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Feynman's approach to negative probability in quantum mechanics
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Feynman introduces the concept of negative probability in the context of Young s double-slit experi-
ment and in doing so sheds a new light on the problem. However, there are, as Feynman notes, concep-
tual problems as well as insights associated with this point of view. The micromaser which-path
(8'elcher-Weg) detector eliminates these conceptual difficulties. We also emphasize that the concept of
negative probability yields useful insight into the Einstein-Podolsky-Rosen (EPR) problem.

PACS number(s): 03.65.—w

I. INTRODUCTION

Young's double-slit experiment contains the basic mys-
tery of quantum mechanics. In fact, to quote Feynman
[1], it contains the only mystery of quantum mechanics.
The particle goes through both holes. How to think
about this? In a recent paper [2], Feynman shows that
the concept of negative probability may be useful in this
context. Specifically, he considers Young's experiment
from the perspective of "two-state" quantum mechanics
and develops joint quasiprobability distributions ap-
propriate to the problem. These "Wigner-like" distribu-
tions can, of course, be negative; and it is this facet of the
problem which is most interesting in the present context.

There are two aspects to the problem of negative prob-
abilities and Young's experiment. First, one must estab-
lish the quasiprobability distribution to be used for spin
one-half systems. This has been a problem of long-
standing interest to us and our approach [3—6] to the
subject is presented in Sec. II. Secondly, the application
of the spin one-half distribution function to certain corre-
lations involving the two-slit interference pattern is con-
sidered and intriguing results are obtained. However, as
Feynman notes, we here meet conceptual difficulties.
Concerning this second point, we find that our previous
studies on micromaser which-path (Welcher Weg) detec--
tors [7] allows us to sharpen Feynman's treatment and
eliminate the conceptual difficulties, as is discussed in

'Also at Department of Physics, Texas A8cM University, Col-

lege Station, Texas 77843 and Texas Laser Lab, HARC, The
Woodlands, TX 77381.

tAlso at Sektion Physik, University of Munich, Munich, Ger-
many.

tAlso at Max-Planck-Institut fiir Quantenoptik, D-85748
Garching bei Munchen, Germany.

Sec. III. Finally, we demonstrate how these considera-
tions can shed light on the Einstein-Podolsky-Rosen
(EPR) paradox [5,8] in Sec. IV.

II. JOINT QUASIDISTRIBUTIONS
FOR SPIN ONE-HALF SYSTEMS

We here are interested in the question: What is the
joint probability of finding a spin in, e.g., the +z and +x
direction? This is the same sort of question that the
Wigner distribution [8] addresses in that it gives us a
joint probability for p and q.

To this end Feynman simply writes down the joint
probability distributions

P„=-,'[1+(e,)+(e„)+(e,&],

P, =-,'[1+(e,) —(e„&—(&, )],
P, =-,'[I+(e, )+(e„)—(e, )],

=-,'[1—(e, ) —(e„&—(e, &],

(la)

(lb)

(lc)

(ld)

P""'(s„s„)=—(5(s, —o, )5(s„—a„)), (2)

where the (z,x) superscript reminds us that we have
chosen z, x ordering, s, and s are the "classical" parame-
ters associated with the corresponding Pauli operators o',

where, for example, P++ is the joint probability of
finding the system to have its spin along +z and +x
simultaneously, and 0 0'y and o', are the usual Pauli
spin operators.

As we noted, Feynman does not motivate or derive
(la) —(ld). In his words he simply "defines" the joint
probabilities in this way. But why not some other
definition? In fact, there is no unique way to define such
probability distributions.

In considering questions of this type in previous work
[3,4], we developed the associated quasiclassical distribu-
tions in the z, x plane as
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and &„and the 5 functions appearing in Eq. (1) are
defined by their Fourier transforms

which we may write as

5(s) —a 1 ) = fdg[cosg i—8,sing]e (3b)

5(s —a )—: fdge2~ (3a)
Inserting (3b) into (2) we find

P""'(s„s,)=—,'[[5(s,+1)+5(s,—1)]I5(s„+1)+5(s„—1)J
—[5(s,+1)+5(s,—1)J [5(s„+1)—5(s„—1)](&„)

—[5(s, +1)—5{s,—1)]I5(s„+I)+5(s„—1)](&, )

+ [5(s,+ 1)—5(s, —1)] I 5(s„+1)—5(s„—1)] ( &,&„)],
noting that &,&„=i&„andrearranging terms, (4) becomes

P""'(s„s„)=—,'[5(s, +1)5(s„+1)[1—(&, ) —(&„)+i(&) ]+5(s,+1)5(s,—1)[1—(8, )+(&„)+i(8) ]

(4)

+5(s, —1)5(s„+I ) [I+ & a, ) —
& 8„&—i(o, & ]+5(s,—1)5(s„—I)[I+( &, ) + ( 8„)+i ( & ) ]] . (5)

The physical interpretation of the various terms in Eq. (5) is clear. For example, P'+~+', the joint probability of finding
+z and +x, is now associated with s, =1 and s„=1; i.e., with the coefficient of the 5 function pair 5(s, —1)5(s„—1},
which is

P';",'=I+(a, )+(a„)+i(a,) .

But consider the case of x,z ordering defined by

P'""=
& 5(s„—8„)5(s,—8, ) ) (6)

Now everything goes through as before, except that the (&,&„)term in Eq. (4) is replaced by (8 8, ). And since
( &„&,) = —( &,&„)= i (cr )—we have only to replace (o~ ) by —(cr ) in Eq. (5) to obtain P' "(s„s„),that is

P'""(„„)=
—,
' [5(,+ 1)5( „+1)[1—

& 8, &
—

& a „&—
& a, & ]+5(,+ 1)5( „—1)[1—

& 8, & + (8„&—
& 8, & ]

+5(s, —1)5(s„+1)[1+(&,) —(8„)+i(8)]+5(s,—1)5(s„—1)[1+(&,)+(&„) i(&—)]] . (7)

Thus if we consider the symmetric distribution

P(s„s„)= '
fP""'(s„s„)—+P '""(s„s„)]

we find

P(s„s„)=5(s„—1)5(s,—1)P++ +5{s„+1)5(s,—1}P+

P+ =
—,'(1+&&—&2

—cos(8i —82)),

P + =
—,'(1—a&+a2 —cos(8t —82)),

P =
—,'(1—&, —&2+cos(8, —82)) .

(12b)

(12c)

(12d}

III. YOUNG'S EXPERIMENT
AND THE MICROMASER $VELCHER -WEG DETECTOR

where

+5(s„—1)5(s,+1)P +

+5(s +1)5(s,+1)P

Pi+ =
—,'( I+&,+&„),

P+ =
—,'( I+a, —&„),

P +=-,'&1 —a, +a„&,
P =

—,'(1—&, —&, ) .

(10a)

(lob)

(10c)

(10d)

We now Snd

P++ =
—,'(I+a, +&z+cos(8, —82)), (12a)

Finally, following Ref. [4], we give the joint probability
distribution along any two directions 0&, and 02 expressed
in terms of the operators

8, i*8, & =+i+8, ), 1=1,2 .

Next let us recall the micromaser-double-slit setup of
Ref. [7], as per Fig. 1. As discussed in Ref. [7] and Fig. 2,
the passage through hole 1 (2) is always associated with a
photon in cavity 1 (2) which is to say the state i1,0)
( i 01 )). Furthermore, the symmetric (antisymmetric)
states

is) = [ilo)+iol)],
2

is &
= [i 10&—iol &],

1

v'2

(13a)

(13b)

are associated with symmetric and antisymmetric in-
terference fringe patterns.

Now, it is clear that there is an immediate correspon-
dence between the states of the 8'elcher-8'eg detectors
and a spin one-half system, as is summarized in Table I.

Having set the stage, introducing the micromaser-
which-path-detector description of the double-slit experi-
ment, we next use Eqs. (10a)—(10d) to reconsider
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TABLE I. Welcher-Weg detector in photon and spin one-
half notation.
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FIG. 1. Two-slit experiment with atoms. A set of wider slits
collimates two atom beams which illuminate the narrow slits
where the interferences pattern originates.

while w governs the width of the initial Gaussian wave

packet, and, for convenience, we have taken the screen to
be at z =2m' /A, . The wave function 1(I~(g) is obtained by

replacing d ~—d in Eq. (15).
Using the state of the system, as given by Eq. (14) to-

gether with the definitions [(10a)—(10d)] we find

Feynman's question. To quote Feynman: "What is the
joint probability of finding the particle to go through hole
1 and be 180' out of phase with hole 2 (whatever that
could mean)?"

First we note that the question, posed in terms of the
micromaser Welcher-8'eg approach, is more clearly
defined. The joint probability of "going through one hole
and being out of phase with the other hole" takes on a
precise and clear meaning when expressed in terms of the
detector states of Table I. Thus, P+ governs the "prob-
ability" that the atom goes through hole 1 and that the
micromasers are in the state Is &.

We proceed to calculate P+, P++, etc. by writing

the state of the micromaser atom system which, in the re-

gion following the slits, is given by

P++(k) =-,'I: Ie (I)I'+-,'I el(k)0 (I)+'
P+-(I)=-,'I:I0 (k)I' ——,'Ioi(k)ek)+ I j

P-+(k) =-,'I: IA(() I'+-,'

t'ai(k)4z(k)+c

c I j

(16a)

(16b)

(16c)

++

q=q, (g)I 10&+1(,(g)I01&,

where

(14) P

g, (()=N ((—d);(g—d )

4w w
(15)

in which X is a normalization factor, d is the slit spacing

p
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FIG. 2. Two-slit interference pattern at a screen associated
with the state of a micromaser Welcher-Weg detector setup.
The setup of Fig. 1 is supplemented by two high-quality micro-
rnaser cavities and a laser beam to provide which-path informa-
tion. This is accomplished by arranging things such that every
time an atom passes through the pair of micromaser cavities it
leaves a photon in one or the other cavity, thus providing
which-path information, see Ref. [7].

(cI )

P

FIG. 3. (a) Joint probabihty P++ for a particle going
through hole 1 and the Welcher-Weg detector in a symmetric
state Is) given by Eq. (17a); g is displacement on screen. (b)

Joint probability P + for a particle going through hole 2 and

the Welcher Weg detector in symmetric st-ate Is) as given by

Eq. (17c). (c) Joint probability P+ for a particle going through

hole 1 and the Welcher - Weg detector in the antisymmetric state

Is) as per Eq. (17b). (d) Joint probability P for passage

through hole 2 and the Welcher Weg detector in Is ) as -in Eq.
(17d).
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(g) =-,'[let)l' —
—,
' Ill((W (4)+ (16d)

(g —d) + (g +d ) 4/dP++ g
= ,'N —e +e cos

2w 2w w

and inserting the expressions for g& and $2 into
16(a)—16(d) we find

P--r-.t-(k) =P++(k)+P-+(k»

Pe „„„;„,(g)=P+ (g)+P (g),

are, however, everywhere positive as seen in Fig. 4.

IV. NEGATIVE PROBABILITIES
AND THE EPR PARADOX

(1ga)

(18b)

(g —d) (g +d ) 4'P+ g = ,'N —e
2

—e
2

cos
z2w 2w w

(g+d) (g +d ) 4'+e
z

cos
2w 2w w

(g+d) (g +d ) 4'P g =—,'Q e —e cos
2w 2w w

(17a)

(17b)

(17c)

(17d)

Thus far we have seen that the combinations
P++ +P + and P+ +P give us new insight into
Young's double-slit problem. In this section we ask:
What do we learn if we consider combinations like
P+ +P +? As we shall see, the answer is: a new way
to look at the EPR paradox.

To this end let us recall the essence of the EPR dilem-
ma. Following Fry [9] we begin with a spin singlet
formed from, for example, the nuclear spin singlet con-
tained within the Hgz molecule. Now if we "split" the
molecule into its individual Hg atom constituents, the
spin state remains a singlet; that is, the nuclear spins are
described by

(19)

(a)

(b)

(c)
P„,

Equations (17a)—(17d) are the main results of this paper,
and are plotted in Fig. 3.

We note that while each of these probability distribu-
tions may be negative, the physically meaningful con-
structive and destructive interference patterns

even though they are propagating to opposite ends of the
"universe. " The essence of the EPR problem is as fol-
lows.

(1) Pick an arbitrary direction, which we can take to be
the z axis, and pass one Hg atom (say atom 1) through a
Stern-Gerlach apparatus (SGA) oriented along the z axis.
The particle will now be deflected in either the + or —z
direction, say +z.

(2) Knowing that the spin of nucleus 1 is up, we now
know the spin of particle 2 is down. But if we then pass
atom 2 through a SGA oriented along the x axis we will
find that particle 2 has a definite spin along the x direc-
tion (either +x or —x).

(3) Therefore, as the argument goes, we know both the
z and x components of spin 2-in violation of complemen-
tarity.

How and what should we think about this? One ap-
pealing approach is to think carefully through the mea-
surement sequence and its mathematical analog. Suppose
we ask for the simultaneous passage of both atoms
through two SGA's. The first SGA is along the z direc-
tion and the SGA for the second atom is oriented at an
angle 8 to the z axis. Then the eigenstates are ~+z ), for
spin 1 and

Peon l

I+»,=. ' 'I+ &, (20)

FIG. 4. (a) Atoms pass through hole l, leaving photons in
cavity 1, so that state of the Welcher Weg detector is ~1,0-).
The pattern on the screen is the probability P+++P+ . (b)
Atoms pass through hole 2, leaving photon in cavity 2, so that
the state of the Welcher Weg detector is ~0, 1). The p-attern on
the screen is the probability P + +P . (c)
P(g)d „„„;„,=P+ +P destructive interference is found by
asking for total probability given the We!cher Weg state ~s). -
(d) P(g)„„„„;„,=P++ +P + constructive interference is
found by asking for total probability given the 8'el@her-Weg
detectors in ~s ).

or, upon expanding the exponent in Eq. (20), we have

~+8) = o —~t) +8 . 8
(21a)

~

—8)z= —sin —~1)z+cos—~J, )2 .
0 0

(21b)

Now the probability of finding particle 1 deflected in the
+z direction and the second particle deflected in the
~

—8) direction is
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P (+z 8 }=
I {1 8zl@& I' (22}

and from the specification of
~ lb ) as the spin singlet (19)

and using (21b) we find

the single particle joint probabilities P+ and P + are
very different from the two particle distributions which
they are supposed to mimic. However, the symmetrical
version,

P' '(+z„—8z)= —,'(1 —cos8) .

Finally, we note that by symmetry we would expect

P'"( z„—+8,)=P"'(+z„8,)—

(23)

(24}

,'(P—+ +P + ) = —,'(1 —cos8),

is the correct two particle result (23).

V. SUMMARY

(26)

as can be verified by direct calculation.
Next, following Refs. [4] and [5], we return to the sin-

gle particle case as given by Eq. (12). In particular, we
consider the case where o.&=0„i.e., t9&=0 and o2=0.&,

i.e., L92=8, Then the analog of the two particle joint
probability P' '(+z„—8z) is given by Eq. (12c), that is

P~ ~(+z„8,}-—P, =, & 1+8, e, c-os8)-,

and likewise

P' '( —z„+82)~P + =
—,'( I —&, +So—cos8) .

(25a)

(25b)

Physically, the joint count distribution Eq. (23) must be
symmetric (depend only on 8 and not, e.g., the choice of
the z axis) because the singlet state (19) is symmetric.
However, P+ and P + are dependent on ( cr, ), and
therefore on the choice of the z axis. Hence we see that

This paper is summarized as follows.
(1) The spin one-half quantities P++, etc. are naturally

described by a Wigner-like distribution.
(2) The connection with a double-slit experiment is

convincingly made by a micromaser 8'elcher -8'eg setup.
(3) The joint distribution P++ (g) for Young s experi-

ment can be negative but the physical observable
P++ (g)+P + (g) is everywhere positive.

(4) The average ~ [P+ +P + ] corresponds exactly to
the EPR result and provides insight into that problem.
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