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The Born-Oppenheimer approximation is used as an exploratory tool to study bound states, quasi-
bound states, and scattering resonances in muon (p) —hydrogen (x)—hydrogen (y) molecular ions. Our
purpose is to comment on the existence and nature of the narrow states reported in three-body calcula-
tions, for L =0 and 1, at approximately 55 eV above threshold and the family of states in the same par-
tial waves reported about 1.9 keV above threshold. %'e first discuss the motivation for study of excited
states beyond the well-known and well-studied bound states. Then we reproduce the energies and other
properties of these well-known states to show that, despite the relatively large muon mass, the Born-
Oppenheimer approximation gives a good, semiquantitative description containing all the essential phys-
ics. Born-Oppenheimer calculations of the s- and p-wave scattering of d-(dp), d-(tp), and t-(tp) are corn-
pared with the accurate three-body results, again with general success. The places of disagreement are
understood in terms of the differences in location of slightly bound (or unbound) states in the Born-
Oppenheimer approximation compared to the accurate three-body calculations. The analytic properties
of the function k +'cot5 are used to illustrate the locating of bound states and resonance poles in the
complex k or E plane from the scattering data and to deduce the expected widths of resonances of a
given L value. The prominent L =3 resonance at 22 eV (I =1.4 eV) in d-(tp) scattering provides a
benchmark for the unsuccessful search within the Born-Oppenheimer approximation for the claimed
narrow s-wave d-t-p resonance at 54.35 eV (I =0.74 eV). Although absolute proof is obviously lacking
(because of the approximate calculation), the Born-Oppenheimer results for the s-wave gerade scattering
are entirely reasonable; the absence of a centrifugal barrier makes it implausible that there could be reso-
nances at 50-60 eV with narrow widths. We argue that the threshold at 48 eV of the t+(dp) channel is

unlikely to have a major effect. The family of states at 1.9 keV and above are of a different nature. They
are, as is already known, molecular states based on the 3d erg "electronic" potential-energy curve, which
is asymptotically the energy of the x {yp; n =2) system. Born-Oppenheimer calculations of binding en-

ergies, and properties depending dominantly on the wave functions in the classically allowed region,
agree reasonably well with the accurate three-body computations for the d-t-p system. Expected
disagreement occurs in the probability density p&{0) for the nuclei to be at vanishing internuclear sepa-
ration (relevant for the fusion rate), in which configuration mixing is more important in the classically
forbidden region. Nonetheless, the reported values of p&(0), when compared to the average probability
density in the classically allowed region of nuclear motion computed here, appear excessively large. The
likelihood that this family of continuum resonances would play a significant role in molecular formation
in the muonic cascade is discussed briefly.

PACS number(s): 36.10.Dr

I. INTRODUCTION

The old subject of the catalysis of nuclear fusion be-
tween isotopes of hydrogen by negative muons has ex-
perienced a resurgence in the past 15 years because of the
discovery of very rapid molecular formation rates
(A, ) 10 s ' for normal liquid hydrogen density) because
of the existence of loosely bound excited states of the
molecular ion within less than 2 eV of threshold for the
d-d-p and d-t-p systems. The original experiments and
detailed theoretical calculations of the 1970s were done
largely in the former Soviet Union. The history and
references are given in the review by Ponomarev [1].
With other processes proceeding at least as rapidly as
molecular formation, the cycling rate of the muons can
be 100 or more times faster than the natural decay rate.

There would seem to be the prospect of hundreds of cata-
lytic acts per muon, if nothing else interfered. The reality
is that something does interfere. In its facilitation of the
fusion act, in d-t-p or d-d-p, for example, the muon has a
finite probability coo of being captured into a bound state
around the recoiling helium or hydrogen ion(s) (initial
sticking). As the ion slows down to rest, there is a proba-
bility R that the muon will be stripped off (reactivation),
but the end result is a sticking probability co, =coo(1 —R )

for loss of the muon to the cycle. The maximum number
of fusions per muon is bounded by 1/co, . The original es-
timates [2] for d t p, were coo=1.2' -a-nd R =0.22, lead-

ing to co, =1.0%. More recent and accurate calculations

[3] of coo, not restricted to the Born-Oppenheimer ap-
proximation for the muonic molecule, and new evalua-
tions [4,5] of R, including density dependence, give
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co&=0.886% and co, =0.64% at low density and
co, =0.58% at 1.2 times liquid-hydrogen density. The ex-
perimental situation is somewhat contradictory, with
some experiments showing a relatively small density
dependence in agreement with theory, but a magnitude
that is 20% smaller than theory, and other experiments
seeming to show a more rapid variation with density and
values at high densities that are roughly one-half the
theoretical result. See Fig. 19 of Ref. [1]or Fig. 3 of Ref.

Despite the uncertainty about the exact value of co„
the sticking mechanism is presently the limitation in the
prospects of realizing useful energy production from
muon-catalyzed fusion alone. There have been many in-
vestigations of ways to modify or get around the problem
of sticking. These fall into two classes. The first concen-
trates on the reactivation process, the second on the ini-
tial sticking probability. The size of co& is a property of
the molecular state before fusion and, in principle, on the
temporal details of the nuclear reaction.

The time scales and energies of the molecular dynamics
and of the nuclear reaction are so different that the nu-
clear reaction proceeds as for free nuclei at zero energy,
independent of the particular molecular state from which
fusion occurs (orbital angular momentum, spin and pari-
ty, and the nuclear wave function at short distances are
relevant, of course). The muon's motion is different,
however, in different molecular states. The following
question then arises: Are there molecular states with
sufficiently rapid fusion rates, but with smaller initial
sticking probabilities? The bound states of the x-y-p
molecular ion (based on the ls o potential, in the
language of the Born-Oppenheimer approximation) have
been studied in great detail in recent years with complete
three-body dynamics [6,7]. The properties of the ground
and excited bound states with orbital angular momentum
L =0 and 1 have been reliably calculated and the initial
sticking probabilities all determined. The results quoted
above are based on these computations. In a search for
other molecular states that might enter (or somehow be
made to enter} the complex cascade of the muon (from
keV energies when liberated in a fusion, through atom
formation, scattering, and transfer from a lighter isotope
to a heavier one, and finally to thermal or epithermal en-
ergies where the atom unites with a nucleus to form the
molecular ion), attention has focused on continuum reso-
nances.

A narrow s-wave resonance (I =0.74 eV) at a center-
of-mass system (c.m. s.) energy of Ec =54.35 eV above the
d tp(ls) thresho-ld has been found in elaborate three-
body calculations of the d-t-p system [8,9], with a p-wave
resonance nearby (E~ =54.63 eV, I =2.04 eV). Families
of higher-lying resonances have similarly been calculated
[10—12]. These are s- and p-wave resonances located less
than 220 eV below the d tlj(2s} threshold (which l-ies 2
keV above the ground-state threshold). This second set
of states [which we call n =2 states, in contrast to the
states near or below the d tlj, ( ls) threshold, which w-e la-
bel n = 1] has nothing to do with the putative n = 1 reso-
nance at 54 eV. In Ref. [12] it is argued that the fusion
rates from the lowest three of the n =2 s-wave states are

comparable to that of the n =1 ground state and compa-
rable to the widths (0.0027 —0.51 eV) computed ignoring
fusion. It is inferred that these states may play a role in
epithermal fusion if the molecule formation rates are
large enough to compete with the rapid deexcitation of
the atomic tlJ, (2s ) state. Very recently, calculations have
been reported of the sticking probabilities co& (and revised
energies and widths) for these three states [13]. The
values of coo are from five to nine times smaller than for
the n =1 ground state. It is pointed out that, if these res-
onances play some role in the fusion process, the smaller
values of initial sticking could offer an explanation for the
20% discrepancy between theory and experiment men-
tioned above.

In Refs. [8], [9], and [ll] it is argued that the reso-
nances found above the n =1 threshold and below the
n =2 threshold are "Feshbach resonances, " in analogy to
certain resonances built on excited orbitals in nuclear
physics [14,15] and cannot appear in the Born-
Oppenheimer approximation. In fact, the physical mech-
anism of the n =2 resonances below the d-tp(2s ) thresh-
old has been explained very adequately [16] in terms of
the Born-Oppenheimer approximation, using "electron-
ic" potentials associated with the asymptotic hydrogenic
state with n =2 [denoted 3d o. (3 os) and 2s os (2 os)
for the lowest gerade states, for example]. We argue here
that the three-body system of muon and two hydrogen
nuclei, with only one light particle, is so simple that the
language of Feshbach resonances is inappropriate, partic-
ularly for states lying far below the nearest excited orbital
energy. Terminology apart, we show that the Born-
Oppenheimer approximation, while not of sufficient
quantitative precision for all purposes, gives not just a
qualitative but a semiquantitative understanding of the
properties of the bound and continuum states. By estab-
lishing its ability to describe correctly the physics, if not
the precise numbers, we justify the use of the Born-
Oppenheimer approximation as a tool to comment on the
properties found for the continuum states by the large-
scale numerical computations. We make no apology for
treading in the footsteps of Gershtein, who studied the
x-y-p bound states in the Born-Oppenheimer approxima-
tion in his Ph.D. thesis in 1958. Simple tools can often
bring physics to the fore better than huge numerical corn-
putations.

In order to verify its semiquantitative validity and see
its limitations, we first present results of the simplest
Born-Oppenheimer approximation for the (n =1) x-y-p
bound states, with (x,y)=(p, p), (p, d), (p, t), (d, d),
(d, t), and (t, t). Binding energies, nuclear densities at
zero separation of the nuclei for L =0 states, and the cor-
responding quantities for L = 1 states are compared with
the more precise results [6,7, 17—19].

The low-energy scattering is then discussed for the d-
dp(ls), d tp(ls), and t-tp(l-s) systems in the partial
waves, L =0 and 1. Comparisons are made with the ac-
curate computations [20,21]. The L =0 cross sections
compare very favorably, but the L=1 do not. For d-
dt(ls }, the disagreement is caused by the fact that the
(1,1) state in the Born-Oppenheimer calculation does not
appear as a bound state at —1.975 eV, but as a resonance
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with a width of about 2—3 eV at around 2 eV. For d-
tp( ls ), the discrepancy is caused by the presence in the
precise three-body calculations of the (1,1) bound state at—0.660 eV just below threshold, while in the Born-
Oppenheimer approximation the bound state is at —7.7
eV. The issue of resonances and nearby bound states
leads naturally to an exploitation of the analytic proper-
ties of k +'cot5 to determine the locations of resonance
poles and bound states in the complex k or E plane. Po-
lynomial fits in k to k +'cot5 over finite energy ranges
are made for the 1.= 1 scattering of d-d p( is ) and d-

rp, (ls) to show the power and limitations of the tech-
nique in the location of resonant poles and bound states.

The I. =3 partial wave of the low-energy d tp, ( ls)-sys-
tem is of particular interest. The centrifugal barrier is
high enough to cause a relatively narrow resonance to ap-
pear at 22 eV with a width of 1.4 eV, as can be inferred
from the precise three-body computations of Chiccoli
et al. [21]. In the Born-Oppenheimer approximation, the
same resonance, characterized as a quasistable (3,0) state,
is expected from the shape of the effective potential-
energy curve and appears (at 16 or 17 eV and a width of
1.2 eV). This state provides more evidence that the
Born-Oppenheimer approximation misses little, if any, of
the physics.

The 1.=0 d tp, (ls) sc-attering phase for the gerade
state is examined for evidence of a narrow resonance at
54 eV. There is no evidence for such a state; the phase
shift falls smoothly with energy from its value of 2m at
zero, reaching ~ at about 100 eV. Needless to say, a
search for resonant poles using polynomial fits in k to
k cot5 yields no narrow resonance either.

The energies and other properties of the n =2 resonant
states are calculated and compared with the three-body
calculations of Refs. [10—13]. In the Born-Oppenheimer
approximation, these states are quasibound states in the
potential formed from the Coulomb repulsion of the nu-

clei and the energy of the lowest excited electronic state,
which asymptotically goes over to a bare nucleus and a
neutral hydrogenlike atom in the n =2 state. As already
demonstrated by Shimamura [16], the states in Ref.
[10—13] are basically the same as found via the Born-
Oppenheimer approximation. Some peculiarities of the
results of Refs. [12] and [13] for the fusion rates, or
equivalently the nuclear densities at zero nuclear separa-
tion, are pointed out.

The nonrelativistic electronic energies of a negatively
charged point particle in the presence of two equal, fixed,
positive point charges is exactly soluble in terms of
"known" functions. Numerical tables for a large number
of electronic states exist [22,23] and accurate computa-
tions for some states have been made in the course of
three-body computations [24]. The discrete array of tab-
ulated values for the states of interest were interpolated
approximately by explicit functional forms so that the
Schrodinger equation for the nuclear motion could be
solved straightforwardly. The representations for the po-
tential energy curves needed here are collected in the Ap-
pendix. There are no claims of uniqueness or optimiza-
tion; the fits are adequate for my purposes. Unless other-
wise stated, atomic (hartree) units are used, with energies

in units of e /a„=5626. 48 eV and lengths in units of
a„=2.559 27X 10 "cm.

For the nuclear relative motion, exact nuclear masses
are used to determine the reduced masses. In the spirit of
the Born-Oppenheimer approximation, these reduced
masses do not include any part of the muon mass. In the
discussion of scattering, however, the proper kinematics
[of d scattered by tp(ls), for example] are used to con-
nect the energy and wave number scales. The relevant
potential-energy curves for the n =1 and 2 sets of states
are shown in Fig. 1. For the excited band, only the
lowest gerade potentials 2s o and 3d 0. are shown.

II. n = 1 BOUND STATES

The Schrodinger equation for the radial relative
motion was integrated using the potential energy

V(x) = —+E„(ls 0 ~x )+

where IM is the muon mass and M is the reduced mass of
the nuclei, and E„ is taken from the Appendix. All the
bound-state energies were determined for 1.=0 and 1 for
the systems x-y-p, with (x,y ) =(p,p ), (p, d ), (p, t ), (d, d ),
(d, t), and (t, t). The results are shown in Fig. 2 as a
function of the ratio p/M, together with the precise
three-body results of Refs. [6] and [7]. Both sets of values

show a gross tendency for decreasing binding energies
with increasing p/M. The smooth decrease for the
Born-Oppenheimer energies can be thought of as a result
of the frequency of small oscillations about the equilibri-
um separation varying as (p, /M)' . For the molecules
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FIG. 1. Born-Oppenheimer molecular potential-energy

curves for x-y-p ions in muonic hartree units (5626.48 eV for

muons) as functions of radial distance in units of a„. Solid

curve, 1s o.g; short-dashed curve, 3p o „(sometimes denoted 2p

o „or 1 cr „);dotted curve, 3d o g, long-dashed curve, 2s o.~. The
zero of energy is the energy of a separated nucleus x and a y-p
atom in its 1s ground state. The upper pair of curves approach
the difference in energy of the atom in its 2s and 1s states. Only

two of the several n =2 potential-energy curves are shown.



49 MUONIC-HYDROGEN MOLECULAR BOUND STATES, . . . 135

(1,1)-50-

(0, 1)
-100-

S.-4 Energies E(L,v) in x-y-p
molecular ions

-150-
tD

0 -200-

UJ
-250-

-300 " (1,0)

~r
350 (p p)

-400
0.05

t-t t-d
I

0.10

p-t p-d
I

0.15
p/M

0.20

P-P

0.25

FIG. 2. Comparison of the L =0 and 1 energies of x-y-p
bound states in the Born-Oppenheimer approximation and ac-
curate three-body calculations (Refs. [6] and [7]), displayed as a
function of p/M.

not containing a proton, the Born-Oppenheimer energies
are with 10 or 20 eV of the exact energies for all the
bound states. For the molecules containing a proton
(p, /M ~ 0. 15), the differences are as great as 56 eV. With
one nuclide fixed, there is a trend with decreasing mass of
the other nuclide that goes counter to the trend with in-
creasing p/M. Some of this trend can be attributed to
the reduced mass effect on the binding of the isolated
(heavier) atom, relative to which the molecular binding
energy is measured. For example, the muon is 183 eV
less tightly bound around a proton than a triton, ' the ac-
curate binding energy for the (0,0) state of the p-p-iu is 39
eV greater than that for the p-t-p system, while the
Born-Oppenheimer energies differ by 54 eV in the oppo-
site direction, a total difference of 93 eV in the expected
direction.

For the (1,1) states, which have relatively small binding
energies, errors of the order of 10 eV mean that the
Born-Oppenheimer calculations may not be even qualita-
tively correct, at least in the counting of the number of
bound states. For example, in the d t psystem t-h-e Born-

Oppenheimer energy is —7.8 eV for the (1,1) state, to be
compared with —0.660 eV from Ref. [6]. For d-d-p, the
bound (1,1) state (at —1.975 eV according to Ref. [6]) is

not found in the Born-Oppenheimer calculations. In the
t t p-m-olecule, the (1,1) state energy is —33 eV (Born-
Oppenheimer) versus —45.210 eV (Ref. [6]). As we show

in Sec. III, the Born-Oppenheimer version of the (1,1)

state in the d-d-p molecule is not far away, appearing as a
scattering resonance a few volts about threshold.

In Fig. 3 we show a comparison of the Born-
Oppenheimer nuclear probability densities at zero inter-
nuclear separation pao(0) with the precise calculations of
Refs. [17—19] for the (0,0) ground state in the various x-
y-p molecules. The quantitative agreement is satisfactory
for all the molecules, poorest for the p-p-p system as ex-

pected, but even there the discrepancy is less than 30%.
(Some factors of 4n have been corrected in the results of
Refs. [18] and [19] for this comparison. ) We note partic-
ularly this and other properties of the (0,0) ground state
in the d-t-p molecule:

(r ) =2.7a„, p(0) =0.6X 10 cm

(l~/l( x)l')CTp=2200X10" cm ' .

Here ( r ) is the mean nuclear separation and

(lf(x)l )CTP is the average value of the square of the
Born-Oppenheimer wave function of relative nuclear
motion between the classical turning points. (The corre-
sponding quantity in the three-body calculations is called
the square of the pseudo-wave-function; it is the integral
of the square of the three-body wave function over the
muon's coordinates with the internuclear separation held
fixed. Between the classical turning points, the precise
pseudo-wave-function squared and the Born-
Oppenheimer approximation agree reasonably well. ) We
note a factor of roughly 3600 decrease in probability den-

sity from x =2-3 to x =0, a result of the presence of the
Coulomb barrier.

Figure 4 shows a comparison for the lowest L =1 state,
(1,0), of the square of the gradient of the Born-
Oppenheimer wave function at zero internuclear separa-
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FIG. 4. Comparison of the squares of the gradient of the
Born-Oppenkeimer wave function at zero internuclear separa-
tion (solid curve) with the equivalent three-body quantities from
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tion with the corresponding quantity from the precise
three-body calculations of Ref. [17]. Again the agree-
ment is satisfactory.

The excited (n =2) "bound" states are discussed in
Sec. VI.

III. SCATTERING

The scattering in L =0 and 1 partial waves is calculat-
ed in the Born-Oppenheimer approximation by integrat-
ing the Schrodinger equation for c.m. s. energy E (relative
to the appropriate threshold) with the potential (1) for the
gerade (symmetric state) and the corresponding ungerade
potential, using E„(2p o „IX) from the Appendix for the
antisymmetric state. The radial equation is integrated
out to x =20 or 30, where the logarithmic derivative is
matched to the appropriate combination of r times spher-
ical Bessel functions of argument kr to determine the
phase shift. This procedure means that we are truncating
the asymptotic potential —9/4x at x =20 or 30. Negli-
gible error is introduced in the phase shifts by the trunca-
tion. In order to take into account properly the kinemat-
ics of the asymptotic scattering state, the following
(slightly inconsistent) procedure is adopted. In the in-

tegration of the Schrodinger equation, the muon's mass is
ignored in determining the reduced mass for the relative
motion, just as for the bound states. The gerade and
ungerade eigenstates are thus treated as degenerate;
difFerences between open and closed channels are ignored.
However, in relating the energy E to the square of the
wave number k, we treat the nonrelativistic kinematics
correctly, that is, the reduced mass M„„ in the relation
E k p/2M„d &s M„,d —m„(ms+p)/(m„+ms+p),
where the asymptotic state is A+(Bp). Spin is ignored
in the dynamics, but is taken into account in handling the
symmetry properties for identical nuclei.

For scattering with nonidentical nuclei, there is elastic
scattering and charge-exchange scattering, i.e.,
A+(Bp)~A+(Bp) and A+(Bp)~(Ap)+B. The
c.m.s. elastic scattering and the charge-exchange ampli-
tudes are [25]

triplet states, it is the reverse. The nuclear-spin-averaged
elastic cross section for spin- —, identical nuclei can be

written as [26]

,', lf—,(~)+f, ( ~)+f„(~) f„—( &)—I'
el

+ ,', I f,—(~)+f, (~ ~)+fr(~) fg(~ 6) I'

(2I A,oI'+
I
A „oI'),

3

cr, =4m(2I A„)l + As, l ) .
(6)

Figures 5 —7 illustrate the Born-Oppenheimer L =0
cross sections for d+(dp), d+(tp), and t+(tp) elastic
scattering on the energy range from threshold to 100 eV.

The total-elastic-scattering cross section is obtained by
integration over all of 4~ (in contrast to identical particle
scattering) because the atom ( A p) is distinguishable from
the nucleus A. The L =0 and 1 partial wave cross sec-
tions are therefore

~o =~(
I A, o I'+ 3

I A. I'),

~, =3~(IA„,I'+3IA„I') .

Here the amplitudes A L and A„L are the standard am-

plitudes e' sin5/k for the designated potential and partial
waves.

For identical spin-1 nuclei, the spin S=0,2 states are
symmetric in spin exchange while the S =1 state is an-

tisymmetric. For the S=0,2 states (total weight —', in the

spin-averaged cross section), the scattering in L even

(odd) states is via the gerade (ungerade) potential. For
S =1 (spin weight —,') it is the reverse. The differential

cross section has the same form as Eq. (4), but with the
factor of —,', replaced by —,

' and the factor of —,', replaced by

The nuclear-spin-averaged total partial wave cross

sections for L =0 and 1 are

f i= ,'(f, +f.» f...-= ,'(f, f.»-—(2)

where fg (f„)are the c.m. s. scattering amplitudes for the

gerade (ungerade) electronic plus nuclear potentials. In
our approximation, the scattering and charge exchange
cross sections are

Here k, and kI are the wave numbers in the initial and
final states and are the only bearers of information about
the different thresholds. The cross sections for individual
partial waves involve the phase shifts 5 (L ) and 6„(L) in

the obvious way.
For identical nuclei, the symmetry or antisymmetry of

the various states must be taken into account. For identi-
cal spin- —, nuclei (p-p and t t), the Pauli principl-e requires

singlet spin states to scatter via the gerade potential for
even L and the ungerade potential for odd L. For the

(dp) + d elastic scattering
L=O cross section
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FIG. 5. Comparison of spin-averaged L =0 elastic scattering

cross section for d + (dp) in the Born-Oppenheimer approxima-

tion with accurate three-body results. Solid curve, present cal-

culatious; dotted curve, Ref. [20].
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FIG. 6. Comparison of spin-averaged L =0 elastic scattering
cross section for d+(tp) in the Born-Oppenheimer approxima-
tion with accurate three-body results. Solid curve, present cal-
culations; dotted curve, Ref. [21].

The comparison curves are from Ref. [20] for d+(d)Lt)
and t+(tp, ) and Ref. [21] for d+(tp) Whi.le there are
some small disagreements, the overall comparison is quite
good. The l. =1 partial wave cross section for d+(dp)
elastic scattering from threshold to 10 eV is shown in Fig.
8 and the corresponding cross section for d+(tp) from 0
to 100 eV is shown in Fig. 9. Gross qualitative
differences exist between the Born-Oppenheimer results
and the precise three-body calculations. Clearly the miss-
ing Born-Oppenheimer (1,1) bound state in d-d-p has ap-
peared as a scattering resonance at about 2—3 eV (5 eV
above its true position) with a width that is comparable.
For the d+(tp) scattering the opposite eff'ect is visible.
The preci. se calculations give a much larger l. =1 cross
section than does the Born-Oppenheimer approximation.
This can be traced to the fact that the (1,1) bound state
actually appears just below threshold (E=—0.66 eV),
while it is at —7.8 eV in the Born-Oppenheirner approxi-
mation.

FIG. 8. Comparison of spin-averaged L = 1 elastic-scattering

cross section for d+(d p) in the Born-Oppenheimer approxima-

tion with accurate three-body results. Solid curve, present cal-

culations; dotted curve, Ref. [20]. The weakly bound (1,1) state

at —1.975 eV, absent in the Born-Oppenheimer approximation,
manifests itself instead as a resonance a few eV above threshold.

IU. ANALYTICITY OF PARTIAL-WAUE AMPLITUDES
AND k ~+'cot5 EXPANSION

It is well known [27] that partial-wave scattering am-

plitudes in potential scattering have certain analytic
properties in the complex k and E planes: bound-state
poles on the positive imaginary axis in the k plane, possi-
ble conjugate poles in the lower half k plane (with the
same imaginary part, but opposite real parts), leading to
bound-state poles on the negative real energy axis on the
first Riernann sheet and resonance poles reached through
the positive energy cut, on the second sheet. For rnul-
tichannel scattering, the sheet structure is more compli-
cated, but the general behavior is the same.

Unitarity implies that I'z =k +'cot5L is a real mero-
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FIG. 7. Comparison of spin-averaged L =0 elastic scattering
cross section for t+ (tp) in the Born-Oppenheimer approxima-
tion with accurate three-body results. Solid curve, present cal-
culations; dotted curve, Ref. [20].

FIG. 9. Comparison of spin-averaged L = 1 elastic-scattering
cross section for d+(tp) in the Born-Oppenheimer approxima-
tion with accurate three-body results. Solid curve, present cal-
culations; dotted curve, Ref. [21]. The weakly bound (1,1) state
at —0.66 eV is close enough to threshold to enhance the accu-
rate p-wave scattering. In the Born-Oppenheimer calculations
the bound state is at —7.82 eV, further away.
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morphic function of E or of k . Poles of the scattering
amplitude in the k =plane are defined by cot6=i, or
FL(k )=ik +'. With the definition k =iz, the relation
reads Ft (

—z ) = (
—1 )

+ 'z + ', an equation with real
coeScients if I'I is represented by a finite polynomial in
k . Then most of the stated analytic properties can be
seen to follow directly from the properties of the roots of
a polynomial with real coeScients.

To illustrate the use of the analyticity of k 'cot5 to
determine pole parameters, we take the Born-
Oppenheimer numerical results for the gerade phase shift
for the L = 1 d-(dp) partial wave and make a polynomial
fit in k to FL(k ). Figure 10 shows the behavior of
k cot5 as a function of k . The range corresponds to
0—10 eV, as in Fig. 8. The vanishing at E=4.3 eV shows
where the real phase shift goes through 90', but for a
broad resonance the pole may be some distance away.
On the 0-10 eV energy range, elementary polynomial fits
to F, (k ) with power series in k up to (k ) for N =2
and 3 were generated with CricketGraph software. A
complex Newton's method found the roots in the k plane.
The results for E =3 are displayed in Fig. 11. Note the
pair of complex poles near the real axis. The right-hand
one is the resonance near the real E axis on the second
sheet. It has parameters E„,= 1.98 eV,
I = —2 ImE =2.82 eV. For E =2, not shown, there are
four poles: the two conjugate poles at almost exactly the
same positions as for N=3, and two on the positive
imaginary axis just as for X =3, although not quite in the
same positions. The latter two, apparently bound states,
are actually spurious, resulting from the approximation
of k cot5 by a polynomial on a finite interval. Any pole
located a distance from the origin comparable to or
larger than the range over which k +'cot5 is approxi-
mated (in this case, out to Ik~ =0. 18) should be viewed
with suspicion. The closest "bound-state" pole is at
k=i0. 19. Similarly, for %=3, the additional pair of
conjugate poles in the lower half of the k plane are ex-
tremely remote, far outside the range of plausibility. The
lesson here is that higher-order polynomial fits are only

0.6

lmk & 0, first ™
0.4 - sheet in E plane

0.2-

spurious bound
state poles

0.0

-0.2

range of polynomial fit

resonance pole at
E = 1.98 - i1.41 eV

Im k & 0, second
sheet in the E plane

8

Rek.

I ~ I ~ I ~ I s I a I ~ I I a I ~

-1.0 -08 -06 -04 -02 00 02 04 06 08 10
-0.4

0.4
Im k

0.3-

0.2-

Im k & 0, first
sheet in E plane

Il ~
bound state
E =-82eV

0.0
range of polynomial fit

Rek ~

useful to confirm the stability of the "nearby" pole or
poles found with the polynomial of least reasonable de-
gree. The higher the degree, the more the number of
spurious poles.

A test of the location of a true bound state through use
of scattering information is afforded by the amplitude ta-
bulations in Ref. [21]. Table 11 there gives values of t»
for the L =1 partial wave in d-(tp) scattering. This am-
plitude can be identified with tan5 o, even though, ac-
cording to Eq. (3), there is a (small repulsive) contribution
from the ungerade potential. In a search for a bound
state in the attractive gerade potential, the admixture is
irrelevant. An N=3 polynomial fit to k /ti~ from 0 to
35 eV [below the t+(dp) threshold at 42.8 eV] results in
two poles close to the origin, one at E= —0.624 eV on
the first Riemann sheet and one at E= —0.423 eV on the
second sheet. Four other poles are near the edge or
beyond the region of the approximation to k cot5 and

k3 cot 5 for L = 1 gerade lm k & 0, second
sheetin E plane

-0.2
-0.3 -0.2

i

-0. 1 0 0 0.2 0.3

0 0005

-0.001 0
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k&

FIG. 10. k cot6 for the d+(dp), L =1 gerade scattering
phase shift as a function of k corresponding to energies from 0
to 10 eV. The phase shift goes through m/2 at 4.3 eV. See text
for discussion.

FIG. 11. (Top) Poles of the L =1d+(dp) elastic-scattering
amplitude in the complex k plane, based on a polynomial fit of
degree 3 in k to the numerical data represented in Fig. 10. The
range of k values involved in the fit is indicated by the arrows.
Physically significant are the two poles near the origin, corre-
sponding to a resonance on the second Riemann sheet at
(Re,E,ImE) ={1.98, —1.41) eV and its partner. The other
poles, at the edge of or beyond the "circle of confidence"
defined by the range of the fit, are spurious artifacts of the poly-
nomial representation. (Bottom) Corresponding poles for the
L = 1 d + ( tp ) scattering amplitude in the Born-Oppenheimer
approximation (Fig. 9), from a quadratic polynomial fit in k to
k cot6 from 0 to 20 eV. The bound state pole is inferred from

the scattering amplitude to be at —8.2 eV, close to the actual
computed value of —7.82 eV.
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are judged spurious. The bound state at —0.660 eV
shows up clearly in the scattering amplitude. Another fit,
this time with N =2 and only from 0 to 2 eV, yields vir-
tually the same two poles near the origin ( —0.675 and
—0.433 eV) and two very remote.

The corresponding comparison for the Born-
Oppenheimer approximation is shown in the bottom part
of Fig. 11, where the poles of the L =1 scattering ampli-
tude for the d+(tp) gerade potential are shown, based
on an N =2 polynomial fit to k cot5 on the energy range
0—20 eV. The bound state pole is at E= —8.2 eV, com-
pared with E= —7.82 eV by direct computation (in the
Born-Oppenheimer approximation). There are also a
"virtual state" at E= —2.3 eV and two spurious poles.
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V. THE L =3 RESONANCE
AND THE SEARCH FOR L =0 RESONANCE AT 54 eV

Higher partial waves are important in the process of
establishing the trustworthiness of the Born-
Oppenheimer approximation as a description of the phys-
ics involved and the expected magnitudes of parameters
(such as resonant widths). Of particular interest is the
L =3 partial wave in d (tp, ) sca-ttering. The calculations
of Ref. [21] (Table 26 and Fig. 26) show a narrow reso-
nance at 22 eV. Inspection of the d t peffe-c-ti, ve radial
potential-energy curves shown in Fig. 12 for the gerade
ground state show the reason. The L =3 potential is
deep enough to yield a quasibound state, yet has enough
of a shoulder partially to "trap" the nuclear motion and
give a narrow width. The L =2 potential is deep enough
to have a true bound state, with insufficient shoulder to
make a scattering resonance. The L =4 potential is too
shallow to give resonant behavior.

A calculation of the d (tp} L =3 e-ffective scattering
cross section by the gerade potential is compared with
the accurate calculations of Ref. [21] in Fig. 13. In our
approximation of mass degeneracy in computing the
phase shifts and cross sections, with the neglect of a small

120

60I

FIG. 13. The L =3 elastic-scattering cross section for ener-

gies between 12 and 26 eV, showing the resonance at 22.2 eV
with a width of 1.4 eV bound in the calculations of Ref. [21]
along with the resonance in the Born-Oppenheimer approxima-
tion at 16.7 eV with a width of 1.2 eV.

contribution from the negative shift in the ungerade
scattering amplitude, the cross section according to Eq.
(3) would be —,

' of what is shown in Fig. 13. We plot the

full gerade cross section for clearer comparison with the
accurate results, which describe the purely elastic scatter-
ing in the channel d + ( tp, )~d + (t p), the channel
t+(dp)~t+(dp) being closed at these energies. The
Born-Oppenheimer approximation gives the location of
the resonance at ED=16.7 eV, with a width of I =1.2
eV, while the accurate values are En=22. 18 eV and
I = 1.39 eV. The discrepancy of 5.5 eV in position is typ-
ical; the slightly smaller width is a reQection of the lower
resonant energy and the consequent thicker potential bar-
rier.

Two remarks are warranted: Display of the wave func-
tions of the scattering process at difFerent energies across
the resonance provides vivid reality to the idea of a
quasistationary state. The peak probability density inside
the potential well relative to the asymptotic density nice-
ly follows a Breit-Wigner resonant shape. Figure 14
shows the squares of the radial wave functions at two en-

ergies, on resonance (E =16.75 eV) and off (E=15 eV},
normalized to the same magnitude at large distances.
The second remark is that application of semiclassical
WKB techniques can give qualitatively correct values for
the resonant energy and width. Use of the quantization
condition

b
(n —

—,')m. =I k(x)dx,
a

(7)

-120
0

FIG. 12. Effective n =1 potential-energy curves of radial
motion for the d-t-p system for L =2, 3, and 4. The energies are
in eV and the radius in units of a„. The L =3 potential is
sufficiently attractive at intermediate distances to support one
"bound" state and sufficiently repulsive at larger distances to
give it a relatively narrow width.

Jb dx
a QE —V,s(x)

(8)
Vo

where n =1,2, 3, . . . , a and b are the classical turning
points, and k(x) is the radial wave number
k (x)=(2M/p)[E —V,s(x)] gives an energy of 22.9 eV
for the lowest state in the L =3 gerade potential. The
width can be estimated as follows. The classical period of
radial oscillation is given by twice the integral of 1/v(x)
between a and b. In muonic hartree units, we have

1/2
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FIG. 14. Squares of two L =3 radial scattering wave func-
tions [~u(x)~ =4mr ~P(r)~ ], normalized at large distances to
the same average value. The upper curve is at resonance,
E= 16.7 eV; the lower curve is for E= 15 eV. The quasistation-
ary nature of the resonant state is clearly demonstrated.

FIG. 15. The phase shift in degrees (left-hand scale) and

k cot5 (right-hand scale) for the scattering in the L =0 gerade
potential of the d + (tp) system as functions of energy from 0 to
80 eV. See text for discussion.

where ro=irta„/e . The inverse of the classical Period is
an estimate of the rate of attempts by the reduced parti-
cle to escape through the barrier. Multiplication by a
Gamow penetration factor exp[ —2f a(x)dx ] for the bar-

rier ives an estimate of the width. The classical oscilla-ner gives an e
t' f quency corresponds to a width of 10 e; e
rier penetration factor is 0.368 at 22.9 eV; t e wi i
thus I w&B=3.7 eV. Because the barrier is relatively
"thin, " the simple-minded Gamow factor is not expected
t ive more than qualitative results. In the event, it is in0 glv
error by a factor of 3.

We now turn to the search within the Born-
0 penheimer approximation for poles in the L =0,
d+(tp, ) scattering amplitude for the gerade ground-state
potential, in particular, for the reported pole at
E=(54.35 —i0.37) eV. The phase shifts were calculated

from 0 to 100 eV in 1.0-eV steps. The phase shift in de-

grees and ka„cot(5) are shown as functions of energy in

Fig. 15. The phase shift falls monotonically from m at
zero energy re ec ing( fl t'ng the two L =0 bound states}
t roug ~ ah h 3 /2 t E=18 eV and on towards ir at roug y

hase shift96 eV. A narrow resonance would cause the phase s i
to increase abruptly by nearly 180' across the resonant
energy before declining again at higher energies. There is
no sign o any sucf h structure that would indicate the
presence of a resonant state anywhere on the interva .

no change in conclusion. Despite the absence of any hint
in the behavior of the phase shift of a narro~ state, one
can apply the approach of Sec. IV and search for poles in

1 k F. plane. An %=5 polynomial fit to
lex olesk cot5 on the integral (0,75 eV) yields ten complex po es

on the two Riemann sheets:

g

(
—2.4, +12.3};(24.7, +36.4};(84.9, +43.7);(139.1,+4.5) (first sheet)

—(1Q.9, +44.2);(9Q.6, +6Q. 2) (second sheet) .

—0.64, +9.1};(23.3, +26.3);(67.0, +31.3) (first sheet)

(
—3.4, +28.2);(64.2, +42.4} (second sheet) .

=2 ImE) less than 18 eV. Furthermore, all but the p
'

first air on the second sheet are
nd1 i i 'hod i ohsuspect. Poles on the first sheet rep resent bound states and shou d not occur in pa'

h shift asses through ~ at 96 eV, giving a pole in
~ ~

g g
~ ~ of fittin of k cot5. Since the p ase s i passe

k cot5, this singularity was fitted numerically anand the difference wit co was a
k ontheran eup to e8S V The scattering amplitude now yielded 12 poles:

A art from the additional pair on the first sheet (far out-
side the plausible region), the five pairs can be seen to
correspond to the earlier At without the singularity in
k cot5.

Having ai e of 1 d to find the reported narrow resonances
f Ref. 21,(also not seen in the scattering calculations of Re . [ ],

incidentally, nor in the calculations of Re . ~ ~, we a-
dress the plausibility of such a narrow state in the s wave

I

ec. III that theor p wave at such an energy. We saw in ec.
er of the d-d-iM(1, 1) state is slightly positive in the

Born-Oppenheimer approximation, rat er
negative. The shift is about 4 eV, putting it as an L =1

(R E) ImE)=(2. 0, —1.4) eV. The width is

I =2.8 eV. If such a state were at 50 eV instead o e
it would have a width so large as to make the idea of a

1 bl The L =1 centrifugal barrier isresonance inapp ica e.
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just not large enough to keep the width small as the ener-

gy increases. Similarly, the L =3 resonance of Ref. [21]
and found in our calculations has a smaller width
(I =1.4 eV) at 22 eV because of the higher centrifugal
barrier, but would have considerably larger width if its
energy were at even 40 eV (see Fig. 12). The reported
states in L =0 and 1 at E=54 eV have widths of 0.74
and 2.04 eV. Since there is no centrifugal barrier in L =0
and only a very weak one in L = 1, widths of the order of
1 eV are counterintuitive.

The accurate three-body wave functions can be written
as expansions in Born-Oppenheimer eigenstates of the
molecular potential energies of the different electronic or-
bitals. The presence in our approximation of only the
one wave function, corresponding to the 1s o muonic
configuration, is what has led to the statement that nar-
row continuum states can only appear in the complete
three-body calculations. Already in the Introduction we
had pointed out that the one-muon-two-nuclei molecule
is too simple a system to give rise to Feshbach resonances
[14,15]. In the language of linear combinations of Born-
Oppenheimer states, the nonzero muon mass and the
different masses for nonidentical nuclei mix the gerade
and ungerade states for the lowest electronic orbital as
well as mixing in other excited orbitals. The latter lie
roughly 2 keV above the lowest potential-energy curves
and presumably do not enter decisively. It is dificult to
see how an admixture of the repulsive 2p o.„state and
small amounts of energetically distant states could pro-
duce a narrow continuum resonance that the authors de-
scribe as a member of the sequence of vibrationally excit-
ed L =0 states [9].

Another related point is the existence of the t+(dp)
threshold at 48 eV. The claimed narrow resonances are 6
eV above this threshold. While it is known that the sepa-
ration of degenerate thresholds by symmetry breaking
can cause complicated motions of resonances [29,30], it
does not appear likely that a remote pole would migrate
to a position only 1 eV from the real axis because of a
threshold 6 eV away. Even if, for some reason, it was ap-
propriate to think of the kinematics of decay for these
resonances in terms of the energy above the t+(dt)u
threshold, the absence of a centrifugal barrier makes 6 eV
quite high enough to cause an s-wave width much larger
than 6 eV: witness the d-d L =1 resonance at 2 eV with
a width of 2.8 eV.

VI. n =2 RESONANCES

A large number of continuum resonances in the d-t-p
system associated with the d + [tp(2s ) ] threshold, rough-
ly 2110 eV above the lowest threshold, have been report-
ed and their properties examined [10—13, 16]. As point-
ed out by Shimamura [16], the Born-Oppenheimer ap-
proximation is an excellent approximation for these
states. The lowest-lying n =2 potential energy at inter-
mediate distances is the 3d og curve shown in Fig. 1.
The potential minimum is at larger r than for n = 1 and is
much shallower. There is an attractive tail on all the
n =2 gerade potentials from the first-order "Stark
effect, "6V= —3/x . Simple WKB arguments show that

in such circumstances there is an infinite number of
bound states for small L values, with binding energies go-

ing as
~ E„~=C exp( —Pv }, where v is the vibrational

quantum number and P=2n(p/6M)' . Atomic screen-

ing will cut off the x potential, of course, and limit the
sequence of bound states. For the d-t-p system, v,„&9.

The results of our Born-Oppenheimer calculations are
compared to the more elaborate calculations in the tables
below. There is an issue of the crossing of potential-

energy curves of the same symmetry. As can be seen in

Fig. 1, for x &4 the 2s o. curve lies below the 3d 0. . In
the complete adiabatic limit, the motion is "classical"
and follows the lowest potential-energy path. Nonadia-
batic behavior tends to cause the system to go rapidly
past the crossover point without changing from one
curve to the other. For the states discussed here, the
differences in energies are less than 1 eV when the poten-
tial is changed from being 3d o at all distances to fol-

lowing the 2$ O.
g curve for x (4 because the classical

turning points are always outside x =4. With apprecia-
ble departure from adiabatic behavior there will, of
course, be significant mixing of different muonic orbital
Born-Oppenheimer states. Whether such admixtures can
plausibly produce some of the properties claimed for
these states is discussed below.

In Table I we compare the Born-Oppenheimer energies
for the L =0 and 1 bound states, i.e., states lying below
the d+tp(2s) threshold, with the calculations of Refs.
[10—13]. Differences of the order of 10—15 eV are ap-
parent, while there is general agreement (to 0.7 eV or less}
among the accurate calculations [31]. The differences in

energy between state of L =1 and 0 for the same radial
quantum number are reasonably well given by the Born-
Oppenheimer approximation, as might be expected, since
the mean value of r is dominated by the classically al-

lowed region where the mean square wave function is not
far from the Born-Oppenheimer form.

Of considerably more interest are the comparisons of
Table II. The first point to be made is that the more ela-
borate three-body calculations and the Born-
Oppenheimer approximation yield closely similar results
for properties of the wave function in the classically al-
lowed region [32]. The second and third columns of
Table II show the comparison between the mean nuclear
separations for the first four L =0 states. The squares of
Born-Oppenheimer and pseudo-wave-functions agree well
in the classically allowed region [33]. The average value
of the Born-Oppenheimer wave function in that region
(column 4 of Table II) can therefore be taken as the ap-
proximate average of the three-body pseudo-wave-
function as well. Columns 5 and 6 demonstrate a charac-
teristic of the Born-Oppenheimer approximation. Be-
cause of the penetration to the origin through a very
thick Coulomb barrier, the square of the wave function at
the origin is exponentially small —by factors of 10',
typically —compared to the average ( ~g(x)~ ) in the
classically allowed region. In contrast, the results of
Refs. [12] and [13] in columns 7 and 8 for the nuclear
densities at zero internuclear separation, while differing
among themselves, are huge by comparison. Comparison
of column 7 with column 4 shows that the Coulomb
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TABLE I. Comparison of energies of n =2 d-t-p continuum resonances for L =0 and 1 with numerical three-body calculations.
Energies are in eV, relative to the d-(tp, n =2) energy. BO denotes Born-Oppenheimer.

L, v

0,0
1,0
0, 1

1,1

0,2
1,2
0,3
1,3

EBO

—234.5
—228.4
—151.5
—146.5
—86.4
—82.5
—41.6
—38.9

Ref. [10]

—217.892
—212.547
—139.724
—135.375
—79.095
—75.675
—36.567
—34.233

Ref. [11]

—217.870
—212.511
—139.502
—135.146
—79.385
—74.940

—33.395

Ref. [12]

—217.892

—139.731

—79.118

—36.610

Ref. [13]

—217.889

—139.705

—78.937

E(l, v ) —E(o, v )

(BO)

6.1

5.0

3.9

2.7

E(1,v ) —E(0,v)
(Ref. [10])

5.345

4.349

3.421

2.334

repulsion causes only a factor of 40 reduction in probabil-
ity for the (0,0) state, a factor of 4 for the (0,1) state, and
a factor of 3 for (0,2) state. The larger value of the proba-
bility at the origin than the value in the classically al-
lowed region for the (0,3) state seems especially suspect.
The corresponding factors for the first three states from
Ref. [13]are 2000, 100, and 20.

The drastically different behaviors of our wave func-
tions and the pseudo-wave-functions in the classically for-
bidden interior region demands discussion. Examination
of Fig. 1 shows that, in the framework of the Born-
Oppenheimer approximation, the Coulomb barrier ex-
tends from the origin out to x =7 for the n =2 states and
only out to x =1.7 for n =1. For the n =1 ground state,
the ratio if(0)~ to (~l((x)i ) is roughly, ' and is not
different by a factor of 2 between the Born-Oppenheimer
and accurate three-body calculations. The tiny results of
Table II for if(0) ~, while perfectly understandable
within the Born-Oppenheimer approximation, are surely
underestimates. There are many muonic orbital
configurations besides the 3d cr (not shown in Fig. 1)
that may contribute to the wave functions. Nevertheless,
the results of Refs. [12] and [13] seem extreme in the oth-
er direction. The pseudo-wave-function for the n =2
(0,0) state, while agreeing with the Born-Oppenheimer
wave function in the classically allowed region, departs
markedly for x (4, exhibiting rapid oscillations (an inte-
rior "classically allowed" region) that indicate a large
positive local kinetic energy of nuclear motion, 33]. At
x=2.0—2.5, the local wavelength implies an average

kinetic energy of about 0.23 muonic hartree units and at
x =0.5—1.2, roughly 0.42 muonic hartree units. Such
large positive local kinetic energies at x & 3 implies great
departure of the three-body wave function from the dom-
inant Born-Oppenheimer component that governs the
behavior at larger radii. Inspection of Fig. 1 indicates
that at these close distances the n =2 (0,0) three-body
wave function would necessarily have a major, even dom-
inant, admixture of the n =1 ground state. This infer-
ence is consistent with Table III of Ref. [13]. A decom-
position of the three-body wave function at zero internu-
clear separation into heliumlike atomic states shows 42%
probability each for the atomic 1s and 2s states, with
5.5% probability for 3s and smaller percentages for
higher states (the whole helium-like continuum contrib-
utes 8.8%). The appreciable amount of 2s is understand-
able from Fig. 1; the 2s 0. potential energy lies lower
than the 3d cr curve for x &4, as mentioned in the
second paragraph of this section. An equal amount of
the 1s configuration seems somewhat surprising. It is be-
lieved not to be an artifact of the variational trial wave
functions [33].

VII. SUMMARY AND CONCLUDING REMARKS

The Born-Oppenheimer approximation provides, in my
view, a useful exploratory tool for muonic molecular-ion
dynamics. As Figs. 2 —7 show, it provides a semiquanti-
tative description of both bound states and low-energy s-
wave scattering. It fails, of course, to give the finer de-
tails, such as the slightly bound (1,1) states in the d-d-p,

TABLE II. Comparison of present results for the mean separation of the nuclei (x ) and ~g(0)~ with
the equivalent results of Refs. [12]and [13]. The mean nuclear separation is in units of a„. The column
( ~i((x) i ) contains the average value of the square of the Born-Oppenheimer wave function of nuclear
motion between the classical turning points in units of 10 cm '. The density of nuclei at zero internu-
clear separation is in the same units. The two columns of ~i((0)i correspond to the use of (i) the 3d a~
potential for all x and (ii) the use of the 3d cr~ potential for x )4.05, but the softer 2s o.

~ potential inside
x =4.05. The final columns give the corresponding density p&(0) from the three-body calculations of
Refs. [12] and [13],as deduced from the stated values of the fusion rate.

L, v

0,0
0, 1

0,2
0,3

(x)
(BO)

9.8
11.7
14.3
18.4

(x)
(Ref. [12])

9.83
11.87
14.85
20.92

103
41.1
20.2
9.22

i(,(0) I'

1.5 X 10
7.1x10 "
1.6x10-"
2.1 X 10

li(,(o) I'

2.6x 10-"
1.4x10-"
3.1 X 10
4.3 x10-"

p~(0)
(Ref. [12])

2.4
10.8
6.0

135.0

pN(0)
(Ref. [13])

0.054
0.407
0.922
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and d t-p-systems. The failure to describe accurately
these states near threshold reffects itself in a disagreement
with the accurate three-body calculations for low-energy
p-wave scattering (Figs. 8 and 9). Even there, an i. =1
resonance at 2 eV above threshold for d-d-p can be
viewed as semiquantitative agreement with the accurate
bound state at —1.975 eV. The width of 2 or 3 eV for
that p-wave state and the width of 1.4 eV for the I. =3
resonance at 22 eV above threshold (found 5 eV away in
the Born-Oppenheimer approximation) set the scale for
expected widths of resonances as functions of energy and
centrifugal barrier. Examination of the d-t-p gerade s-

wave phase shift itself and a search for poles of the S ma-
trix through the k cot5 expansion give no indication of a
narrow resonance near 50—60 eV above threshold [8,9],
or indeed any resonance at all.

The family of d-t-p continuum resonances 1.9 keV
above threshold are known [16] to be "ordinary" molecu-
lar states based on the 31 o electronic potential-energy
curve (see Fig. 1). To the extent that the n =2 t pato-m
can be viewed as a stable species, these states are true
bound states, lying below the d tIJ, (n =2-) threshold. The
Born-Oppenheimer approximation provides a semiquan-
titative description of the energy levels and wave func-
tions. Tables I and II summarize the results. Compar-
ison of our calculations with those of Refs. [12] and [13]
shows rough agreement for properties that depend upon
the integrated wave function or the wave function in the
classically allowed region. Understandable disagreement
occurs for quantities such as p~(0), where the mixing of
different electronic configurations is presumably impor-
tant. Nevertheless, even the smaller values of piv(0) re-

ported in Ref. [13] seem excessively large, making the
fusion rates and widths quoted there somewhat suspect.

Assuming the properties of the n =2 continuum reso-
nances are known, one can ask whether they enter impor-
tantly in the cycle of muonic catalysis. The n =2 t-p
atomic states are certainly formed in the process of cas-
cade to the ground state by collisions and radiative tran-
sitions. For liquid densities, estimates [34,35] are that
roughly 15% of the atoms arrive at the 2s state. The
Day-Snow-Sucher effect [36] in the collisions will cause
Stark mixing of the tp(2s} state with the tp(2p) state.
For kinetic energies larger than the fine structure
(0.2—0.3 eV), the 2s~2p mixing rate is of the order of
10' s ' at liquid-hydrogen density [35];at thermal ener-
gies the rate (for radiative collisional deexcitation) drops
to of the order of 2X10' s ' [37]. The rate for the radi-
ative 2p~ls transition is 1.3X10" s '. A priori, the
fusion rates of Ref. [13],(10"—2 X 10' s ') would imply
that some fusion via these states might occur, prouided
the molecules could be formed. The terminology "con-
tinuum resonances" is misleading in this regard. As we
have said, these n =2 molecular states are bound states as
far as the d tp(n =2) channel is-concerned. They are not
resonances in that channel. The rates of molecular for-
mation may be enhanced somewhat by their large sizes,
but the formation wi11 not be by the Vesman mechanism
but by Auger emission with Q values of up to 217 eV.
The molecular formation cross sections will be very
small. Only for the states with vibrational excitation

7 & v& v,„=9 (binding energies less than 4 eV) is there

any remote chance of an appreciable cross section of mol-

ecule formation by the Vesman mechanism. These states
are so large in size [38] that their undisturbed existence
inside electronic molecules is in doubt. In any event,
currently there is no information on the fusion or other
rates for such highly excited and diffuse states.
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APPENDIX: ANALYTIC APPROXIMATIONS
TO THE "ELECTRONIC" ENERGIES

The following table gives the polynomial (or other) in-

terpolation and extrapolation formulas fitted to the nu-

merical results of Bates, Ledsham, and Stewart [22] for
the electronic energies of the hydrogen molecular ion in

the Born-Oppenheimer approximation. The energies are
labeled with the same convention as used by Bates, Leds-
ham, and Stewart, but the energies are in atomic units
rather than rydbergs. The zero of energy is taken in each
case to be that of a neutral hydrogen atom and a Z =1
nucleus at infinite separation, i.e., E„(x)=E,(x)

E,(oo). For th—e n =1 group of molecular states, the

atom is in its 1s state when at large separations; for the
n =2 group (continuum resonances}, the atom is in the
n =2 atomic state. Asymptotically, the electronic ener-

gies are fitted to a form that gives rise to the quadratic
(n =1 group) or linear (n =2 group) Stark potentials
when added to the Coulomb repulsion between the nu-

clei. For the n = 1 group, the potential goes as
V(x )~—9/4x, while the N =2 potential goes as
V(x)~ —3/x .

For the range of x spanned by the tables of Bates,
Ledsham, and Stewart (0~9 or 10), the electronic ener-

gies are fitted over portions of the range by inverse poly-
nomials. The segmentations are arbitrary; they were
chosen by trial and error in an effort to obtain a reason-
able representation with polynomials of modest degree.
Beyond the range of the numerical tables of Bates, Leds-
ham, and Stewart, an arbitrary form is used to bridge
from the tables at their largest x to the known Stark
effect form at very large x. Where possible these forms
are chosen to agree closely with the exact computations
of Madsen and Peek [23] on the range 10 &x & 50.

n=1

1s o.
g state

The "electronic" energy is written as
E„(x)= —1.5/P(x), with p(x) =ao+a ix+a2x +a3x
+a4X 4
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Coefficient

ao
a&

ap

a3
a4

0&x &2.5

1.0
0.227 28
0.494 89

—0.170 35
0.026 669

2.5(x &9

1.928 3
—0.414 15

0.427 27
—0.035 998

0.001 033 8

Here we only tabulate fits for the even states (which
give attractive potentials for nuclear motion). There are
two, the 3d 0.~, which lies lowest at large x, and the 2s
0. , which lies below the 3d o. state for x (4.05.

3d o state (called by others the 3 o state)

For x & 9, the function P(x) is

4 3 175.8165 53 205. 69

Comparison of the fit for the Is o state (without the
Coulomb repulsion) with the Born-Oppenheimer energies
in Table II of Struensee, Cohen, and Park [24]
(x =0. 1 —25) shows agreement to a few parts in 10 for
0.3 &x &2.0 and considerably better for 2 &x & 25. Such
accuracy is adequate for our purposes.

3o o „state (called by others the 1 o „or the 2p o „state)

The "electronic" energy is written as
E„(x) = —x /Q(x), with Q(x) =ho+ b, x +b~x +b3x '.

(b)
where

For 5&x ~14, E„(x)=—[3/x +p(x)],

p (x )
= —1.2718+0.619 14x —0. 108 21x z

+9.4249(—3)x —4. 1341(—4)x +7.2909(—6)x' .

(c) For 14&x 25, E„(x)=—[3/x +1/x+q(x)]
where

q(x) = —3.2718( —2)+1.6359( —2)x —1.5763( —3)x'

The potential energy is needed at quite large distances,
especially for the higher vibrational states. The following
segments give an adequate representation for 0 & x & 50.

(a) For 0&x &5 the "electronic" energy is written

E„(x) = 7 /[7—2P (x ) ], where

P (x ) = l.0006 —1.7378( —2)x + 8.2391( —3)x

—2. 7605(—2)x '+ 7. 1911(—3 )x —5.2048(—4)x ' .

CoeScient

bo
b,
b~

b3

0&x &3

15.602
—3.1534

2.3474
0.64674

3&x &9
—1.7798
12.687

—2.4176
1.1188

+5.7049( —5)x' —7. 1917(—7)x

(d) For x )25, E„(x)=—[3/x +1/x+1/r(x)),
where r(x)= —6. 3035x +0.33842x —1.8752( —3)x .

2s ug state

Q(x) = 4x'

10.3625

For x ) 9, the function Q(x) is

'6

%e only give the 6t for x &4.05, where the "electron-
ic" energy is lower than that of the 3d 0. state. The
form for E„(x) is the same as for the 3d cr state, but for
x & 4.05 the function P(x) is P(x) =

—,',p(x) where

p(x) =0.989 91+0.1977x +0.089 179x —0.023 633x
+0.002 332 567x .
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