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Bifurcation in a cw-pumped Brillouin fiber-ring laser:
Coherent soliton morphogenesis
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Stability analysis allows the understanding of experimental steady and pulsed regimes observed
in cw-pumped Brillouin 6ber-ring lasers. The instantaneous acoustic response model proves to be
singular, while the coherent stimulated-Brillouin-scattering (SBS) three-wave model yields a well-

behaved Hopf bifurcation for a critical value of the feedback (several percent in intensity). The
computed nonlinear dynamics shows self-organization of asymptotically stable Brillouin pulses, not
depending on the initial noise. Further experiments support the bifurcation.

PACS number(s): 42.65.Es, 42.50.Rh, 42.60.Da, 47.20.Ky

I. INTRODUCTION

Recent observation of dissipative superluminous soli-
tons in a Brillouin fiber-ring laser [1], whose nonlinear
dynamics is well described by the one-dimensional (1D)
coherent three-wave model of stimulated Brillouin scat-
tering [2—5] (SBS), raises the question of the physical
mechanism giving birth to such intense and short coher-
ent structures in the backscattered Stokes wave, when
the ring cavity is simply cw pumped. Ultracoherent cw
Stokes output has been obtained for strong feedback [6],
but with moderate coupling cw-pumped SBS resonators
are essentially unstable [4]. It is known that both steady
state and periodic oscillations may arise in a single-mode
optical fiber with weak external feedback [7,8]. Steady,
quasiperiodic, and even chaotic dynamics may take place
when more than one cw pump beam is present [3]. Burst-
ing oscillations and weak chaos can also be obtained for
small enough feedback [9], but up to now no generic sce-
nario has been proposed for the generation of asymptoti-
cally stable Brillouin pulses. We show in this paper that
this stability is related to the finite material response
time. The instantaneous acoustic response model yields
a singularity due to the appearance of infinite frequency
spectral components.

By using the coherent three-wave SBS model, we show
here that a Hopf bifurcation takes place with the feed-
back R as the control parameter. For a given SBS gain,
an initial condition-independent critical value R„;tsepa-
rates two regimes: (i) above R„;tthe cw-pumped system
evolves towards the well-known steady "Brillouin mirror"
regime [4,10], where monotonic backscattered amplifica-
tion in the optical medium is saturated by the monotonic
depletion of the forward propagating pump; (ii) below

B„;&,self-organization of an asymptotically stable train
of backward propagating "Brillouin solitons" [1] takes
place. A morphogenesis scenario is shown in Fig. 1: The
mirror regime becomes unstable for small enough feed-
back and the backscattered Stokes wave localizes into a
soliton structure. Close to B„;&,both the steady and the
pulsed regimes are reached after very long transients; this

could account for the diSculty of their characterization,
either numerical or experimental.

Within the "strong acoustic damping" approximation
[10,11], Bar-Joseph et al. [7] perforxned a stability anal-
ysis for a line fiber cavity by perturbating the optical
intensity equations. They showed that unstable oscilla-
tions appear for subcritical feedback and that relaxation
oscillations occur in the stable domain. However, we shall
see that this instantaneous response model breaks down
at R = R„;t,and is inappropriate to describe the finite
amplitude oscillatory regime; it only allows energy trans-
fer &om the pump to the Stokes wave and may yield a
singular evolution for the Brillouin pulse in the unstable
regime by indefinitely growing its amplitude and shrink-
ing its width [2]. At the bifurcation the infinite frequency
mode becomes unstable, closely followed by all other cav-
ity modes. This clearly violates the slowly varying enve-

lope (SVE) approximation implicit in these models.
This anomaly is overcome in the three-wave model:

Only the fundamental xnode (of period neighboring the
cavity transit time nI /c) becomes unstable at the bifur-
cation; the higher harmonics are destabilized for lower
values of R, with the fundamental mode still presenting
the maximum growth rate. We obtain a well-behaved
Hopf bifurcation suitable for a normal-form analysis [12].
In the nonlinear regime, anti-Stokes energy transfers are
responsible for partial self-induced transparency: the
generated Brillouin pulse saturates at a finite amplitude
and width by transferring part of its trailing edge energy
back to the pump, therefore propagating like a soliton

[1,5]

II. STABILITY ANALYSIS

The nonlinear SBS process resonantly couples trough
electrostriction a pump E~(u„,k„)and a backscattered
Stokes Es(u~, ks) wave with an acoustic wave E (u

k = k„+kxx). Neglecting the acoustic prop-
agation of speed c &( c, one obtains within the SVE
approximation three coupled SBS equations for the com-
plex amplitudes [2-4]:
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Y = (So sinhDz+ D coshDx)~bD

and S(z) given in (3), Eq. (6b) becomes the complex
eigenvalue equation

Y" + [((u —ifD) —f (1 —f)(D —S )] Y = 0.

In the intensity approximation (ur/y,
2 ~ 0), f = 1, and

Eq. (7) is an harmonic oscillator equation of frequency
0 = Id —iD; the (bI&, bI~) eigenmodes are easily cal-
culated. Then, with the above boundary conditions, we
find a characteristic equation for ~ as function of R, D,
and 8 [themselves related through Eq. (4)]:

C7
I

I iI I I I I I I I I I I

2 4 6 8 50 12
I I I I I I I I

2 (b)-

A(Id) + B(Id) sin aIC+ C(u) cos uC = 0,

where

(8) R~i, I00023

Dcrit —1/6
& R„;I 3 exp(Z/3) —2

through the singular relationships

= (2D —D/2 + 1/4) (1 —4D) /(6D —1),
ur tan(urZ/2) = (1 —4D)/2,

A = 2(u((u —iD),
B = 2i~ + by~+ ibg,

C = —2(d + Shyer)&

bI ———1+R+ 2D(2 —R),
b2

——(1 —2D) R+ 2D(1 —R) .

The marginal stability (Im Id = 0) of the fundamental
mode is shown in Fig. 2 where we plot R„;I,as a func-
tion of the gain length l: in curve (a) for this intensity
model [yielding critical values close to those of the three-
wave model, shown in curve (b)]. We plot in Fig. 3(a)
the solutions in the complex ~ plane, giving the growth
(Im ~ ) 0) and damping (Im Id ( 0) rates for differ-
ent values of the feedback R and for a given gain length
2 = 8. At the bifurcation (R„;I——0.02428) the highest
&equency modes become unstable (]Re ~] -+ oo), and by
decreasing R all the cavity modes (~Re Id~ = 2Nm/l'. ; N
is an integer) become successively unstable down to the
fundamental mode at R = 0.02104. The SVE approxi-
mation obviously breaks down. Nevertheless, this model
gives simple estimations of the critical parameters, such
as
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FIG. 3. Stability analysis: growth (damping) rate vs os-

cillation frequency for several R above and below critical: (a)
intensity model, singularity (~Re ~~ m oo) at R = RcrII, (b)
three-wave model, well behaved Hopf bifurcation of the fun-

damental mode ~Re &u~C 2Ir.

obtained &om the complex Eq. (8) for Im u = 0 and
R (( 1. R„;Isimply follows &om Eq. (4) for D„;t 1/6.

This high &equency divergency is overcome in the
three-wave model, which introduces the finite acoustic
response through the renormalization of u by the corn-

plex factor f(u) First of. all, we have solved the eigen-

value problem of the harmonic oscillator with complex
frequency O' = Id —if (Id)D, by neglecting the potential
term f(1 —f)(D —S2) in Eq. (7) since f(ur) 1; this
yields a characteristic equation similar to Eq. (8), de-

pending on f(u) = f„(ur)+ if;(u), where the coefficients
have additional terms, namely,

A(IJ, f) = 2ur(ur —i fD),

B(Id, f) = 2i(u + bI(a+if;bI~+ ibs+ b4,

C(Id, f) = 2~ —bI f;—~+ ibg(u,

b3 —(1 —f, )b2, b4 ———2f;b2.
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FIG. 2. Marginal stability of the fundamental mode: bi-
furcation curve [(a) intensity model and (b) three-wave model]
separates stable and unstable domains in the (R, 2) plane.

The results show that the bifurcation is no longer singu-
lar [Fig. 3(b)]. Now, indeed, just under R„;Ionly the
fundamental mode, which satis6es the SVE approxima-
tion, is unstable. For l: = 8 we obtain R„;~——0.023 20,
which is close to the critical value destabilizing the fun-

damental mode in the intensity model (Fig. 2), but here
the higher modes are stable. Decreasing R, a small nuxn-

ber of xnodes become unstable. This is numerically con-
6rxned in the nonlinear regime, yielding asymptotically
stable solitonlike pulses; its Fourier spectrum contains a
finite number of modes [e.g. , eight pairs in the case of
Fig. 4(c)].
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FIG. 4. Temporal behavior of the out-
put Stokes En(0, t) amplitudes solution of
Eq. (1) [forE=LgI, =8, @=7, and
p, /po = 10 ]: (a) R = 0.036 ) R„;»,evo-
lution towards the mirror regime; (b) R =
0.032 R„;~,longer transient near the bifur-
cation; (c) R = 0.022 ( R„;»'.solitonic mor-
phogenesis (zoomed for the asymptotic side).
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III. NUMERICAL THREE-WAVE DYNAMICS

For a given gain length l:, the Stokes feedback fully
determines the two asymptotic states, starting Rom any
initial noise conditions. The nonlinear dynamics gov-
erned by Eqs. (1) is shown in Fig. 4, for three feed-
back values around critical; R„;»is about 30% higher
than the analytical value, due to the optical attenuation
(p, = 10 p ) included in the numerical model. Start-
ing from the same initial conditions (very small acoustic
phase noise E = 10 xx corresponding to thermal level),
the three scenarios are hardly discernable during long
transients (hundreds of round-trips). Above R„;»[Fig.
4(a)] the Stokes oscillations relax in amplitude, while the
cw component grows until establishing the steady mir-
ror regime. Near R„;»[Fig. 4(b)] the transients are ex-
trexnely long. Below R„;»[Fig. 4(c)] the cw component

tends to vanish in favor of stable solitonic pulses. We plot
in Fig. 5 the mean asymptotic refiectivities obtained af-
ter long numerical simulation. It is interesting to note
that, although the bifurcation causes a dramatic change
in the mean amplitude of the backscattered wave, the
xnean energetic efficiency of SBS is the same in the two
asymptotic s.

We give in Table I the computation parameters for
the cw-pumped Brillouin fiber-ring laser used in the nu-

merical three-wave simulation. A laser pump power P
corresponds to a fiux intensity Iz ——P/S, where S is an
efFective fiber cross section also depending on the over-

lap between its optical and acoustical modes. The fiber
used here (pure SiOz core—borosilicate cladding) is acous-
tically antiguiding; the approximation S = xr, „yields
a severe overestimation of the SBS efficiency [15]. There-
fore we must renormalize the SBS coupling constant K

TABLE I. Computation parameters for the cm pumped Brillouin fiber ring laser. The active
medium is a single-mode fiber of length L= 80 m, with a 3-pm-diam core (np ——1.46), an effective
optical cross section 8 = 7.2 x 10 ' m ) and an acoustical antiguiding factor cr ~ 3 —4. The pump
wavelength is A = 514.5 nm (acoustic wavelength A = 0.17 pm). The coherent SBS coupling
constant of Eqs. (1) is given by K = —(spcnp/2ppc ) ~ (z'pi&/A) = (1/o) 66 ms ' V '. All

parameters are given for»r = 1. P is the pump power coupled into the fiber, I~ = P/S is the pump
fiux intensity, 8 = gLI„is the dimensionless SBS intensity gain length [g = 4K /(p spc )], E~
is the pump amplitude corresponding to I~ = (npspc/2)!E~!, r = (KE~) is the coherent SBS
characteristic time, p = p r is the dimensionles acoustic damping rate (7 = n Avs 5 x 10 s ),
p, = 7,r is the dimensionless optical damping rate (p, 5 x 10 s ), (spatial intensity attenuation
»1 = 2npp /c = 21.7 dB km ), and R„;»is the critical Stokes intensity feedback efficiency (for

= 0).

P (mW)
I~ (MW/cm')
l: = gLIp
E~ (MV/m)
r = (KEp) ' (ns)
P = l~r
pe = 'Yer

R..t

10
0.1

4
0.75

20.00
10.00
10
0.11

20
0.2

8
1.06

14.14
7.07

7.07 x 10
23x10

30
0.3
12

1.29
11.54
5.77

5.77 x 10
4.4 x 10

40
0.4
16

1.50
10.00
5.00

5.0 x 10
7.9 x 10
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FIG. 5. Asymptotic mean reQected intensity, square mean
amplitude and variance around the bifurcation (same gain
2 = 8 as in Fig. 4). Feedback values (a)—(c) refer to Fig. 4.

by an acoustically antiguiding factor 1/cr ( 1 in order
to obtain good agreement between numerical and exper-
imental parameters; here o™3 —4.

IV. EXPERIMENT
(c)

Beamsplitter
R =0.5

P obs.
I

In our experiment, R remains constant and the con-
trol parameter of the bifurcation becomes the power of
the single-mode argon-ion (A = 514.5 nm) cw-pump laser,
or equivalently 8 = gLI„(h rioz ntoal traveling in Fig. 2).
The configuration is the basic Brillouin fiber-ring laser

[4,16], with a 80-m-long polarization-maintaining single-
mode fiber, closed trough two external beam splitters and
an intracavity Faraday isolator (R = 8x 10 s), and no ex-
ternal modulation (Fig. 6). High pump powers (P ) 400
mW) yield a rather stable cw Stokes output [Fig. 7(a)].
High-frequency oscillations around the mirror [Fig. 7(b)]
and large pulses coexist in the intermediate power range
(P 350 mW at the entrance of the fiber). A stable
pulsed regime, slightly superluminous [1], is obtained for
P ( 350 mW [Fig. 7(c)]. For R 4 x 10 4, the device
always present a stable pulsed behavior, up to I 1.5
W.

In conclusion, due to the rather slow (ns) electrostric-

FIG. 7. Temporal structure of Stokes output for R
8 x 10 (experimental, 1 ps/div): (a) P ) 350 mW, small

amplitude Huctuations around the stable steady mirror; (b)
P 350 mW large amplitude oscillations around the mir-

ror; and (c) P ( 350 mW, stable pulsed regime. The upper
straight line gives the input pump level.

tive response, three-wave SBS interaction stands among
the very few basic nonlinear and nonlocal physical pro-
cesses in which the dynamics of the material response can
be understood and experimentally characterized, thus
explaining morphogenesis of large-scale coherent struc-
tures in a cw-pumped ring cavity, out of shapeless initial
and boundary conditions. Moreover, this scenario is un-

changed while taking into account the perturbative Kerr
effect [4] and general recoupling conditions for both waves

[17].
Faraday
Isolators ~ ———~~

T= 0.8

Om
le-mode
cal

Argon-ion
pump laser

Beamsplitter
R = 0.04 T = 0.96

Coupling lens
T = 0.7

FIG. 6. Experimental setup.
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