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Stability analysis allows the understanding of experimental steady and pulsed regimes observed
in cw-pumped Brillouin fiber-ring lasers. The instantaneous acoustic response model proves to be
singular, while the coherent stimulated-Brillouin-scattering (SBS) three-wave model yields a well-
behaved Hopf bifurcation for a critical value of the feedback (several percent in intensity). The
computed nonlinear dynamics shows self-organization of asymptotically stable Brillouin pulses, not
depending on the initial noise. Further experiments support the bifurcation.

PACS number(s): 42.65.Es, 42.50.Rh, 42.60.Da, 47.20.Ky

I. INTRODUCTION

Recent observation of dissipative superluminous soli-
tons in a Brillouin fiber-ring laser [1], whose nonlinear
dynamics is well described by the one-dimensional (1D)
coherent three-wave model of stimulated Brillouin scat-
tering [2-5] (SBS), raises the question of the physical
mechanism giving birth to such intense and short coher-
ent structures in the backscattered Stokes wave, when
the ring cavity is simply cw pumped. Ultracoherent cw
Stokes output has been obtained for strong feedback [6],
but with moderate coupling cw-pumped SBS resonators
are essentially unstable [4]. It is known that both steady
state and periodic oscillations may arise in a single-mode
optical fiber with weak external feedback [7,8]. Steady,
quasiperiodic, and even chaotic dynamics may take place
when more than one cw pump beam is present [3]. Burst-
ing oscillations and weak chaos can also be obtained for
small enough feedback [9], but up to now no generic sce-
nario has been proposed for the generation of asymptoti-
cally stable Brillouin pulses. We show in this paper that
this stability is related to the finite material response
time. The instantaneous acoustic response model yields
a singularity due to the appearance of infinite frequency
spectral components.

By using the coherent three-wave SBS model, we show
here that a Hopf bifurcation takes place with the feed-
back R as the control parameter. For a given SBS gain,
an initial condition-independent critical value R..;; sepa-
rates two regimes: (i) above Rt the cw-pumped system
evolves towards the well-known steady “Brillouin mirror”
regime [4,10], where monotonic backscattered amplifica-
tion in the optical medium is saturated by the monotonic
depletion of the forward propagating pump; (ii) below
R_;it, self-organization of an asymptotically stable train
of backward propagating “Brillouin solitons” [1] takes
place. A morphogenesis scenario is shown in Fig. 1: The
mirror regime becomes unstable for small enough feed-
back and the backscattered Stokes wave localizes into a
soliton structure. Close to R, both the steady and the
pulsed regimes are reached after very long transients; this
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could account for the difficulty of their characterization,
either numerical or experimental.

Within the “strong acoustic damping” approximation
[10,11], Bar-Joseph et al. [7] performed a stability anal-
ysis for a line fiber cavity by perturbating the optical
intensity equations. They showed that unstable oscilla-
tions appear for subcritical feedback and that relaxation
oscillations occur in the stable domain. However, we shall
see that this instantaneous response model breaks down
at R = R.;: and is inappropriate to describe the finite
amplitude oscillatory regime; it only allows energy trans-
fer from the pump to the Stokes wave and may yield a
singular evolution for the Brillouin pulse in the unstable
regime by indefinitely growing its amplitude and shrink-
ing its width [2]. At the bifurcation the infinite frequency
mode becomes unstable, closely followed by all other cav-
ity modes. This clearly violates the slowly varying enve-
lope (SVE) approximation implicit in these models.

This anomaly is overcome in the three-wave model:
Only the fundamental mode (of period neighboring the
cavity transit time nL/c) becomes unstable at the bifur-
cation; the higher harmonics are destabilized for lower
values of R, with the fundamental mode still presenting
the maximum growth rate. We obtain a well-behaved
Hopf bifurcation suitable for a normal-form analysis [12].
In the nonlinear regime, anti-Stokes energy transfers are
responsible for partial self-induced transparency: the
generated Brillouin pulse saturates at a finite amplitude
and width by transferring part of its trailing edge energy
back to the pump, therefore propagating like a soliton
(1,5].

II. STABILITY ANALYSIS

The nonlinear SBS process resonantly couples trough
electrostriction a pump Ep(wp, kp) and a backscattered
Stokes Eg(wp, kp) wave with an acoustic wave Ey(wq =
wp — wp, ko = kp + kB). Neglecting the acoustic prop-
agation of speed c, < c, one obtains within the SVE
approximation three coupled SBS equations for the com-
plex amplitudes [2-4]:

1344 ©1994 The American Physical Society



49 BIFURCATION IN A cw-PUMPED BRILLOUIN FIBER-RING . .. 1345

FIG. 1. Morphogenesis of
the Brillouin soliton: For R be-
low critical the steady SBS mir-
ror becomes unstable and the

system bifurcates towards the

time dependent localized pulse
regime for the backscattered
Stokes wave (spatial distribu-
tions inside the optical medium
at different times).
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where v, (7,) is the damping coefficient for the optical
(acoustic) waves and K is the SBS coupling constant [4]
(cf. Table I).

The instantanous acoustic response model is obtained
by neglecting the acoustical dynamics (0;F, < v.FEa)
yielding the intensity equations

[63 + (n/c) (aﬁ + 273)] Ip = —ngIB,
[z — (n/c)(8: + 2ve)]Is = —gI, 1B, (2)

where I, g = (neoc/2)|Ep g|? and g = 4K?2/(y,€0c?) is
the usual SBS gain coefficient [4].

We shall consider a cw-pumped fiber ring cavity of
length L, in which the recoupling of the pump wave is
avoided by an intracavity isolator. This device is inde-
pendent of the recoupling phases [13]; the problem is re-
duced to one control parameter, namely, the Stokes in-
tensity feedback efficiency R = |p|?> < 1. The amplitude
boundary conditions are

E,(0,t) = Ecw , Eg(L,t) = pEg(0,t).

Here we will also study the stability of the oscilla-
tor by using the linear perturbative equations system
around the nonlinear steady solution which is common
to both systems (1) and (2), but now taking into ac-
count the finite time dependent acoustic response given
by system (1). By defining the sum 2§ = I, + Ip
and difference 2D = I, — Ip variables in dlmensmnless
units (Ip./Icw — Ip,B, zgl.w = z, Lgl.w — L, and
tcglow /n — t), the steady-state solution without optical
attenuation (y. = 0) reads

D = const # 0,
(So + D) exp(2Dz) + So — D 3)
(So + D) exp(2Dz) — So+ D’
and S(z) = 1/[(1/So) + z] for D = 0. Inserting the
boundary conditions [So =1-Dand Sy =R+ (1-
2R)D] into Eq. (3), we obtain

Rexp (2DL)=R+2(1- R)D. (4

)
The SBS laser threshold (Ig = 0, ie., 1)

S(z) =D

thus reads Ring = exp (—L). Through I (w t)
If*(z) + 0I;(z) exp(—iwt) (i = p,B,a), where It =
I () Ig (z) /u?, b = Yo/ KEcw, and w is the dimension-
less complex eigenfrequency (defining instability for Im
w > 0), the perturbative equations read

(—iw + 0;)81, = —f(w) 6(IpIB),
(—iw — 8,)8Ip = f(w) 6(IpI5), (5)

with

fw) = [1=i(w/u?)]/[1 - 2i(w/p?)]

for the discrete set of frequencies (Re w) which are so-
lutions of the eigenvalue problem and define the longi-
tudinal modes of the SBS ring cavity. For the funda-
mental mode |Re w| ~ 2w/L, we have 2|Re w|/p? =
2mef/(Lyan) (~ 7/100 in our experiments [1,4]). The
perturbative equations in the (S, D) variables read

iw 6S = 8,6D, (6a)
8226D + 25(z) f(w)8z6D + [w? — 2if(w)wD]éD =0,

(6b)

with the boundary conditions §D(0) = —4S(0) and

3S(L) — 6D(L) = 2RES(0).
the variable change [14]

Introducing in Egs. (6)
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Y = (S, sinhDz + D coshDz)f6D

and S(z) given in (3), Eq. (6b) becomes the complex
eigenvalue equation

Y"+[(w—ifD)’ - f(1- f)(D*-$*)] Y =0. (7)

In the intensity approximation (w/u? — 0), f = 1, and
Eq. (7) is an harmonic oscillator equation of frequency
Q = w — iD; the (8I,,0Ip) eigenmodes are easily cal-
culated. Then, with the above boundary conditions, we
find a characteristic equation for w as function of R, D,
and £ [themselves related through Eq. (4)]:

A(w) + B(w) sin wL + C(w) cos wl =0, (8)
where
A =2w(w —1iD),

B = 2iw? + byw + ibo,

C = —2w? + ibw,

by = -1+ R+2D(2 - R),

by = (1-2D)[R+2D(1 - R)].

The marginal stability (Im w = 0) of the fundamental
mode is shown in Fig. 2 where we plot R as a func-
tion of the gain length £ in curve (a) for this intensity
model [yielding critical values close to those of the three-
wave model, shown in curve (b)]. We plot in Fig. 3(a)
the solutions in the complex w plane, giving the growth
(Im w > 0) and damping (Im w < 0) rates for differ-
ent values of the feedback R and for a given gain length
L = 8. At the bifurcation (Rcrit = 0.024 28) the highest
frequency modes become unstable (|Re w| — o0), and by
decreasing R all the cavity modes (|Re w| = 2N#/C; N
is an integer) become successively unstable down to the
fundamental mode at R = 0.02104. The SVE approxi-
mation obviously breaks down. Nevertheless, this model
gives simple estimations of the critical parameters, such
as

Ry ~ [3 exP(‘C/3) - 2]_1 s
through the singular relationships
w? = (2D* - D/2 + 1/4)(1 — 4D)/(6D — 1),
w tan(wLl/2) = (1 — 4D)/2,

Dcrit = 1/6 )
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FIG. 2. Marginal stability of the fundamental mode: bi-

furcation curve [(a) intensity model and (b) three-wave model]
separates stable and unstable domains in the (R, £) plane.
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FIG. 3. Stability analysis: growth (damping) rate vs os-

cillation frequency for several R above and below critical: (a)
intensity model, singularity (|Re w| — 00) at R = Rerit, (b)
three-wave model, well behaved Hopf bifurcation of the fun-
damental mode |Re w|L ~ 2m.

obtained from the complex Eq. (8) for Im w = 0 and
R <« 1. R, simply follows from Eq. (4) for D ~ 1/6.

This high frequency divergency is overcome in the
three-wave model, which introduces the finite acoustic
response through the renormalization of w by the com-
plex factor f(w). First of all, we have solved the eigen-
value problem of the harmonic oscillator with complex
frequency Q' = w — if(w)D, by neglecting the potential
term f(1— f)(D? — S?) in Eq. (7) [since f(w) ~ 1]; this
yields a characteristic equation similar to Eq. (8), de-
pending on f(w) = f,(w) + ifi(w), where the coefficients
have additional terms, namely,

Alw, f) =2w(w—1ifD),
B(w, f) = 21(.1.12 + blw + if,-blu) + 'Lb3 + b4,
C(U.), f) = —2(4)2 - blf,-w + iblw )

by = (1— f2)by, ba=—2fiba.

The results show that the bifurcation is no longer singu-
lar [Fig. 3(b)]. Now, indeed, just under R only the
fundamental mode, which satisfies the SVE approxima-
tion, is unstable. For £ = 8 we obtain R = 0.023 20,
which is close to the critical value destabilizing the fun-
damental mode in the intensity model (Fig. 2), but here
the higher modes are stable. Decreasing R, a small num-
ber of modes become unstable. This is numerically con-
firmed in the nonlinear regime, yielding asymptotically
stable solitonlike pulses; its Fourier spectrum contains a
finite number of modes [e.g., eight pairs in the case of

Fig. 4(c)].
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FIG. 4. Temporal behavior of the out-
put Stokes Ep(0,t) amplitudes solution of
Eq. (1) [for £ = Lgl.w = 8, u = 7, and
Ye/Ya = 107%]: (a) R = 0.036 > Ry, evo-
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lution towards the mirror regime; (b) R =

0.032 ~ R, longer transient near the bifur-
cation; (c) R = 0.022 < Rc:: solitonic mor-
phogenesis (zoomed for the asymptotic side).
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III. NUMERICAL THREE-WAVE DYNAMICS

For a given gain length £, the Stokes feedback fully
determines the two asymptotic states, starting from any
initial noise conditions. The nonlinear dynamics gov-
erned by Egs. (1) is shown in Fig. 4, for three feed-
back values around critical; R is about 30% higher
than the analytical value, due to the optical attenuation
(Ye = 1073y,) included in the numerical model. Start-
ing from the same initial conditions (very small acoustic
phase noise E, = 10~!! corresponding to thermal level),
the three scenarios are hardly discernable during long
transients (hundreds of round-trips). Above R..; [Fig.
4(a)] the Stokes oscillations relax in amplitude, while the
cw component grows until establishing the steady mir-
ror regime. Near R.;; [Fig. 4(b)] the transients are ex-
tremely long. Below R [Fig. 4(c)] the cw component

TABLE I.

tends to vanish in favor of stable solitonic pulses. We plot
in Fig. 5 the mean asymptotic reflectivities obtained af-
ter long numerical simulation. It is interesting to note
that, although the bifurcation causes a dramatic change
in the mean amplitude of the backscattered wave, the
mean energetic efficiency of SBS is the same in the two
asymptotics.

We give in Table I the computation parameters for
the cw-pumped Brillouin fiber-ring laser used in the nu-
merical three-wave simulation. A laser pump power P
corresponds to a flux intensity I, = P/S, where S is an
effective fiber cross section also depending on the over-
lap between its optical and acoustical modes. The fiber
used here (pure SiO; core-borosilicate cladding) is acous-
tically antiguiding; the approximation S = nrZ2,,, yields
a severe overestimation of the SBS efficiency [15]. There-
fore we must renormalize the SBS coupling constant K

Computation parameters for the cw pumped Brillouin fiber ring laser. The active

medium is a single-mode fiber of length L= 80 m, with a 3-um-diam core (no = 1.46), an effective

optical cross section § = 7.2 x 10712
wavelength is A =

constant of Egs. (1) is given by K =

m?, and an acoustical antiguiding factor o ~ 3 —4. The pump
514.5 nm (acoustic wavelength Aq = 0.17 pm). The coherent SBS coupling
%(Eocng/2poc.,)l/2(7rp12//\) = (1/0) 66 ms™! V71 All

parameters are given for o = 1. P is the pump power coupled into the fiber, I, = P/S is the pump
flux intensity, £ = gLI, is the dimensionless SBS intensity gain length [g = 4K?/(vae0c?)], E,

is the pump amplitude corresponding to I, = (noeoc/2)|Ep|?, 7 = (KEp)~! is the coherent SBS
characteristic time, 4 = 7,7 is the dimensionles acoustic damping rate (v = TAvp ~ 5 X 1088_1),
le = 7eT is the dimensionless optical damping rate (y. ~ 5 x 10° s™'), (spatial intensity attenuation
a = 2ney./c = 21.7 dB km‘l), and R is the critical Stokes intensity feedback efficiency (for

Ye = 0).
P (mW) 10 20 30 40
I, (MW /cm?) 0.1 0.2 0.3 0.4
L =gLI, 4 8 12 16
E, (MV/m) 0.75 1.06 1.29 1.50
7= (KEp)™ " (ns) 20.00 14.14 11.54 10.00
= YaT 10.00 7.07 5.77 5.00
e = YT 1072 7.07 x 10~ 3 5.77 x 1073 5.0 x 1073
Resie 0.11 2.3x1072 4.4x10°3 7.9x 10 %
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FIG.5. Asymptotic mean reflected intensity, square mean

amplitude and variance around the bifurcation (same gain
L = 8 as in Fig. 4). Feedback values (a)—(c) refer to Fig. 4.

by an acoustically antiguiding factor 1/0 < 1 in order
to obtain good agreement between numerical and exper-
imental parameters; here o ~ 3 — 4.

IV. EXPERIMENT

In our experiment, R remains constant and the con-
trol parameter of the bifurcation becomes the power of
the single-mode argon-ion (A = 514.5 nm) cw-pump laser,
or equivalently £ = gLI, (horizontal traveling in Fig. 2).
The configuration is the basic Brillouin fiber-ring laser
[4,16], with a 80-m-long polarization-maintaining single-
mode fiber, closed trough two external beam splitters and
an intracavity Faraday isolator (R = 8x10~3), and no ex-
ternal modulation (Fig. 6). High pump powers (P > 400
mW) yield a rather stable cw Stokes output [Fig. 7(a)].
High-frequency oscillations around the mirror [Fig. 7(b)]
and large pulses coexist in the intermediate power range
(P ~ 350 mW at the entrance of the fiber). A stable
pulsed regime, slightly superluminous [1], is obtained for
P < 350 mW [Fig. 7(c)]. For R ~ 4 x 10, the device
always present a stable pulsed behavior, up to P ~ 1.5
W.

In conclusion, due to the rather slow (ns) electrostric-

Beamsplitter
R=0.5

Faraday
Isolators
T=0.8

Argon-ion
pump laser

FIG. 6.

:

80m
single-mode
optical fiber,

Beamsplitter
R=0.04 T=0.96

Coupling lens
T=0.7

Experimental setup.

(b)

FIG. 7. Temporal structure of Stokes output for R ~
8 x 1073 (experimental, 1 ps/div): (a) P > 350 mW, small
amplitude fluctuations around the stable steady mirror; (b)
P ~ 350 mW large amplitude oscillations around the mir-
ror; and (c) P < 350 mW, stable pulsed regime. The upper
straight line gives the input pump level.

tive response, three-wave SBS interaction stands among
the very few basic nonlinear and nonlocal physical pro-
cesses in which the dynamics of the material response can
be understood and experimentally characterized, thus
explaining morphogenesis of large-scale coherent struc-
tures in a cw-pumped ring cavity, out of shapeless initial
and boundary conditions. Moreover, this scenario is un-
changed while taking into account the perturbative Kerr
effect [4] and general recoupling conditions for both waves
[17].
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(b)

FIG. 7. Temporal structure of Stokes output for R ~
8 x 107? (experimental, 1 us/div): (a) P > 350 mW, small
amplitude fluctuations around the stable steady mirror; (b)
P ~ 350 mW large amplitude oscillations around the mir-
ror; and (c) P < 350 mW, stable pulsed regime. The upper
straight line gives the input pump level.



