equivalent to (2.28) and (2.32):

Theorem 2. A real symmetric posmve-deﬁnlte 2n X2n
matrix V" is a bona fide (quantum) variance matrix if
and only if the Hermitian matrix V" +(i /2)B is positive
semidefinite:
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V"’+éﬁ20 i (2.35)

We may remark that the necessity of this condition
(2.35) is actually quite obvious when we look at the struc-
ture of Eq. (2. 17) defining V", and also remember that
each entry in § is Hermitian. What is quite nontrivial
is therefore the sufficiency of this condition.

B. Complex form for the noise matrix

To conclude this section we derive some results con-
cerning the complex representation V'€ of the real vari-
ance matrix ¥”. Analogous to Eq. (2.17), and in view of
(2.9), we define V¢ by

(E(c)é‘(c)’f) - V(C)+l23
135
Written out in detail in terms of n X n blocks this reads:
A B
B* A*
A5="1a; e}y,
B, =By;=(a,a,) .

(2.36)

V(c):

>

(2.37)

(Remember again that the means of @; and 6;“ are as-
sumed, without loss of generality, to be zero.) Thus 4 is
Hermitian, so 4*=A47; and B is symmetric, so B*=B".
These imply the hermiticity of V'®. Conversely,

(vo)f=yp© implies 4 Y= 4,and B"=B.

We relate V' to V" easily by using Eq. (2.6):
va=arral, yr=alvia. (2.38)
Here we have also used the connections
0B’ =—is,,
t (2.39)
Q'2,0=if.

Passing between the real and complex forms of the vari-
ance matrix v1a Eq. (2.38) is consistent with the fact that
reality of V" implies the special form (2.37) for V'
Further, the real symmetric positive-definite nature of
V" implies that V'© is complex Hermitian positive
definite. Written out in terms of the blocks of V" and
V¢ we have

A=V +V,+i(VI=V,)],

(2.40a)
B=LV,—V;+i(V]+V,)];
Vi=XA4+A*+B+B*),
V2=é(A—A*——B+B*), (2.40b)

Vi=i(A+A*—B—B*).
Now consider a linear transformation £'9—£'¢’ =§(©§
where S is a complex 2n X 2n matrix. The requlrement
that £ satisfy the same commutation relations as g
can be expressed as a condition on S'° in two ways, cor-
responding to Eqgs. (2.9b) and (2.11), respectively:
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S©s(s) =3, (2.41a)
S BSNT=p . (2.41b)

These are actually equivalent requirements since the real-
ity of S'” implies

($'9)*=32,5z,,
(2.42)
01

2= 11 o

One can verify that, by virtue of Eq. (2.15) connecting
S and S'°, and the properties of 8, =, and 3;, includ-
ing (2.39), the real symplectic nature of S'”, namely, Eq.
(2.13), guarantees that S obeys Egs. (2.41).

Since S and §'© thus represent one and the same ele-
ment of Sp(2n,R), they are generated by the same quad-
ratic Hamiltonian and associated unitary operator.
Indeed we have from Egs. (2.14) and (2.8) (and some
abuse of notation),

U(s")=0(89)=exp(—ifl),

ﬁ g(r) r)g
=£ oty o § c)
Lo opt (2.43)
R =p  pet=p
Thus the complex variance matrices ¥’ and V' for two
states p and p(S”)=p(S'?)) are related by
(C)'zs(C)V(c)(S(C))T . (2.44)

Once again, one may verify that this law is consistent
with Egs. (2.15), (2.26), and (2.39).

Finally, we deal with the necessary and sufficient con-
ditions for a given complex matrix V'? to qualify as a
(quantum) variance matrix. We have already seen that
V9 must be Hermitian, positive definite, and take the
special form (2.37). Beyond this, first note from Eq.
(2.27) that the canonical form V" of ¥'” commutes with
Q, so by Eq. (2.38) the correspondmg canonical form V¢
of V' coincides with V'”

vi=ytn (2.45)

Further the matrices on the left-hand sides of Egs. (2.32)
and (2.35) can be expressed thus in terms of V¢!

4( V(r))l/ZBV(r)BT( V(r))l/2=4QT( V(C))I/ZESV(C)

X 23( V(c) )1/29 ,
(2.46)

V">+é/3=QT( VO+13)Q .

Thus, going back to Egs. (2.32) and (2.35), we arrive at a
complete characterization of V¢

Theorem 3. The necessary and sufficient conditions for
a 2n X2n complex matrix V¢ to be a bona fide (quan-
tum) variance matrix (in the complex representation) is
that it be Hermitian positive definite with the special
form (2.37) and in addition satisfy (one of) the following
equivalent conditions:
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4( V(c))1/223V(c)23( V(c))1/2 >1,

(2.47)
ve+13,>0.
These are a complete statement of the uncertainty princi-
ples in complex representation; and as before with V",
the necessity of the second inequality above is obvious
from Eq. (2.36).

III. U(n) INVARIANCE AND THE n-MODE
SQUEEZING CRITERION

Having completely characterized the variance matrices
of n-mode systems from the point of view of the
quantum-mechanical uncertainty principles, it is now
natural to pose the following question. Given an accept-
able variance matrix, how shall we decide whether it de-
scribes a squeezed state or not? The aim of this section is
to motivate and develop an answer to this question.

It is clear that we need a squeezing criterion possessing
certain desirable properties. Given V'”, suppose one of
its diagonal elements is already less than J. Then we
would like to conclude that the state is manifestly
squeezed. If Vm < 1 for some p, then the squeezed quad-
rature component is g, if u<n, and p,_, if u>n. The
question becomes nontrivial only if Vfuz 21 for all
p=12,...,2n.

For guidance let us turn again to a single-mode system.
To be specific, consider the variance matrix

1 |coshy sinhny

yin=_—

2

for some real 77>0. Both diagonal elements exceed 4, so

there is no manifest evidence of squeezing. Yet we know

that squeezing is buried in this variance matrix, since the

elements here are the variances of the squeezed coherent
state

) (3.1)

sinhn coshy

la;n) =exp [z‘—}(a%a”) la) , (3.2)

where |a ) is any coherent state.

To understand the situation in a form that will help us
to generalize to the n-mode case, we note that Hermitian
quadratic Hamiltonians in the single-mode case are of
two types. The first type, labeled by one real parameter
0, is

ﬁ(o)=%a*a+aa*). (3.3)
It generates the linear canonical transformations
i q —ifl_ g(r) q
e e "1=8'(0) )
P P
Sla | . a
e:ﬁ aT e tﬁ=s(c)(9) a"'] ,
(3.4)
e cosf sinf ]
STOY=1 _ging cos6 )
e —i0
(c) = ]
§5°°(6) 0 e19
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These are phase space rotations: S'(6)ESO(2)
CSp(2,R), which is the same as changing @ by the U(1)
phase e ~“®. The second type of Hamiltonians consists of
a pair of generators labeled by a complex number z:

AGz)=Lza"+z*a?) . (3.5)
Such Hamiltonians give rise to scaling (squeezing) trans-
formations in phase space. The three independent Her-
mitian generators contained in Egs. (3.3) and (3.5) togeth-
er build up, on exponentiation, the well-known squeezing
group Sp(2,R)=SL(2,R)=SU(1,1) for the single-mode
case. [More precisely, they lead to the metaplectic group
Mp(2)].

In technical terms the two types of generators de-
scribed above are, respectively, compact and noncompact
ones. In physical terms, and more importantly for us, the
first (compact) type (3.3) conserves photon number and
hence correspond to passive systems. Examples of such
systems are free evolution, and action by lossless beam
splitters in homodyne detection. The second (noncom-
pact) type of Hamiltonians (3.5), does not conserve pho-
ton number, and hence correspond to active systems.

Now in this single-mode case squeezing is defined
modulo passive transformations of the type (3.4). That is,
one considers not only ¢ and p, but also the rotated ver-
sions @, and P, for all 6, where (§o+ipy)/V2=ae '°. A
state is deemed to be squeezed if, for some 6, either g, or
Do is squeezed. Actually it is sufficient to consider just g,
since Py =qg,,,. We regard §4 and p, for every 6 in the
full range —7 <6 =7 of SO(2) to be just as good quadra-
ture components as ¢ and p since they are related by pas-
sive transformations.

In terms of V'” this means that we look at all the ma-
trices

ve)=s"e)vIserT, (3.6)

obtained from V'” by Eq. (2.26), with $'”(8) going over
the (maximal) compact subgroup SO(2) = U(l) of
Sp(2,R). We see whether for some =26, any one of the
diagonal elements of V"(0) falls below + and so shows
manifest squeezing. (In fact it is enough to fix one’s at-
tention on a specific diagonal element as 6 is varied.) If
the answer is in the affirmative, then the state giving rise
to the original V" is deemed to be squeezed, the
squeezed component being @90 or ﬁgo as the case may be.

For the example (3.1) we find that when 6,= +7/4,
e 0
0 e7

1

v{(6, = 3.7

Thus 7,,,=(q +§)/V2 is indeed squeezed by a factor
e"? below the vacuum fluctuation of 1/\/5, and this is
consistent with (3.2).

To re-emphasize the point: the definition of squeezing
in the single-mode case is set up so as to be U(1) invari-
ant. The variance matrices in (3.1) and (3.7) are U(1) re-
lated, and one views the state with variances (3.1) to be as
much squeezed as the state leading to (3.7), notwithstand-
ing the fact that the latter alone shows manifest squeez-
ing.



1574

These considerations generalize to the n-mode case
governed by the n(2n +1)-dimensional group Sp(2n,R).
The Hermitian quadratic Hamiltonians which are com-
pact generators are combinations of the following n? in-
dependent ones:

t to
%(ajaj—'_ajaj) y ]*1,2,..-
1 T
Naja, +aja;)

s

(3.8)
J@ac—ala), j<k=2...n.

All of these n? operators conserve the total photon num-
ber since they commute with the total number operator

N=73 afa;, (3.9

j=1
so they correspond to passive systems. The subgroup of
Sp(2n,R) generated by these compact-type Hamiltonians
is the n2-dimensional unitary group U(n), as can be seen
from the action on f;‘m. This is the maximal compact
subgroup of Sp(2n,R). Stated in another way, these gen-
erators produce the (maximal) rotation subgroup
K(n)=80(2n)NSp(2n,R) of Sp(2n,R), as can be seen
from the action on £"”.

The remaining n(n +1) linearly independent Hermi-
tian quadratic generators are of the noncompact, non-
photon number conserving type; we can take them to be
@jal+a.a;) ,

1
. (3.10)
L
4
These generators as Hamiltonians correspond to active
systems. Taken together, the expressions in (3.8) and
(3.10) account for the n(2n + 1) generators of Sp(2n,R).
We now display the manner in which the maximal
compact subgroup of Sp(2n,R) can be explicitly seen in
the defining representation of Sp(2x,R). Consider a real
2n X 2n matrix of the form

@faj—a,a), j<k=12...,n.

X Y

S(r)(X, Y): v x

, (3.11)

where X and Y are real n X n matrices obeying

XXT+yyT=1,

(3.12)
XyT=yxT.
We immediately verify that
SIX, VSTX,Y)T=1,
(3.13)

SYX, Y)BS(X,Y)T=8.

Thus such a matrix is both orthogonal (in 2n dimensions)
and symplectic. It is therefore contained in the intersec-
tion

K(n)=S0(2n)NSp(2n,R) . (3.14)

Conversely, every element of K(n), the maximal compact
subgroup of Sp(2n,R), can be written in the form
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SY(X,Y) with X and Y obeying conditions (3.12).

From Eq. (2.15) the complex representation of
S(X,Y)is
s9Ux,V=as"x, Q'
vo (¢)
=lo U+ =§NU), (3.15)
U=X—iY .

The conditions (3.12) transcribed in terms of U read

vut=1. (3.16)

Thus we have established the isomorphism between K(#n)
and U(n):

K(n)=S0(2n)NSp(2n,R)=U(n) . (3.17)

It is necessary to emphasize again that not all rotations
in the 2n-dimensional phase space [elements of SO(2n)]
are canonical transformations. Only those which have
the special form (3.11) are canonical. Therefore we may
refer to K(n)CSO(2n) as the subgroup of canonical rota-
tions.

Let us for a moment view the 2n-dimensional phase
space as R?" and define basis and general unit vectors

e#:(oy 1071707 yO)Ta
X=(X (X0, .- X9,)7, (3.18)
xTx=1

Here e, is the unit vector in the uth direction (g, or

P,—n as the case may be), its column having unity at the
pth position and zero elsewhere. The set of all unit vec-
tors x constitutes the unit sphere $2" ~!. Now it is well
known that SO(2n) acts transitively on S2" ~!. For later
application we now ask whether the much smaller group
K(n) also acts transitively on S2"~!. To answer this
question we shall compute the orbit of some unit vector,
say, e, under K(n), and see whether it exhausts all of
§2" =1 [The orbit of e, under K(n) is the set of all vec-
tors x €5" ! which are obtained from e, by action with
elements of K(n); the group automatically acts transitive-
ly thereon.]

From Eq. (3.11) it is clear that if a canonical rotation
S"(X,Y) leaves a particular @j unchanged, it necessarily
also leaves the conjugate p; unchanged, because the form-
er property means that in the jth row of S!"(X,Y) we
have unity at the jth column and zero elsewhere. The
specific structure of S"(X,Y) then means that in the
(j+n)th row also we have unity at the (j +n)th column
and zero elsewhere. Thus the stability group of e, is just
K(n —1), the group of canonical rotations in the (remain-
ing) 2n —2 dimensions involving §,,p, for k#j. This
means that the orbit of e, under K(n) is the coset space
U(n)/U(n —1), but this is known to be $2* ~:

K(n) U(n)

— — E2n—1
K(n—1) U(n—1) ¢ )

(3.19)
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We have thus proved that not only SO(2n) but also
(the much smaller subgroup) K(n) acts transitively on the
unit sphere $?" !, The reasons in the two cases are
different: in the first case it is because the coset space
SO(2n)/S0(2n —1)=8%""!  in the second because the
coset space U(n)/U(n —1)=82" "1,

We now have all the necessary tools to handle the n-
mode squeezing criterion. Generalizing from the single-
mode case, we have seen that the subgroup of Sp(2n,R)
corresponding to passive systems is K(n). Therefore, as

J
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far as squeeziqg is concerned, we must treat every com-
ponent of & ", and also every component of
EN'=5"(X,V)E" for every S"(X,Y)EK(n), as equally
good quadrature components. Therefore a state is to be
deemed as squeezed if the fluctuation of some component

of &, for some S'"(X, Y), is less than 1 in the concerned
2r)

state. Now the fluctuation in §,” is simply the uth diago-
nal element in the transformed variance matrix
v'=s"(x,Y)v'"S"(x,Y)T. Thus our explicitly

K(n)-invariant n-mode squeezing criterion reads:

V" is squeezed = min [SVX, VVSVX, VT, <L, pE(L2...,2n). (3.20)
s"X, n)EK(n)
This is just the same as the statement
V(" is squeezed =  min [{S"(X, Y)Te#}TV(’){S(’)(X, Y)Te#} <1, pe,2,...,2n),
(X, Y)EK(n)
= min [x TV(’)x]<% . (3.21)
xeS2n—l

It is here in the last step that we made use of the result
embodied in Eq. (3.19), namely, that K(#n) acts transitive-
ly on $?"~!. Finally, we see immediately that this last
form of our squeezing criterion can be expressed in terms
of the eigenvalue spectrum of V', namely, we have the
following theorem.

Theorem 4. A state with variance matrix V" is
squeezed according to the criterion (3.20) if and only if
the least eigenvalue [ (V") of ¥ obeys

(v <3, (3.22)
and conversely.

We stress that our squeezing criterion has been set up
based on the reasonable premise that all quadrature com-
ponents related by elements of the U(n) subgroup of
Sp(2n,R) should be treated on equal footing, since these
compact elements conserve total photon number, and
hence correspond to passive optical systems, while the
rest of Sp(2n,R) corresponds to active systems. As a re-
sult we have a U(n)-invariant squeezing criterion. Fur-
ther, we have been aware all along of the fact that we do
not have at our disposal the entire rotation group
SO(2n), with whose help any V" could have been diago-
nalized, but only the subgroup K(n) of canonical rota-
tions. Hence, as one would have rightly suspected, diago-
nalization of V" just using elements of K(n) is in general
not possible. It is therefore our result on the transitive
action of K(n) on §2" ! that has nevertheless allowed us
to express our squeezing criterion in terms of the smallest
eigenvalue of V7.

IV. CANONICAL FORMS FOR VARIANCE
MATRICES

Now we examine the question of canonical forms for
variance matrices in the context of our squeezing cri-
terion. To begin, we note two obvious simple forms
which, however, for reasons to be made clear, are not
suitable for the present purpose.

Since a variance matrix V" is always real symmetric,
it can definitely be transformed to a diagonal matrix by
conjugation (similarity transformation) with a suitable
SO(2n) rotation. The resulting diagonal elements will be
the eigenvalues of ¥'". However, as already noted, gen-
eral elements of SO(2n) are not canonical transforma-
tions, so the diagonal form achieved in this way is not
relevant to the squeezing problem. Indeed, an SO(2n)
transform of a variance matrix may well fail to be a bona
fide variance matrix. We therefore do not consider this
SO(2n) normal form any further.

There is yet another normal form which is provided by
the Williamson theorem referred to in Sec. II. This form
obtains because in addition to being real symmetric, 14
is also positive definite. Therefore by a suitable element of
Sp(2n,R) the symmetric symplectic transform of V" can
be made diagonal. Recognizing that after achieving diag-
onal form there is the freedom to make reciprocal scale
changes in g; and p; independently for each canonical
pair, we can achieve Eq. (2.27) and call this the William-
son normal form. In contrast to the diagonal form con-
sidered in the preceding paragraph, the present one is
achieved through canonical transformations. Even so
this is not suitable for our present purpose, for two
reasons. First, the diagonal entries in the Williamson
normal form are generally not the eigenvalues of the orig-
inal V", Second, passage to this form makes use in prin-
ciple of the full group Sp(2n,R) inclusive of squeezing
transformations, whereas our squeezing criterion is only
K(n)=U(n) invariant.

Against this background we may ask: What is the most
natural and simplest canonical form into which a general
V" can be cast, if we use only transformations by ele-
ments of the K(n) group of canonical rotations? It is
clear at the outset that this form cannot generically be di-
agonal, because a diagonal matrix has 2n free parameters,
while K(n) is an n2-parameter group. Thus matrices V"
that can be brought to diagonal form using K(n) action
can at the most be an n(n +2)-parameter family. But
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the totality of all V" constitutes an n (2n + 1)-parameter
family, being restricted only by symmetry; and for n =2
this is a much larger family. (The positive definiteness
conditions and the uncertainty principles are all inequali-
ties and so do not cut down the number of parameters).

In this way we are led also to ask the supplementary
question: Is it possible to characterize in a concise
manner the family of variance matrices which can be
brought to diagonal form using K(n) transformations
alone? It turns out that this can be done, and in a rather
elegant way. We shall denote this family of variance ma-
trices by &, reserving for the set of all variance matrices
the symbol §. But before giving a characterization of
8k, we first discuss two subfamilies of &5, to be denoted
by &; and §5. Each of these, then, consists of certain
kinds of V'", diagonalizable within K(n). After dealing
with 8§ and &, we take up &, and thereafter explore
possible canonical forms for general V" in §.

A. The family g

This family consists of those V" which apart from a
factor of ; are also elements of Sp(2n,R):

$e={V'"=1S|S€Sp(2n,R),ST=S,5>0} . 4.1

It is known that symmetric positive-definite symplectic
matrices correspond one-to-one to points of the coset
space @=Sp(2n,R)/K(n). (This is seen, for instance,
from the polar decomposition.) It is a fact that the V"
occurring in the definition (4.1) do obey the uncertainty
principles; this is most easily seen by applying
Williamson’s theorem to S. Finally, it is also known that
this family of Sp(2n,R) matrices can be parametrized glo-
bally and smoothly by two real symmetric n X n matrices
u and v, with u being positive definite:

Sesp(2n,R), ST=S, $>0

—=S=S(u,v)=

! —uv
—vu u+tvu |’
uT=u>0, vi=v.
All this is consistent with the dimensionality of the coset
space O=Sp(2n,R)/K(n), and so of the family &, being
n(n+1).

That & indeed lies within &4 is a consequence of the
property that every matrix of the type S(u,v) can be di-
agonalized through conjugation by a suitable element of
K(n):

S(u,)=RTAR ,
R EK(n), 4.3)
A=diag(s3,53,...,52,57 2,5, %, ...,8, 2)>0 .

[For ease in writing we have denoted by R rather than by
S(X,Y) the necessary element of K(n) here.] Clearly,
the diagonal entries in A are the eigenvalues of S (u,v),
and we see that they occur in reciprocal pairs. It now fol-
lows that the K(n) canonical form of V" €8 is diago-
nal; for any such V', there is a suitable R €K(n) such
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that
( Vo )G =R V(r)R T

2 -2 -2 -2
»SpaS1 580 Ty S, )

= ldiag(s},s3, ... (4.4)
It is now again evident that the elements of 8 do satisfy,
in fact they saturate, the uncertainty principles (2.32),
and thus are indeed bona fide variance matrices. We also
see that except for the isolated case V'"=11€8;, every
other V"€ 8 is squeezed by our criterion.

In passing we may note that this n(n + 1)-parameter
family can be trivially extended to an (n(n +1)+1)-
parameter family of variance matrices of the form o V",
with V"€ 8 and o real positive. The uncertainty prin-
ciple (2.32) imposes the condition 1 <0 < o, and then
o V" is physically realizable.

B. The family 85

In this second special family each element is fully
determined by an n Xn Hermitian positive-definite ma-
trix H subject to further conditions to be derived below:

H=H'=Cc+iD, H>0,
4.5)
C —-D

(r) —

The real matrices C and D are, respectively, symmetric
and antisymmetric. The complex form of this variance
matrix is given by Eq. (2.38):

H O

(c) —
V' (H) o H*

(4.6)

This is a particular case of the general structure (2.37),
with vanishing B. Now, according to Egs. (2.44) and
(3.15), if U=X —{Y is any element of U(n), the effect on
V' 9(H) is simply given by

VOH)—S U)WV H)S (U)

vHU' 0
0 U*H*UT

4.7)

It is this K(n) transformation law, together with the fact
that any Hermitian matrix can be diagonalized by a uni-
tary transformation, that has motivated the definition of
this family &y. Thus the K(n) canonical forms of
V"(H) and V'(H) are obtained by choosing U€&€ U(n)
so that UHU is diagonal, and so are themselves diago-
nal:

U=X—iYeU(n),
UHUT———diag(Kl,Kz, co,K,)
(Vo) =S U)WV IS U)
=sx, V)V "(H)S (X, V)T
L Ky) .

=diag(k, Ky « - - » Ky K1,Kos - -

We see that the eigenvalues Kjy J= 1,2,...,n, of H are
also the doubly degenerate eigenvalues of V'”(H) [and of
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V{9(H)], and the uncertainty principle (2.32) imposes the
condition «;=4, j=1,...,n; that is, it demands
H = (])1. The definition of & can now be given in full

detail as

o
D C

Sy= lV"’(H)= |H=Cc+iD=H'>1

(4.9)

It is evident that by our criterion no element of &y is
squeezed.

The normal form (4.8) of an element in &5 has n in-
dependent parameters. The collection &5 is the union of
the orbits under K(n) of all such variance matrices in
normal form. However, & is an nz-parameter family,
rather than an n(n +1)-parameter family, of matrices.
This happens because a variance matrix in the diagonal
form (4.8) generically possesses invariance under the sub-
group SO(2)XSO(2)X - - XSO(2)CK(n), the n factors
being independent phase-space rotations in the g; and p;
planes for j=1,2,...,n. This is precisely how n param-
eters are lost.

It is easy to examine to what extent the two special
families §; and &y intersect. We have seen above that
every V"' €8}y, is not squeezed, while every V" €8 oth-
er than (1)1 is squeezed. Now the matrix (1)1 is present
in &, too, so we conclude

SeNEy={31} .

This common element is the variance matrix of any n-
mode coherent state.

(4.10)

C. The family §x

We now move up to consideration of this case, having
seen how to characterize 8,8y C8x. The definition is

Sx={V""eSIRTV"R =(diagonal) ,

suitable R €K(n)} . (4.11)

We can see from Egs. (2.18), (2.37), and (2.40) that a vari-
ance matrix V" being diagonal corresponds exactly to
the submatrices 4 and B entering the complex form V¢
being simultaneously real diagonal. It turns out that a
complete characterization of elements V" €& is most
concisely stated in terms of 4 and B entering V‘¢. But
we first state a property of complex symmetric matrices
which is needed for this purpose.

Lemma 1. If M is a complex symmetric matrix of di-
mension n, MT=M, it possesses an Euler decomposition
of the form

M=UTM,U , (4.12)

where M, is real diagonal positive-semidefinite and
UeU(n).

The proof of this lemma is a straightforward analysis
of the process of dlagonahzmg the Hermitian matrices
MMT=MM* and M'M=M*M. Note that while M, in
(4.12) is unique up to the sequence of its diagonal ele-

1577

ments, U is in general not unique. Its arbitrariness is to
the extent of O(n;)XO(n,)X - -+ XO(n;) transforma-
tions, where n,n,,...,n, are the multiplicities of the
distinct eigenvalues of the diagonal My, 3%_,n,=n.

With the help of this lemma, we can characterize the
elements of §x very simply and elegantly. We have the
result

Theorem 5. The K(n) canonical form of a variance
matrix V" ES is diagonal, V"’E&K, if and only if its
complex form V'® has blocks 4 and B obeying
AB=BA*.

Note that the properties AT=4, BT=B allow us to
express the condition AB=BA* in the equivalent form
AB=(AB)".

First we prove the necessity of this condition, and next
the sufficiency (which is where the lemma comes in). Un-
der the action by U EK(n)—U(n) we know from Eq.
(2.44) and (3.15) that 4 —>U AU, B—»UBUT Thus the
rule for AB is AB—UABUY. Further when V" is di-
agonal, we have noted above that 4 and B are simultane-
ously real diagonal, so AB is real diagonal, hence sym-
metric. Hence by the transformation rule just given for
AB, the necessity is proved.

The sufficiency involves a moderate amount of effort.
We begin with Hermitian 4 and symmetric B obeying
(AB)T= AB. Choose U, EU(n) to diagonalize A.

A—A4'=U, AU}

=diag(a,ay,...,a,), a;>0. (4.13)

If the eigenvalues of A4 are nondegenerate, then the con-
dition (A4'B’)T= A'B’, where B'=U,BUT, implies that
B’ is also diagonal. However this could continue to be
complex:

B'=U,BUT
=diag(bye ,bye'™, ..., b,e®"), b;20.  (4.14)
Now follow up the U, action with the action by
—diag(xe 7 1e T te T eum),
4.15)

where the sign at each entry may be chosen independent-
ly. Then we see that

A'—>A"=U,4'Ul=4",
B'—>B'"=U,B'UJ=diag(b,, ...

4.16)
,b,) .

This completes the proof of sufficiency in this nondegen-
erate case: U=U,U, €U(n) carries 4 and Bto A" and
B’’, which are both real diagonal; hence the correspond-
ing S"(X,Y) (where U=X —iY) takes V'” to diagonal
form:



1578 R. SIMON, N. MUKUNDA, AND BISWADEB DUTTA 49

V(f)__,(VO)K:Sw)(X’ Y)V(r)S(r)(X, Y)T
=1diag(a, +by,a,+b,, ...

It is clear that in this nondegenerate case there is a
Z,XZ,X - XZ, freedom in the choice of U, (apart
from the freedom in U, corresponding to the ordering of
the diagonal elements of A’), so this is the nature of the
stability group of the canonical form.

On the other hand, if A4 has degenerate eigenvalues, we
modify the argument as follows. Let the distinct eigen-
values (a;,...,a;) have respective multiplicities
ny,n,,...,n, such that $X_,n,=n. When we pass
from A to its diagonal form A’ through Eq. (4.13), the
condition (AB)T= AB forces B’ into a block-diagonal
form:

A'=U, AU}
:diag(al...alaz...az...ak,.,ak)
—B'=U,BUT

=block~—diag(B(”Bm ce B(k)) ,

dimB@=n a=1,2,...,k . (4.18)

a

Each submatrix B'® along the diagonal is complex sym-
metric. Now we appeal to the lemma stated above and
choose U, EU(n) also in block diagonal form so as to
bring each B'® into real diagonal positive-semidefinite
form:

U, =block —diag(UM'UP - - - U¥)EU(n) ,
Uy euln,),
US"B(a)US"T =diag(b{™,b%", ..., 0,7),

b'>0, B=1,2,...,n,, a=12,... k.

Under the action of U,, 4’ remains unaltered and diago-
nal, while B’ has been carried to B’ which is diagonal
with real non-negative entries. Hence S NX,Y) corre-
sponding to U=U,U,=X —iY € U(n) diagonalizes V",
and the proof is complete.

One can analyze the extent to which each U5 used in
Eq. (4.19) is nonunique by counting the degeneracies in
the diagonal elements b ,b%, ... ,b,‘,Z’ when B'® is

carried to diagonal form. This will then disclose the sta-
bility group of V", but we forego the details. It is evi-
dent that the generic situation in & is the nondegenerate
one described by Eq. (4.17), and then the stability group
of the K(n) canonical diagonal form of V'” is discrete
(we may assume for definiteness that the nondegenerate
eigenvalues of A4 have been ordered, say, as an increasing
sequence a; <a, < ‘- <a,). Since, again generically,
we have 27 independent eigenvalues for V" appearing in
Eq. (4.17), and n? parameters in K(n), we see that ¢ is
an n (n +2)-parameter family.

For V'"E€&; and V" E Sy, respectively, we have ex-
pressed the diagonal forms of V" as in Eqgs. (4.4) and

,a,+b,,a;—b,a,—b,,...,a,

—b,), a;>b;20, j=12,...,n.

(4.17)

i
(4.8). Since 8, &5 CSk, these are special instances of
Ve S§y. It is therefore natural to rewrite the K(n)
canonical diagonal form (4.17) for a general V"€ &y in
this way:

-2

(Vo) =diag(s?iy, ... ,52K,,51 2Ky - - - 55, k,) , (4.20)

with real positive k;,5s;. Now the uncertainty principle
(2.32) translates into k; = 1, and does not involve s; at all.
This is to be expected since the s; do not enter the Willi-
amson normal form (2.27) at all. Indeed, starting from
(4.20) and scaling away the s; we have

VO =diag(k,, ... KoKy -« -3 Ky) 4.21)

Returning to Eq. (4.20), we see that the & subfamily cor-
responds to k; =1, and the § subfamily tos; =1.

It is important to appreciate that the condition
(AB)T= AB is a very stringent requirement on the blocks
of the complex variance matrix ¥'°. Even quite simple
looking variance matrices may fail to obey it. For in-
stance, in the two-mode case, the following variance ma-
trix has recently [20] played an important role in the
study of a new kind of twisted state:

a O 0 ¢

1 0 a —c O
V<”=3 0 —c b o0l @b>0. (4.22)

c 0 0O b

The uncertainty principle (2.32) requires ab—c?>1. It
may be checked that in this example, the further demand
( AB)T= AB forces the equality of a and b.

To conclude this discussion of the family &5, we may
ask how the subfamilies §; and &y obey the condition
(AB)"= AB. For &y, from Eq. (4.6) the submatrix B
vanishes, so it is a trivial situation. In the case of &, it is
a consequence of the symplectic condition (2.41a).

D. The family §

Finally, we turn our attention to &, the full set of all
physically realizable n-mode variance matrices. We want
to find K(n) canonical forms for general V'"€s. We
have shown already through consideration of dimen-
sionality that such a form cannot generically be diagonal,
for K(n) is too small a group and & too large a family.
We now develop two interesting canonical forms.

1. First canonical form

Take a general complex variance matrix V© with
block matrices 4 and B. Choose U,E€U(n) to put
A'=U lAUT into diagonal form. Since we no longer
have the symmetry (AB)T=AB, the resulting
B'=U,BUT does not have any specific form, though it
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will be complex symmetric. Let the diagonal elements of
B’ (when nonzero) have phases e e %, ... ,e'?". Now
choose a diagonal U, €U(n), as in Eq. (4.15), to make the
diagonal elements of B"'=U,B'U7 real non-negative. In
the process A"'=U,A'U ; = A' is unchanged. Then the
combined transformation U=U,U,;EU(n) takes the
original V¢ to a new V(" for which 4" is real diagonal
positive definite and B"' is complex symmetric with real
non-negative diagonal elements. Through Egs. (2.40) this
implies for the real variance matrix V"

Vi +V7y =(diagonal) ,
V;T:V; ,
(V5);=0, j=12,...,n.

(4.23)

The number of independent parameters left here can be
counted as n in V{ +V5; n(n+1)/2 in V{ —V7; and
n(n—1)/2 in V3. This adds up to n(n +1), exactly the
difference between n (2n + 1), the dimension of &, and n?,
the dimension of K(n). Therefore we indeed have in Eq.
(4.23) a K(n) canonical form for general V' €S. How-
ever, none of the diagonal entries in this form is expected
to be an eigenvalue of V', so we turn our attention to
another possibility.

2. Second canonical form

This is constructed by repeated appeal to the fact,
proved in Sec. III, that K(m) acts transitively on S Zm =1
for every m. Given any yiNe§, choose any one of its ei-
genvalues , A, say, and a corresponding normalized real

eigenvector x ):
]

M0 0
o A 0
o 0
R,RVPRIRI= |0 0
o o O
o 0
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V(’)x(1)=klx(1) , A.1>0 ,

4.24)
x(l)Tx(1)=1 .

Transitive K(n) action on S2” ! means that there exists
an element R, €EK(n) [in fact, an entire K(n —1) coset of
elements] such that R, x"=e,, the first unit basis vector
defined in Eq. (3.18). So, transformation by R, reduces
V" to this form:

)\’1 0 PR o O PP . e 0
0 o
0 o
(NpT—
RWVTRI=10 O oo 0
0
0 o

(4.25)

Here the leading matrix element is the chosen eigenvalue
Ay, and all other entries in the first row and first column
vanish.

Now we iterate,and perform a second canonical rota-
tion R, leaving x'', the direction of the new g,
unaffected. As noted in Sec. 111, it is a property of canon-
ical rotations that R, will necessarily leave the new p,
also unaffected. That is, the elements in Eq. (4.25)
marked O are left unchanged by R,. Thus we isolate an
(2n —2)-dimensional symmetrical submatrix in R, V"R T
by dropping the first and (n +1)th rows, and the first and
(n+1)th columns. We can choose R, now to attain

o o 0

o o 0

o o

o o

O o o (4.26)
o o O

o O

It will be realized that A} is not an eigenvalue of the original ¥'” (in general), but of the (2n —2)-dimensional submatrix

of R, V"R T referred to above.

This process can be repeated n times and then one has V" reduced to the canonical form

A, 0
0 Ay
Rn...RlV(r)RlT...RnTz 0
0
0

(4.27)
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That is, in this form the submatrix V| is diagonal, while
V, is lower diagonal with zeros along the diagonal. That
this is a canonical form can be checked by counting the
number of free parameters left: n in the diagonal V,,
n(n—1)/2 in the lower diagonal V,, and n(n+1)/2 in
the symmetric V5, adding up to n(n +1).

While the diagonal elements Aj, A3, ... in Eq. (4.27)
are not expected to be eigenvalues of V", A, is one of its
eigenvalues. For squeezing problems it is natural to
choose A, to be the least eigenvalue of V", so that from
the canonical form (4.27) one can decide by inspection
whether the given V" corresponds to a squeezed state or
not.

V. PHYSICAL EXAMPLES FOR CANONICAL
FORM VARIANCE MATRICES

It is instructive to construct explicit physical examples
to illustrate the various canonical forms for variance ma-
trices derived in Sec. IV. All of them can be reproduced
using ordinary or squeezed thermal states.

Let us consider first the single-mode case. The thermal
state density operator for an oscillator is

p=(1—e Prexp(—pa‘a) . (5.1)

with S=%w/kT the usual thermal parameter. We can
rewrite p'in terms of 7, the mean occupation number:

_ a1
n=Tr(pa'a)= R
ata (5.2)
A1 7
P 1+7 | 1+7

Since p is diagonal in the number representation, both
&(r) and £(c) have zero means, and further V" has a sim-
ple form:

(E7)y=(&" =0,

(5.3)
vi'=diag(n +L,a+1).
Conversely, given a variance matrix of the canonical

form

V" =diag(k,k) , (5.4)

we can associate it with a thermal state of mean photon
number 7 =k — 1 and thermal parameter

B=In[(k+1)/(k—1)]

=2coth™'(2k) . (5.5)
The uncertainty principle limit x> ensures that S is
well defined and non-negative.

The fact that (5.4) is the variance matrix of a thermal
state means that

V"' =diag(s’k,s %) (5.6)

is the variance matrix of a squeezed thermal state with
squeeze factor s and the same thermal factor (5.5) as be-
fore. Indeed, since
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(' — Ny ingnt
yir=8rytrgtos

SV=diag s,l €Sp(2,R) ,
s

(5.7)

(&) coshn sinhn

>

sinhn coshy
s=e’,

where S'¢ is the complex representation (2.15) of the
scaling transformation S'" connecting V" and V"', we
see that V" is produced by the density 6perator

p=08")p0(s")
=(1—e Plexp[ —B{(cosh?n)a‘a +(sinh?y)aa’
+(coshn)(sinhn)(62+6n)}] .
(5.8)

In the single-mode case governed by Sp(2,R)=SU(1,1),
the maximal compact subgroup is SO(2)~U(1). Thus all
phase-space rotations are canonical, SO(2)NSp(2,R)
=80(2), a situation that does not generalize for n > 1.
The K(1) canonical form for a single-mode variance ma-
trix is always diagonal.

The variance matrix (5.6) arose from (5.4) by squeezing
along g or p. If the squeezing was done along a general
phase-space direction, we would get a rotated version
V" of ¥ in (5.6): it would be symmetric positive
definite but nondiagonal. Even for such a general
squeezed thermal state it is true that (detV'”")!”? plays
the role of « in fixing the thermal parameter, while the
fourth root of the ratio of the eigenvalues of ¥'”" would
determine the squeeze factor. In this rotated case
a’+2™ in the exponent in Eq. (5.8) is replaced by
e2%a%+¢ 293" 5o the operator in the exponent multi-
plying —f would be the most general Hermitian quadra-
tic expression in @ and @ consistent with positive
definiteness.

We can summarize these considerations for the single-
mode case by saying that the allowed variance matrices
and squeezed thermal states are in one-to-one correspon-
dence. This connection helps us in the multimode case to
which we now turn. We consider first the family §;.

A. The family 8¢

From the canonical form (4.4) we know that these vari-
ance matrices saturate the uncertainty principle. It is
well known that the only pure states that do so are the
squeezed coherent states, including the squeezed vacuum
as a special case.

Let A be the n-parameter Abelian subgroup of
Sp(2n,R) consisting of diagonal positive-definite ma-
trices. Since any multimode coherent state
le)=la,,ay . ..,a,) has ¥”=11, since the canonical
form (4.4) can be written as

(Vo)e=S;(1DS],

S,=diag(s, ... ,sn,sfl, - ,snﬂ)eﬂ R
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and since S, represents reciprocal scalings along g; and
p; independently for each j=1,2,...,n, we see that
(Vo) can be produced by a squeezed coherent state with
squeezing along g; or p; for each j.

The fact that (V)¢ is diagonal leads to

vnes;=V"=R(V,)sRT, some R€EKI(n),
=1RS,RTRS,RT
=%[S(’)]2 ,

(5.10)
S"=RS,RT=8""TeSp(2n,R) .

Thus the symmetric positive-definite squeeze operator
S"eSsp(2n,R) produces the squeezed coherent state
variance matrix V" €8 from the coherent state value
y{"=11. The last line of Eq. (5.10) is just the Euler
decomposition of the squeeze operator. We have thus
proved that the variance matrix of a squeezed coherent
state is one-half of the square of the unique symmetric
positive-definite squeezing matrix in Sp(2n,R) which pro-
duces that squeezed coherent state from a coherent state.
Since squaring is a one-to-one on to map of the family of
squeezing matrices, we are reassured that the elements in
8¢ and (symmetric) squeezing matrices are indeed in
one-to-one correspondence. Each of these families corre-
sponds to the coset space Sp(2n,R)/K(n).

B. The family 'y

In this case the normal form (4.8) in the multimode sit-
uation corresponds to each mode having a variance of the
form (5.4), with no correlation between different modes.
Thus (V,)y of Eq. (4.8) is produced by a multimode den-
sity operator which is a product of operators of the form
(5.1), one factor per mode:

=11 (l—e_ﬁf)exp(—Bja;raj) . (5.11)
j=1
The thermal parameters are
Bi(k;)=In[(x;+3)/(k;— )], j=1,2,...,n. (5.12)

Different values for the different Bj need not mean
different temperatures for the various modes, since their
frequencies could differ. Going back to general
V(’)Ee?,,, we see that variance matrices in this family
correspond to K(n) transforms of thermal states.

C. The family §x

Comparing the canonical form (¥, )x in Eq. (4.20) with
the single-mode case (5.6) we see that (V) corresponds
to the uncorrelated multimode squeezed thermal state.
Each mode with thermal parameter B;(x;) has squeeze
parameter s;; the modes of the thermal state are single-
mode squeezed by independent amounts and hence
remain uncorrelated even after squeezing. The corre-
sponding density operator, based on Eq. (5.8), is

1581
A T _ 7B _ 2 t
p=TI (1—e ")exp[—B;{(cosh’n;)a;a;
j=1
+(sinh’y,)a;a]
+(coshn; )(sinhn;)
x(@*+a)],
Bj(k;)=Mn[(k;+ 1) /(k;—1)] , (5.13)

n;=lIns; .

Thus the family § can be viewed as arising from K(n)
transforms of uncorrelated squeezed thermal states.

D. The family &

Finally we come to the family & of all possible bona
fide variance matrices V'". As already seen in Sec. IV,
elements in & outside of 85 [being an n (n +2)-parameter
family, & is a subset of measure zero within the
n(2n +1)-parameter family 8] do not admit a diagonal
K(n) canonical form. We have also noted that any
y"e$ admits the diagonal Williamson canonical form
(2.27):

yrnes=— V(r)=(S(r))—I{/(r)((S(r))—l)T ,
V" =diag(k,, k5, - - (5.14)

S"esp(2n,R) .

o KKKy o oo 5Ky )

Comparing this V'” with (V,)y in Eq. (4.8), we see that
the Williamson canonical form of ¥'” is simply a thermal
state with thermal parameters 3 j(K g ). However, the fam-
ily & differs from (and is much larger than) the family &,
because now we allow the full symplectic group Sp(2n,R)
rather than just the canonical rotation subgroup K(n).
Thus & can be viewed as the set of variance matrices of
all states obtained from the thermal state (V) by all
possible elements of Sp(2n,R).

Starting from (¥,)g’s and performing all K(») trans-
formations we obtain, of course, the family §. If again
starting from (¥,)g’s we perform all transformations of
the subset (not subgroup) = CSp(2n,R) defined by

5= s'”esp(2n,R)
S'"=RS,, REK(n), S;€A |’

(5.15)

then clearly we obtain 8. That the K(») canonical form
of a general V€& is not diagonal can now be under-
stood as arising from the facts that a general
S"eSp(2n,R) has the decomposition S”"=RS,;R’, R
and R'€K(n), S; EA, rather than S'”=RS, alone, and
that R’€K(n) does not generically commute with a
(Vo)y and hence acting on (V) produces correlations
between the modes.

It is in this respect that the family & is special. The
Williamson normal form of its elements consists of a fixed
matrix V(’)=%l, corresponding to any coherent state, so
every R’'€K(n) commutes with this V"), Thus we see
why the K(n) canonical form of any V" €S is diago-
nal, even though the full group Sp(2n,R) acts transitively
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TABLE I. Summary of normal forms of variance matrices.

K(n) normal Stability groups Williamson Transitive

Family Dimension form of K(n) normal normal form action by

S nln+1)  Ldiagl...,s7, ..., 87000 discrete | Sp(2n,R)
Sy n? diag(. . .,kj, . o 5o K, L) U XU X - - - XU((1) diag(.. .,k o oo yen Ky ..l K(n)
Y% n(n+2) diag(...,sszj, R ,...,sfsz,..A) discrete diag(. . .,Kkj, - o oy K, L) K(n)

§ n(2n+1) nondiagonal discrete diag(...,k;, . . . ,..,k;,...) Sp(2n,R)

on this family.

To see our results at a glance, we have collected them
in Table I. To conclude this section, we note that the ex-
amples we have given are zero-mean Gaussian states, and
we have provided illustrative density operators for every
conceivable variance matrix. It is the zero-mean and
Gaussian conditions that make our examples unique. But
the variance matrix V" by itself cannot specify the state.
For instance, the multimode displacement operator
changes the mean (first moment) of _E") and hence the
state, without affecting V" at all. Beyond this, two
states with the same means and variances can still differ
in their higher moments. This is yet another respect in
which the family & enjoys a special status. Specification
of a V" €8 determines the state up to a displacement
(first moments). This is so because every V" €8 satu-
rates the uncertainty principle and hence has to neces-
sarily correspond to some Gaussian (squeezed coherent
or squeezed vacuum) state. Gaussian states are fully
determined by first and second moments. Thus there are
no non-Gaussian states with V"€ 8.

VI. CONCLUDING REMARKS

We have presented in this paper a comprehensive
analysis of variance matrices and squeezing properties of
arbitrary states, pure or mixed, of n-mode quantum sys-
tems. The symplectic group Sp(2n,R) underlying the ki-
nematics and dynamics of such systems has been exploit-
ed, and the special role played by the maximal compact
subgroup K(n) in squeezing problems brought out.

The necessary and sufficient conditions on a given
2n X2n matrix for it to be physically realizable as the
variance matrix of some state have been derived and ex-
pressed as simple matrix inequalities. A K(n)-invariant
squeezing criterion has been motivated, and its surprising
connection with the eigenvalues of the variance matrix
made clear. The K(n) canonical forms for general vari-
ance matrices have been worked out, and the subfamily
of those matrices diagonalizable within K(n) has been
characterized in a concise manner. Squeezed thermal
states have been given as examples to illustrate mul-
timode variance matrices and their K(n) canonical forms.

The entire treatment has been given in such a manner
as to apply to the real representation in terms of the

quadrature components §;,p; as well as to the complex
representation in terms of @;,@;. Formulas for passing
between these representations, in a simple form, have
been given. It may be of interest to note that this passage
is strictly analogous to that between the linear and the
circular polarization bases in polarization optics.

We have shown that a multimode state is squeezed if
and only if the least eigenvalue I (V") of its variance ma-
trix V" is less than the coherent state or vacuum fluctua-
tion limit of L. When this happens we can define the

squeeze factor as

1

(squeeze factor)=————— .
V2w

(6.1)

It is also of interest to ask: How many linearly indepen-
dent quadrature components are squeezed? The uncer-
tainty principle demands that m <n. Squeezed coherent
states generically saturate this inequality [see Eq. (4.3)].
It should be noted, however, that there are also other
states which do so. In particular, we can have squeezed
thermal states for which m =n [see the canonical form
(4.20)].

We have shown that for any given variance matrix we
can construct a unique zero-mean Gaussian (squeezed
thermal) state which reproduces it. Since such states
have Gaussian Wigner distributions, it follows that with
every variance matrix there is associated a unique (modu-
lo rigid phase-space displacements) Gaussian Wigner dis-
tribution. Squeezed thermal states correspond to distri-
butions centered at the origin, and displaced states to dis-
placed distributions. It should be appreciated that these
are one-to-one onto correspondences.

In this paper we have only considered quadrature
squeezing. It is of interest to extend this analysis to
higher orders. The next leading one involves the fourth
moments. It may at first appear that analysis of these
(and higher) moments would be considerably more com-
plex than that of the variance matrix. We believe, how-
ever, that judicious exploitation of the Sp(2n,R) structure
underlying the problem in the spirit of the present work,
and due appreciation of the special role played by the
maximal compact subgroup K(n), may render the prob-
lem tractable. We plan to return to this elsewhere.
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