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Radiative properties of a two-level system
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Using a first-order approximation in time-dependent perturbation theory, we evaluate the prob-
ability per unit time of spontaneous emission by a two-level system coupled to a Hermitian massless
scalar field in the presence of either one or two infinite perfectly reflecting plates (mirrors). We con-
sider the effects of a finite interaction time between the system and the quantized field. Furthermore,
using the image method in imaginary time, we study radiative processes at finite temperature. We
show that vacuum and thermal fluctuations give independent contributions to the total transition
rate and that both are modified by the presence of the mirrors. In the two-parallel-plate geometry,
we find that the position average of the spontaneous emission rate is equal to the free-space rate for
resonant cavities, but is suppressed in nonresonant cavities.

PACS number(s): 42.50.Lc, 32.80.—t, 03.65.Bz

I. INTRODUCTION

In the derivation of Planck’s radiation law, Einstein
introduced the idea of spontaneous emission, where a
quantum system makes a transition to a lower eigenstate
without external stimulation [1]. Recently, it was exper-
imentally shown that conducting plates can modify the
rate of spontaneous emission of excited atoms [2] as well
as the rate of absorption of blackbody radiation [3]. This
effect was first discussed by Purcell [4], and there are two
different ways to interpret this phenomenor: the first is
based on the modification of the density of modes of the
electromagnetic field from continuous to discrete modes,
by the presence of the cavity [4]. The second is based on
the interaction between the atom and its electric image
reflected on the plates [5]. In the latter case, the changes
on the spontaneous emission rate can be described as a
cooperative effect of the emitter and its mirror image.
The presence of plates affects both the energies of the
atomic levels and the natural lifetime of the states. Using
the method of stationary perturbation, the shifts of the
atom levels can be calculated. In the same way, the tran-
sition probability per unit time of the radiative transition
can be determined by using time-dependent perturbation
theory. For a recent treatment see, for example, Ref. [6].

Recently, some authors determined the rate of spon-
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taneous emission of excited atoms taking into account
the atomic center of mass motion [7]. This can be done
by introducing into the total Hamiltonian the contribu-
tions of the atomic center of mass momentum and po-
sition operators. The resulting total Hamiltonian is a
mixed Hamiltonian in the sense that it has terms that
are Galilean invariants and others that are Lorentz in-
variants. However, there is a way to take into account the
atom’s motion without breaking the Lorentz invariance of
the Lagrangian. It can be done in a perturbative scheme
by not assuming the rotating-wave approximation, i.e.,
instead of using the Glauber correlation function [8], one
may use the positive Wightman function in the response-
function equation. In this way the atom measures the
vacuum fluctuations along its world line. This procedure
can be implemented for atoms in a generic state of mo-
tion, i.e., either inertial or accelerated. In the latter case,
the Unruh effect appears [9,10]. But there are many sit-
uations where the Lorentz invariance is broken even in
the scheme discussed above, as, for example, when plates
are introduced in the system. In the absence of plates,
the Minkowski vacuum is the state which minimizes the
energy subject to the constraint of invariance under the
full Poincaré group. In the presence of plates, the ground
state is a state which minimizes the energy subject to the
constraint of invariance under a subgroup of the Poincaré
group. Therefore the positive Wightman function con-
tains information about how the spectral density of the
field and the rate of spontaneous emission of an excited
atom is modified by the presence of the plates.

In this paper, we continue to investigate the problem of
radiative processes of atoms and detectors by evaluating
the probability of transition between distinct eigenstates
after finite observation time intervals [11-13]. We use
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an oversimplified model in which the atom is represented
by a two-level monopole system coupled to a Hermitian
massless scalar field [9,10]. This is the simplest model
that contains all the ingredients needed to understand
the basic features of the radiative processes. We can re-
gard this as a model for the interaction of an atom with
the quantized electromagnetic field which should repro-
duce the essential spectral features. Of course it does
not contain any information about polarization features.
As noted above, in order to take into account the an-
tiresonant terms in the response function, we use the
Wightman function instead of the Glauber correlation
function of the field. Thus we are evaluating the proba-
bility of transition per unit time from an excited state to
a lower-energy state of the atom induced by the vacuum
fluctuations of the field on its world line. Furthermore,
we determine how the rate of spontaneous emission is
modified by the presence of either one or two infinite
perfectly reflecting plates (mirrors). This will generalize
the results of Davies, Liu, and Ottewill [14]. The radia-
tive processes are also studied in the presence of thermal
radiation, and the rates of spontaneous emission and in-
duced absorption are computed for the geometries of one
and two infinite mirrors.

We would like to emphasize that the general formal-
ism presented in this paper is exactly the same formal-
ism used in the theory of photodetection. In the Glauber
theory of photodetection [8], the antiresonant terms are
disregarded, and the basis of photodetection is just pho-
toabsorption processes. However, one can imagine a non-
standard photodetection scheme, as, for example, the one
suggested by Mandel [15], where the idea of detectors
operating by stimulated emission was proposed. This
concept was later developed by Wilkens and Lewenstein
[16] and Grochmalicki and Lewenstein [17]. Of course,
whether or not to take the antiresonant terms is exactly
the ambiguity in the ordering of the operator products
in quantum mechanics and quantum field theory. This
problem was also discussed by Cahill and Glauber in Ref.
(18], where the idea of s ordering was introduced, in
which a continuous parameter s interpolates from nor-
mal to antinormal ordering in a smooth way. A context
in which the antiresonant terms play a crucial role is
that of accelerated detectors [9,10]. A uniformly acceler-
ated monopole detector coupled to a scalar field in the
Minkowski vacuum has the same response as an inertial
detector interacting with a bath of thermal radiation at
a temperature of 37! = (proper acceleration)/2n. This
behavior is revealed only if one includes the antiresonant
terms. For a careful discussion of this effect see, for ex-
ample, Ref. [19].

This paper is prepared as follows. In Sec. II the rate
of spontaneous emission of the atom in the presence of
a perfectly reflecting plate at zero temperature is cal-
culated. In Sec. III we extend the results of the preced-
ing section in order to consider finite-temperature effects.
We present in Sec. IV the rate of spontaneous emission
and the rate of blackbody radiation absorption in the ge-
ometric configuration of two infinite parallel mirrors at
finite temperatures. Conclusions are given in Sec. V. In
this paper we use units in which A=c=kg = 1.

II. SPONTANEOUS EMISSION
IN THE PRESENCE OF ONE MIRROR
AT ZERO TEMPERATURE

For simplicity we will use the following model. Our
atom will be represented by a pointlike system with an
internal structure defining two energy levels wy and w,
(we —wg = w > 0), with eigenstates |g) and |e), and
with nonzero monopole matrix element between these
two states. This is an oversimplification of the usual
model used to describe the interaction between an atom
and the electromagnetic field. The electromagnetic field
is replaced by a Hermitian massless scalar field and the
dipole operator of the atom is replaced by a monopole
operator. It is clear that the generalization to a multi-
level system with a flat ionization continuum is straight-
forward, but it seems that this is not necessary in order
to understand the fundamental features of radiative pro-
cesses. The coupling between the scalar field ¢(z) and
the atom is given by a monopole interaction Hamiltonian

Hine = cym(1)é(z(T)) (1)

where m(7) is the monopole operator of the atom, ¢(z)
is the scalar field operator, and ¢; is a small coupling
constant between the atom and the field. As we stressed
before, this model was also used by Unruh [9] and DeWitt
[10], as a detector model of scalar particles. It was shown
that a detector moving with a constant acceleration a in
the Minkowski vacuum can be excited. The asymptotic
probability per unit time of the detector to make a tran-
sition to an excited state is the same as obtained for an
inertial detector in contact with a bath of thermal radia-
tion at the Davies-Unruh temperature =1 = a/2n [9,20].
(We use the terms atom and detector interchangeably.)

In order to describe radiative processes of atoms, let
us define the Hilbert space of the system (the field plus
the atom) as the direct product of the Hilbert space of
the field and the Hilbert space of the atom:

H=HsiQHr . (2)
The Hamiltonian of the system can be written as

H = Hy + Hiy:
=Hs+Hp +Hyy (3)

where the unperturbed Hamiltonian of the system Hj is
composed of the noninteracting atom Hamiltonian H4
and the free scalar field Hamiltonian Hr. We can define
the initial state to be

7o) = le) ® |®:) = |e®s), (4)

where |e) is the excited state of the atom and |®;) is
the initial state of the field. In the interaction picture,
the evolution of the combined system is governed by the
Schrédinger equation

.0
igo|T) = HinelT) ()
|7y =U(r,m)|m:) (6)



1380 L. H. FORD, N. F. SVAITER, AND MARCELO L. LYRA 49

where the evolution operator U(r,7;) obeys
U(TaTi) =1 —Z/ Hint(T,)U(TI,Ti)dTl . (7)

In the weak-coupling regime, the evolution operator
can be expanded in a power series of the interaction
Hamiltonian. To first order, it is given by

Urn)=1- z/T dr' Hine (') . (8)

The amplitude probability of the transition from the ini-
tial state |e®;) at 7; = 0 into |g®y) at 7 is given by

(921U (r,0)jes) = —ics | (98 m(r)b(a(r')) e®s)dr,

(9)

with |®) an arbitrary state of the field and |g) is the
final state of the atom. This yields the probability of
transition

P(E,T,0) = cf|(e|m(0)|g)|2F(E,'r,O) ) (10)

where c2|(g|m(0)|e)|? is the selectivity of the atom, and

F(E,7,0) = /T dr' /T dr' e BT =)
0 0
x(:[p(z(r)$(z("))]®:) (11)

is the response function. Here E = tw, where the signs
(+) and (—) represent an excitation process and a decay
process, respectively. Let us suppose that the initial state
of the field is the vacuum state, |®;) = |0). Then in
Eq. (11) we are using the positive Wightman function
associated with the scalar field evaluated on the world
line of the atom. The selectivity of the atom will not
be discussed here because it appears just as a constant
factor in the probability given by Eq. (10) and depends
only on the atom’s internal structure. We are studying
the evolution of the system between two different instants
of time where the initial state is known. We suppose
that at 7 = 7; = 0 the atom is in the excited state and
the field is in the vacuum state, and we want to know
the state of the atom at 7 = 74. One way to arrange
this is to have a finite interval of interaction between
the atom and the quantum field, as in the case of the
switched detectors discussed by Grove [21]. Our response
function corresponds to switching on the interaction at 7;
and switching it off at 7. Note that if A7 = 7, —7; — oo,
then a—g—TF(E, AT) is the spectral density of the vacuum
fluctuations. This is the quantum version of the Wiener-
Khinchin theorem, which asserts that the spectral density
of a stationary random variable is the Fourier transform
of the autocorrelation function.
Let us study the response function given by

F(E,T,0)=/ dT'/ dr'e BT =T G (2(1"), 2 (")),
0 0

(12)

where, in the absence of boundaries, G*(z,z') =
(0|¢(z)P(z’)|0) is the positive scalar field Wightman
function in the Poincaré invariant vacuum state |0) eval-
uated on the world line of the atom. Note that we
do not use the rotating-wave approximation [22-24].
This approximation neglects the antiresonant terms in
the response function. That is, in Eq. (11) this
approximation would replace (®;|¢(z(7'))d(z(7"))|®:)
by the Glauber normal-ordered correlation function,
(®;]¢™ (z(7"))p* (z(7"))|®;), where ¢ and ¢~ denote
the positive and negative frequency parts of the quantum
field. In this case, Eq. (12) would vanish identically when
|®:) = |0), i.e., a purely absorptive detector always gives
a zero response function in the vacuum state of the field.
If we prepare the atom (detector) in the excited state and
the field in the Minkowski vacuum, the Glauber correla-
tion function would appear to predict that the excited
state is stable. Of course, this can be avoided by calcu-
lating the finite energy width of the excited states and
verifying that they are not eigenstates of the full Hamil-
tonian of the system. The use of the Wightman function
avoids the need to do this explicitly in that it is nonzero
even though the quantum state is the vacuum. In effect,
the Wightman function includes the vacuum fluctuation
contributions which are omitted in the Glauber function.

At this point, it is worth commenting upon the rela-
tionship between our scalar model and the case of an
atom which interacts with the quantized electromagnetic
field via an electric dipole coupling. The general forms
of Egs. (10) and (11) will be the same; however, the
monopole moment operator m will be replaced by the
electric dipole moment operator, and the scalar field cor-
relation function will be replaced by an electric field cor-
relation function. (See, for example, Pike and Sarkar
[25].) This latter correlation function may be written as
a sum of the empty-space contributions and a portion of
which is determined by the presence of the boundaries.
The second portion will in general lead to results which
depend upon the orientation of the electric dipole with
respect to the boundary. For example, in the presence
of a conducting plate, we may choose the TE modes to
be those which have no component of the electric field
normal to the plate. These modes will not contribute
when the dipole is oriented normal to the plate, but will
contribute otherwise, thus contributing to the orientation
dependence. The extension of the results of the current
paper to the electromagnetic case is planned to be the
topic of a later publication.

Instead of the interaction picture as described above,
some authors used the Heisenberg picture with the Dicke
spin operators to gain insights into the problem of the ra-
diative processes [26]. Using this picture, and assuming
that the spontaneous decay is a very slow process, one
can identify the vacuum and the source contributions in
the evolution equation of the creation and annihilation
field operators of quanta of the field. This source field
modifies the atom’s characteristics and produces the de-
cay rate. There are many attempts to separate the con-
tribution of each of these mechanisms (vacuum fluctu-
ations and radiation reaction) in the total spontaneous
decay rate. An enlightening discussion is given in Ref.
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[27]. Both pictures yield identical results and are equiv-
alent approaches for the same quantum mechanical phe-
nomenon. The magnitude of these separate effects can
be varied by means of the particular ordering chosen for
counting atomic and field operators. Dalibard, Dupont-
Roc, and Cohen-Tannoudji proposed that the ambiguity
could be removed by requiring the corresponding rates
of variation of vacuum and source fields to be Hermitian
[28]. We prefer to use a more conservative approach in
which both effects are interdependent and we cannot sep-
arate their contribution, although through this paper we
use the expression “radiative process induced by vacuum
fluctuations.”

Equation (12) can also tell us the change in the prob-
ability of transition if we introduce boundaries into the
system. We are interested in measuring the change of
the vacuum fluctuations, evaluated on the world line of
the atom, due to the presence of perfect mirrors. Let
us introduce in the system an infinite perfectly reflecting
plate at z = 0, and suppose that the atom is at rest at a
distance 7/2 from the plate, i.e., its world line is

z#(t) = (7,0,0,n/2) . (13)

The assumption of perfect reflection at the plate is
equivalent to supposing that we have a perfect conduc-
tor plate in the case of electromagnetic fields. However,
real plates are not perfect conductors at arbitrarily high
frequencies. Some authors used this argument to explain
the unbounded nature of the vacuum expectation value of
the renormalized energy momentum tensor of the scalar
field near a reflecting plate [29]. In this paper we will be
working in the high reflectivity limit. The extension for
the case of finite reflectivity is under investigation.

If the initial state of the system at 7 = 7; is |e) @) |0},
the probability, to first order, for the system to evolve to
|9) @ |®¢), where |®4) is an arbitrary final field config-
uration, in a finite time interval AT = 74 — 7; is propor-
tional to the response function

F(B,rpm) = [ ar / " are BTG a(0), ().
(14)

Here
G*(z,2') = Gm(z,2') — Gor(z,2') (15)

is the positive Wightman function satisfying Dirichlet
boundary conditions on the mirror, and Gps(z,z’) is the
positive Wightman function of the scalar field in empty
Minkowski spacetime. Both are evaluated on the atom’s
world line. Introducing the variables ( = 7 — 7/ and
A =7+ 7/, we have

1 1 1 1
T (=i e (=i
(16)

Gt (z,z') =

which, by construction, vanishes at the mirror. Substi-
tuting Eq. (16) into Eq. (14), we obtain that

F(E,AT,T])=FM(E,AT)+F81*(E,AT,77) R (17)

where

FM(E,AT)z—ﬁE _i:dc(A—T(;—_‘—ng;E—(- (18)
and

For(B, 8 = g1 [ BT g

are the empty-space contribution and the correction due
to the boundary, respectively. Here the infinitesimal pa-
rameter ¢ is introduced to correctly specify the singular-
ities of the Wightman function. We define an instanta-
neous rate as R = MFB"Z’—TAZZ, i.e., the transition probabil-
ity per unit switching time, normalized by the selectivity
of the atom. It is given by

R(E,ATr,n) = Rm(E,AT) + Ror(E,AT,7) , (20)

where
1 AT e—iB¢
Ru(E,Ar) = —m/_M dc——_((—ie)z (21)
and
1 AT e—iEC
Ror(E,AT,n) = — ‘/;A—r - —n? (22)

Both the integrals in Egs. (21) and (22) can be evalu-
ated using complex variable methods. Let us first study
Ry (E,AT), which gives the transition rate in empty
Minkowski spacetime. Using the residue theorem and
taking the limit ¢ — 0, we have

AT e—-iE( oo COSEC
N e T e

(23)

Substituting Eq. (23) in Eq. (21), we obtain, after some
algebra, the empty-space rate [12]

Ru(E, A7) = %{—EG(——E) \ cos(Bn)
(-5 Si(lEtAT))} . (29)

where Si(z) is the sine integral function [30]. Equa-
tion (24) has the expected asymptotic behavior when
|E|AT > 1: the spontaneous decay rate (E < 0) is given
by —E/2m and spontaneous excitation (E > 0) is forbid-
den. Figure 1 depicts the behavior of the instantaneous
rate as a function of EA7 [Eq. (24)]. In the limit of
small A7, both rates diverge as 1/Ar. This divergence
may b -egarded as the result of a very short switching
time, which produces a large perturbation in the system.
Alternatively, if we think of this as the result of making
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FIG. 1. The rate of spontaneous emission (continuous line)
and excitation (dashed line) R(FE, At) after a finite observa-
tion time. Note the fast convergence to the asymptotic limit.
For EAT < 27 (here E is the absolute value of the energy)
the rate of excitation is positive, due to the excitation of the
detector by the act of switching.

two measurements on the system separated by a short
time interval, we should expect a large disturbance in
the system to be introduced. Note that when EAT S 1,
the excitation probability becomes significant. Of greater
physical interest is the case of a switching time for which
EAT 2 1. In this case, the energy uncertainty 1/AT
introduced by the switching is less than the level separa-
tion of our detector. The rate which we have defined is
the usual transition probability per unit time when AT
is long. However, more generally it is the derivative of
the transition probability as a function of the switching
time.

In order to calculate the correction in the rate due to
the mirror, Ror(E,AT,n), let us divide the integration
range into [—~A7,0] and [0, A7]. Changing the integration
variable in the first interval, we get

1 AT e—iE(
ke [ U
1 AT
= —Re/0 d¢f(E,n,(€) . (25)

272

Rar(E, AT, ’I))=

The function f is analytic except at the points {n +
te,—n + ie}. For 0 < At < 7, the limit ¢ — 0 can
be taken directly. In this interval, Ror(E, AT,7n) is con-
tinuous with respect to A7 and is given by

1 ar cos E¢
Ror(E,AT,n) = m/o d(m . (26)
Note that Ror(E,AT,n) # 0 for AT < 7. This appears
to be an acausal effect, as an emitted photon does not
have time to travel to the mirror and be reflected back to
the atom. However, it can be interpreted as due to the
fact that the presence of the plate modifies the quantized
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field to which the atom is coupled. The atom is not
really interacting directly with the plate so much as it
is interacting with the modified vacuum fluctuations in
the atom’s vicinity. Note that in this case it is better to
regard the atom as coupled to these vacuum fluctuations
than as interacting directly with its image.

The contribution of the plate to the rate of sponta-
neous radiation for A7 > 7 can also be computed and
straightforward calculations yield

1 sinnE 1 [ cosE(
Ror(E, AT, 1) = z—ﬂe(—E) o d<<2 e
(27)

The function Rsr(E, AT,7n) is plotted in Fig. 2 for a fixed
value of 7. Note that it has a light-cone singularity when
A7 = 7. This response arises if a signal emitted by the
detector when it is switched on is reflected by the mir-
ror and returns just as the detector is being switched off.
The singularity is presumably an artifact of our approxi-
mation of sudden switching, and Rsr would be finite for
a smoothly switched detector. The total asymptotic rate
of spontaneous radiation is then obtained by substitut-
ing Egs. (24) and (27) in Eq. (20) and taking the limit
AT — o0, resulting in

lim R(E,Ar,7) = :de(—E) (1 - S“;gE ) . (28)

AT—00

This agrees with the result of Davies et al. [14]. In Fig.
3 we plot the asymptotic rate as a function of E7n. As
we impose that the field vanishes at the mirror (Dirichlet
boundary conditions), the rate vanishes at n = 0. As
usual, there are regions where the rate of transition is
suppressed and regions where it is enhanced.

02 T T T T T T T T T T T T T

©
I
]

2mRar(E,AT,1)/E

-0.1 Il 1 Il 1 | 1 1 | 1 1 1 1

EAT/2m

FIG. 2. The function Rsr(E,AT,n) for nE = 10. It be-
comes singular as the observation time interval A7 approaches
7, the round-trip light travel time to the mirror.
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FIG. 3. The asymptotic rate of spontaneous emission in
the presence of a perfectly conducting plate as a function of
the atom distance to the mirror. It vanishes as En — 0 by
construction, and for En — oo we recover the free atom result.
Here E is the absolute value of the transition energy.

III. SPONTANEOUS AND INDUCED EMISSION
AND BLACKBODY RADIATION ABSORPTION
IN THE PRESENCE OF ONE MIRROR
AT FINITE TEMPERATURE

In this section we generalize the above result for the
case of finite temperature, i.e., we will consider the scalar
field and the mirror as a system in thermodynamic equi-
librium with a thermal reservoir at temperature 8~1. Us-
ing the image construction in imaginary time, we obtain
the temperature-dependent Green’s function evaluated
on the world line of the atom [31]:

no_ 1 5 1
Cs(=2) = — 3 k:z_:w (C+ iBk — ic)?

oo

1 1
(=D D oy s v S G

k=—o00

Substituting Eq. (29) in Eq. (14) we obtain

Fg(E,Ar,n) = F(E,AT) + Fi(E,AT,B)
+FII(E’AT1 77;/6) ) (30)

where F(E,AT) is the zero-temperature result given by
Eq. (17), and

(AT — [(])e*¢
(C+ipk)? 7

(31)

1 ad AT
R(B,Am8) =15 3 '/A d(
k=—o00 Y TAT

_ LG AT (AT = (et
Fu(E,AT,n,0) = mk;oo /;A,dc(c—'i'm
(32)

are the temperature-dependent empty-space and the
boundary terms, respectively. The prime sign indicates
that the term k& = 0 is excluded. The instantaneous rate
of radiation is now given by

Rﬁ(E7AT17]) = R(E:AT) + RI(E) ATnB)

+RII(E7AT’77’/3) ) (33)
where
1 oo AT e—iEC

R(E,ATB) =—— ) ' A s
I( ) T?ﬂ) 47r2k=z_:°° [A-r C(C-‘l—‘tﬂk)z ) (34)

Ru(E, A Log [Ty e
II( y T,naﬁ)_ Zﬁkzz_oo [—AT C(—C?Bk_)f;]i ’
(35)

and R(E, Ar) is given by Eq. (20). Equations (34) and
(35) give the finite-temperature correction for the total
transition rate.

Using the residue theorem the asymptotic rate can be
obtained to be

lim Rg(E,Ar,n) = |B|

AT—00 2

1
O(—E) (1 s E 1)
+9(E)e—ﬂE—1;—1]

x (1 - Si‘;’j”) . (36)

Davies et al. [14] calculate the response of an accelerated
detector near a reflecting plate. However, unlike the case
of an accelerated detector in empty space, the result is
not the same as that for an inertial detector in a thermal
bath. For E < 0, Eq. (36) gives the asymptotic rate of
decay induced by both vacuum and thermal fluctuations.
Note that the total rate is just the product of the contri-
butions of these two processes, indicating that they occur
independently, and are affected in the same way by the
presence of the mirror. For £ > 0, we have the rate of
induced absorption of blackbody radiation.

IV. SPONTANEOUS AND INDUCED EMISSION
AND BLACKBODY RADIATION ABSORPTION
IN THE PRESENCE OF TWO MIRRORS
AT FINITE TEMPERATURE

Now let us confine the atom between two infinite par-
allel plates at z = 0 and z = ¢ (again the position of
the atom is ¢ = y = 0, z = 7/2). Using the image
method (assuming perfectly reflecting plates), the posi-
tive Wightman function evaluated on the world line of
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the atom is given by

N 1

1 «— 1
i 2 - ozp )

Substituting Eq. (37) in Eq. (14), and using the same
techniques as before, the rate of spontaneous emission
can be exactly evaluated. The asymptotic rate [14] is
given by

. _ —EO(-E) ks
alm R(B, A D) = —— k_z_
sin2kE{  sin E(n — 2k{)
2kE¢ E(n —2kf) ’

(38)

and is depicted in Fig. 4 as a function of the plate sepa-
ration for several atom positions. The rate is a discontin-
uous function of E¢, which is due to the discreteness of
the wave number in the direction normal to the mirrors.
For cavities where |E|¢ < 7 the spontaneous decay rate
is zero. The behavior for the two mirror case is charac-
teristic of the radiative process inside cavities in general
[32]. It reflects the discontinuous spectral density for the
Casimir energy for this geometric configuration [33]. In
some experimental arrangements the atomic beam sam-
ples all the space between the plates, and the measured
rate of transition is then an average over all atom posi-
tions. Taking the average in Eq. (38) over 0 < %17 </,
the resulting series can be exactly evaluated using the
identity

oo a

2

f(z + ka)dz = /_‘” f(z)dz . (39)

After a straightforward calculation, we obtain

: _ |E] y
Alrlgloo<R(E’ £,AT)) = o 1+ Y , (40)

where Ef = m(n+y), n = 0,1,2,...,, 0 < y < 1, and
() stands for an average over the atom’s position. The
mean asymptotic rate behaves as depicted in Fig. 5 as
a function of Ef. Whenever E{/m is an integer, which
we can label as a resonant cavity, the mean rate has a
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FIG. 4. The asymptotic rate of spontaneous emission in
the presence of two parallel plates as a function of the cavity
size for (a) /£ = 1 (the center of the cavity); (b) /£ =1/2,
and (c) n/f=1/4.
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discontinuous jump and reaches a value equal to the rate
of transition in the free space. In nonresonant cavities,
the mean rate is inhibited and consequently the mean
lifetime of the excited state is enhanced.

Again, if we suppose that the field and the plates are
in thermal equilibrium with a reservoir at temperature
B~1, we obtain

]

|E] 1

. _ 1 > [sin2Ek¢

2T

Equation (42) is in turn a generalization of the results
given in Eqgs. (28), (36), and (38), which can be recovered
by taking the appropriate limits. Note that the effects of
the presence of the boundaries and of the finite tempera-
ture are multiplicative. In the low-temperature limit, we
obtain the vacuum result, Eq. (38), multiplied by a cor-
rection factor which approaches unity as T = 8~! — 0.
In the high-temperature limit, the dominant feature of
Eq. (42) is the first, S-dependent, factor. It is multiplied
by the discontinuous ¢-dependent factor, however, in the
limit T' — oo (8 — 0), the peak of the thermal spectrum
is at values of E > £~1, where this latter factor is very
close to unity.

V. CONCLUSIONS

In this paper we discussed the radiation process in
atomic systems, using first-order time-dependent pertur-
bation theory. Using a simple model of an atom consist-
ing of a two-level system interacting with a Hermitian
scalar field, we obtained the rate of spontaneous emis-
sion after a finite observation or switching time A7.

We also evaluate the asymptotic rate of transition in
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FIG. 5. The mean asymptotic rate of spontaneous emission
as a function of the size of the cavity. Note that in resonant
cavities the mean rate is the same as the rate at the free space.
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Rg(E,Am,n,8) = > [Ru(E,Ar,n - 2k, )
k=—o0

_RII(E7 ATv 2k£7 ﬂ)] ) (41)

where Ry is given by Eq. (35). The asymptotic rate is
given by

sin E(n — 2k{)
E(n — 2k¢)

. (42)

the presence of one and two infinite perfectly conducting
plates at zero and finite temperature. We obtained that,
in the limit of large A7, the vacuum and thermal fluctua-
tions act independently, leading to a total rate that is just
the product of the contributions of the two processes. It
is also shown how the presence of mirrors affects the rate
of absorption of quanta of the thermal field. In the geom-
etry of two parallel plates we found that the spontaneous
emission rate displays discontinuous jumps. This behav-
ior can be interpreted in either of two ways: The first is
that the phase space available for emission of quanta is
modified by the presence of the boundaries. Emission is
suppressed when there are fewer modes into which the
photon may be emitted. The second viewpoint regards
the effect of the mirrors as modifying the vacuum fluctua-
tions which are necessary for spontaneous emission. The
points where the graph in Fig. 5 dips below unity are
situations where the fluctuations measured by the atom
in its world line are suppressed relative to empty space.
The mean transition rate, averaged over all positions for
the atom, reaches a maximum value in resonant cavities
which is equal to the free-space rate. For nonresonant
cavities the mean transition rate is always inhibited.

The simple model used in this paper has then all the
fundamental radiative properties of real systems. In this
way, it is valuable to use it in order to explore other prob-
lems concerning the spontaneous radiation phenomenon.
A natural extension is to generalize the results presented
in this paper to the case of moving mirrors [34]. We can
also replace the monopole system by a harmonic oscilla-
tor [35]. In this case the nonlocalized harmonic oscilla-
tor’s wave function introduces new interesting problems.
The above topics, as well as the electromagnetic case, are
under investigation.
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