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This work is a response to a problem which was most clearly formulated by Wolf [Coherence and

Quantum Optics, edited by L. Mandel and E. Wolf (Plenum, New York, 1973), p. 339] in this way: "At-
tempts to generalize [the extinction theorem] within the framework of molecular optics encounters for-

midable difficulties. " Here the method of integral equations is applied to an arbitrary nonlinear and an-

isotropic medium, taking into account quadrupole and magnetic-dipole radiation. Using the fundamen-

tal equations of molecular optics, we prove the extinction theorem in a general case, and its physical in-

terpretation is elucidated. The question about structure of a surface layer that produces the rejected
wave is clarified. A connection between the microscopic and macroscopic characteristics of nonlinear

media is obtained. This advance was achieved by the implementation of the straightforward idea of vari-

able substitution in the original integral equation. This substitution turns out to yield insight into the
transition from a local to a Maxwellian field.

PACS number(s): 42.65.An, 42.70.Nq, 35.20.My

I. INTRODUCTION

The method of integral equations (MIE) in molecular
optics [l] is based on the representation of the medium as
a system of discrete oscillators. In contrast to the more
usual spatial-averaging approach of Maxwell's equations,
the MIE starts from the discrete model of a medium and
gives a self-consistent description of electromagnetic phe-
nomena in the framework of such a model. In the case of
linear optics, the method of integral equations turns out
to be useful when one considers problems such as spatial
dispersion [2,3], the scattering of the light by ultrasound
[4], and the propagation of light through layered media

[5]
What is the reason for using the MIE approach for

consideration of optical problems? Optics was "born in a
vacuum, " but already its first steps into a medium stimu-
lated the question: "What is a medium from the
viewpoint of light" ? In other words, is the medium a
continuous substance without any interval structure, or
does it consist of discrete elementary radiators? The
Maxwell differential-equations approach is based on the
first (a continuous substance) premise, but it is known
that in reality matter is composed of discrete elementary
radiators. The problem of reconciling both these ap-
proaches was formulated by Esmarch, Oseen, and Ewald
in the years 1912—16, and was solved for linear isotropic
homogeneous media (for a modern review see Ref. [l]).
The main result may be stated as the Ewald-Oseen extinc-
tion theorem (EOET) which shows how, due to the in-

terference of the separate elementary oscillators, an in-
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cident wave from the vacuum is canceled in the medium
and a new wave propagating in the medium with a re-
duced velocity appears. Originally, EOET was proved
only for a linear, electric-dipole homogeneous isotropic
media. Several generalizations of this theorem have been
proved for electric-quadrupole and magnetic-dipole
linear, isotropic, semi-infinite media on which a plane
wave is incident [6], and for nonlinear media under very
special conditions: The medium must be semi-infinite,
homogeneous, and isotropic, and must produce a plane
wave of nonlinear polarization. In addition, a preset field
approximation is valid [7]. As will be seen later, such as-
sumptions are not accidental, and in the approaches of
Refs. [6,7] the results could not have been obtained
without them.

The important result of these investigations was the
demonstration of the possibility of matching the micro-
scopic approach to the Maxwell equations for nonlinear
and linear quadrupole media, at least in some specific sit-
uations. However, without these special assumptions the
proof of EOET is not only destroyed, but also it seems
that, in a general case, the electromagnetic field cannot
satisfy the integral and wave equations simultaneously.
Thus the problem is such that it requires consideration
from a general point of view.

A completely different approach to the extinction
theorem was developed by Sein, who demonstrated that
the extinction theorem is a natural consequence of
Maxwell equations and material equations in the simple
situation of no charge and current singularities [8]. Later
on, generalizations of this approach to the singular
charge and current densities in the medium were made
[9,10]. Therefore, the EOET, in principle, does not con-
tradict the Maxwell equations.

However, these investigations do not touch on the sub-
ject of microscopic analysis. As a result, the question of
generalizing the EOET within the framework of molecu-
lar optics remains open. The results of Refs. [6,7] stimu-

1050-2947/94/49(2)/1313(13)/$06. 00 49 1313 1994 The American Physical Society



1314 A. V. GHINER AND G. I. SURDUTOVICH

late additional interest in the general problem because
from them it follows that, with the exception of some spe-
cial cases, there is no obvious way to solve it. Interest in
this question is doubled when one realizes that in the gen-
eral case an electromagnetic field cannot satisfy integral
and wave equations simultaneously.

For the solution of this problem we adopt here the
principal idea of a formal "substitution of variables" in
the integral equation in such a form that the new vari-
ables satisfy wave and integral equations simultaneously
[11,12]. We accomplish this program for the most gen-
eral case of nonlinear anisotropic inhomogeneous media
with allowance made for not only the electric-dipole but
the electric-quadrupole and magnetic-dipole moments of
the elementary oscillators as well. It turns out that a
consequence of properly taking into account the quadru-
pole radiation, apart from the generalization of the
EOET, is that it reveals an actual aspect for the under-
standing of the extinction theorem's physical meaning
[12].

In Sec. II the problem of matching the integral-
equation approach and the Maxwell-equation approach is
considered, and an extinction theorem for a medium with
allowance for quadrupole and magnetic-dipole mecha-
nisms of nonlinearity is deduced. In Secs. III and IV the
rejected-wave and local-field corrections are discussed.
The connection between our approach and those con-
sidered previously is given in Sec. V. The main results
are listed in Sec. VI.

H (r, ()=VXVX

R
m r', t ——

C

(3b)

where R=r —r'. Here r is the coordinate of the observa-
tion point; r is the coordinate of the radiator; and
d(r', t ), g(r', t ), and m(r', t ) are the electric-dipole, qua-
drupolar, and magnetic-dipole moments, respectively.
The gradient symbol V indicates differentiation over r.
Time derivatives are indicated by a dot above the quanti-
ty differentiated. A dot at midline indicates the contrac-
tion of two tensors over one pair of indices. Note that
Eqs. (1)—(3) yield well-known forms of the fields in the
various radiation zones. When carrying out the spatial
differentiation operations, the number of such operations
either in the numerator or denominator determines the
power law of the field decrease with distance, i.e., the
type of zone (static, wave, or intermediate). From formu-
la (2) it is evident that we can add to g a unit tensor mul-
tiplied by an arbitrary scalar function without changing
the fields. This means we can always choose a tensor q
such that Tr g =0. This degree of freedom in Q was pre-
viously demonstrated only in the far-distant zone or for a
static field. Also, it is easy to demonstrate that g is a
symmetric tensor, since its antisymmetric part can be re-
moved by means of renormalization of the magnetic mo-
ment.

Let us consider Fourier transforms of the fields
E'(r(), H'(r() at the frequency co. We place a radiating
atom at the point r1, and find

II. THE PROBLEM
OF MATCHING THE MIE APPROACH

AND MAXWELL-EQUATION APPROACH
AND AN EXTINCTION THEOREM

R
d r', t ——

C

E„(r,r)=Vx Vx
R

(la)

First we define the contributions of the medium to the
fields. These include electric-dipole, quadrupole, and
magnetic-dipole terms. The expressions for the micro-
scopic fields Ed, Hz of the electric dipole, E~, H~ of the
quadrupole, and E,H of the magnetic dipole are

E'(r, )=E,(r, )+ g [VXVXd(r, )G(R,()
j(~1)

—VXVXV g(r, )G(R,, )

+ ik V Xm(r, )G(R,()],
H'(r, )=H, (r, )+ g [VXVXm(r, )G(R,, )

j(%1)

+ikV XV g(r, )G(R,;)
ikV Xd—(rj )G(R(()],

ikR .
I

G(R(()=, R j( = Ir( —r(l,
jl

(4a)

(4b}
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E,(r, (}=—Vx Vx V.

(lb)

(2a)

(2b)

(3a)

where E; and H, are the strengths of the electric and
magnetic fields of the incident waves.

For given values of d, g, and m, formulas (4) determine
the fields at r& due to all other radiators, except
for the radiator l, and also due to the incident wave. The
radiation from a source depends on the fields
E'(r. ),H'(r. ) [this dependence is determined by
d=d(E', H'), Q=g(E', H'), m=m(E', H'} of each radia-
tor] and so formulas (4} are actually equations for the
fields E' and H', which must be solved self-consistently.
Our task is to analyze the characteristics of the solutions
of these microscopic equations and to compare them with
the solutions of the macroscopic Maxwell equations.

As is commonly done in linear optics, let us pass from
the summation to the integration and isolate the contri-



49 METHOD OF INTEGRAL EQUATIONS AND AN EXTINCTION. . . 1315

+ikV XMG)d r', (sa)

bution from the radiators inside a Lorentz sphere cr, with
its center at the point r/=r. We choose the radius a of
the sphere to be large compared to the distance b between
the radiators, but small compared to the scale of the in-
cident inhomogeneous field and the scale of the spatial
distribution of the radiators. As a result, we obtain the
following integral equations for E' and H':

E'(r')=E, (r)+E (r)

+f (VXVXPG —VXVXV.QG

RJ./

RJJ /rJ rg /

(6a)

Here indices s and t label the Cartesian components,
and 5„is the Kroneker symbol. Using a first-order ap-
proximation to the spatial dispersion of d inside 0, we
obtain the term y, :Vd/b~= bf—, :VP, where y, is the
third-rank tensor:

H'(r')=H;(r')+H (r')

+ J ( —ikVXPG+ikV XV QG
cr

+VXVXMG)d r', (Sb)

2
~ 3(nJI).(n &)1(nJI)q 51(nJ1)z(~ ) b2y J J J P J

J R 1

(6b)

where X is the boundary of the medium, and P, M, and Q
are the electric-dipole, magnetic-dipole, and quadrupole
volume densities, respectively.

Unlike a traditional approach, in which the field acting
on the oscillators inside a Lorentz sphere is considered to
be uniform, here we take into account the change of field
in first order. To determine E and H, we consider all
dipoles inside the sphere cr to be identical. Then it is ob-
vious from Eqs. (1) that the contribution of these dipoles
to E is y (dlb ):yP, w—here b is the volume per radi-
ator, and P is a dimensionless second-rank tensor, which
is determined by the spatial distribution of the radiators
(for example, the geometry of the crystalline lattice):

By analogy, contributions of the quadrupole and
magnetic-dipole moments may be written in the follow-
ing:

E (r)=P P(r)+ g:Q(r—)+ikbg M(r)

+by1 (VP)+. (1 (VQ)..,

H (r)= /M(r')+ikgsq:Q(r) ikby—sr P(r)

+by1 (VM) . .

(7a)

(7b)

It follows from Eqs. (1)—(3) that formulas for g, g1, Psq,
gM take a form

15(nJ1 ), (n, I },(nJ1 )~
—65»(nJI )~

J j/

15(nlrb), (nJ1 } (njl )J (njl)q
—65„(nJ&)J(n1)

(01 )»J q
= —b' &

J R I

(njI ),
(yM)» =b g (e),qt 'z

R,',

(nJJ)q(nJJ),
(4s),1~

=3b g (e),qp

(8a)

(8b}

(Sc)

(Sd)

y=y1=yM 0 01 0M (9)

Equations (7) actually include all the possible versions
of the construction of the vectors E and H from the
vectors V, P, M, and the tensor Q. Here we took into ac-
count that the magnetic field of the electric dipole and
electric field of the magnetic dipole inside the Lorentz

Here e is an antisymmetric unit tensor of the third
rank; and indices p and q, as well as s and t number the
Cartesian components. In Eqs. (8c) and (8d) summation
over the index "q" is implied.

In the general case the components of the tensors y
and g are of the order of unity. For a medium of ran-
domly distributed radiators we have (see Appendix A)

sphere are small in the parameter kb [terms P(r) in Eq.
(7b) and M(r') in Eq. (7a)]. In connection with the in-
clusion of the spatial dispersion effects, i.e., terms with
the operator V in Eq. (7), the tensors y and g must not be
taken in a static-field approximation, as commonly used,
but with allowance for the terms kRJI-ka in Eq. (1),
where a is the Lorentz sphere radius. Because of the
structure of Eqs. (1), the factor (1—ikRJ&1e " in Eqs. (6)
and (8) appears. But to an accuracy of quadratic terms,
this factor equals unity. Therefore, within the accuracy
up to terms of the order of ikRJJ, inclusive, Eqs. (6) and
(8) remain the same as in the static-field approximation.

Due to the random distribution of the oscillators, any
internal shell inside the Lorentz sphere makes a zero con-
tribution to tensors y and g. For a periodic distribution
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of the oscillators a contribution from the periphery of the
Lorentz sphere will be nearly the same as that for a
chaotic medium, and so is zero as well. This effect is due
to the specific universal angular dependence of Eqs. (1) of
the Lorentz sphere's periphery under arbitrary, random
or periodical distribution of the oscillators. This result
removes the problem of a logarithmic divergence at the
upper limit of the summation in Eqs. (6) and (8).

A natural assumption (see Ref. [1])that the solutions of
the integral equations (5) for E' and H' must satisfy the
wave equation with a certain velocity of propagation, and
that induced forces are proportional to P, Q and M
(where P and M are the E'- and H'-dependent non-
linear parts of P and M) contradicts, in a general case,
the original integral equations (5). This contradiction is
not surprising as there is no reason to believe that the mi-
croscopic fields E' and H' in the medium will satisfy the
macroscopic wave equations as well. We will see that in
reality in most cases it is impossible to construct the wave
equation in such a form. On the other hand, in the model
of a really spatially homogeneous medium the wave equa-
tions for electric and magnetic fields do exist. It is
reasonable to assume that in the model of a medium
made up from discrete oscillators these wave equations
must correspond to the wave equations for macroscopic
(averaged) fields. The well-known connection between
microfields and macrofields for isotropic electric-dipole
media, as well as Eq. (7), suggest the idea of substitution
of the variables in the equation (5) in the form

E=E'+P P+ j:Q+ik—Pst M+bP, :VP+g, E(VQ ),

(10a)

over r' do not commute with each other (see Appendix
B). Suppose that E and H satisfy, in addition to Eqs. (5),
wave equations with right-hand sides of the form suggest-
ed by the integrands after taking the operator V XV X
outside the integral sign:

V XV XE k—E=4mgk P —V.Q+ —VXM {12a)

VXVXH —k H=4ngk M+ —VXV.Q ——VXP
k k

(12b)

= [ —V' X (MG )+G V' XM]J, (13b)

where V'G= —VG, and V' indicates the differentiation
over r', the equalities which follow from (13) and the
equation b, G+ k G =0 for rAr', we get

G(P+ikV'XM —V' Q)=(V'XV'XE)G+Eb, 'G . (14)

Taking into account the identities

where g is a freely adjustable parameter. Its value will be
chosen in such a way as to satisfy Eqs. {12)and {5)simul-
taneously.

By using the identities

[V Q(r')G] = —
QI = — (Ql G)+G Q

aG a a

B»g B»g B»l

=[—V' (QG)+GV'. Q], ,

(13a)

[V XM(r')G], = —,el'~
G

J Jr Pg»

H=H'+p M+ik jest.Q ikpM P—+bp( VM . . (10b)

Vx Vx VxPG=k'VxPG,

VXVXVXMG=k VXMG,

VXVXVXV.QG=k VXV QG .

( 1 Ia)

(1 lb)

(1 lc)

Here p and ri are free parameters. Their values are
chosen in such a manner that the fields E and H would
satisfy certain wave equations as well. We would like to
emphasize that all the above-mentioned considerations
are not obligatory, and one may come to substitution (10)
starting from a formal mathematical condition that the
new variables E and H must satisfy both the integral
equations and the wave equations.

Let us substitute (10) into (5), and take into account
that Here X is the boundary of the volume of integration, n is

the unit vector normal to the surface X or cr, and nz is
the unit vector normal to the surface X. We used also the
well-known relation

fd r= f (nx), fd rx .a
(16)

GV'V' E=V'(GV' E)—(V'G)(V' E),
V f GV' Ed r'= f (VG)(V' E)d r'+ f nGV' Ed r

a a (7

f V'(GV' E)d'r'= f nGV' Ed r, (15)
0 X+o

f GV'V' Ed r'= f nxGV' Ed~rx+V f GV' Ed~r',

VX f GV'V'. Ed r'=VX f nxGV'. Ed r'x .

We may factor the operator V X V X outside the in-
tegral sign. Since the boundary of integration includes
the surface of the sphere with the center at the point r,
then operations of differentiation over r and integration

As a result all volume integrals are reduced to the X or cr

surface integrals. The o.-surface integrals are calculated
directly. Then by use of Eq. (12) we obtain, after a rather
tedious calculation, the equations
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1 ——E= P+P+ P+ —( j+g}:Q+ikb(Psr+P~) M
3 b

+b(P, +y, }:(VP}+ g, +g) — 5:(VQ}+E;1

+V x V x f E —G +GnzV'. E +G(Q.nz+ —[Mxnz]) d rz,
x 4~k g Bv Bv

r

1 ——H= P+y+ M+ik( jM+g~}:Q ikb—(Psr+y~) P+b(P)+y)):(VM)+H;
g' 3

(17a)

+VXVX f H —G +GnxV' H
x 4~k g Bv Bv

——([nz QXV'G]+G[nzXV' Q]+G[PXnz]) d~rx . {17b}

Now it is evident that if we choose the values of the free
parameters in the following way:

where 5 is a symmetric unit tensor of fourth rank over
two pairs of indices

(5)~p, =5;k5,„5.'(VQ)=V Q, (19)

then all the extraintegral terms in {17},except E;, vanish.
As a consequence, Eqs. (17) take the form

E;+VXVX f E —G +GnzV' E +G Q nz+ —[MXnz] d rz=O,
x 4rrk ~ v v

I

(20a)

H;+VXVX f H —G +GnzV'H ——([nz QXV'G]
x 4mk v Bv

(20b)

+G[nzXV' Q]+G[PXnx]) d rz=O.

This is the extinction theorem for the anisotropic medi-
urn, with the quadrupole and magnetic-dipole mecha-
nisms of nonlinearity.

All these results hold true for the spatially inhomo-
geneous media as well, but only if the characteristic size
of the inhomogeneity is large in comparison with the dis-
tance between the oscillators. Therefore, when the medi-
um boundary is "smeared, " so that the thickness of the
transition layer is large compared with b, the Lorentz's
sphere approach may also be applied to the boundary ra-
diators. Thus the boundary X can be removed outside of
the medium to a region where Q, M, and P equal zero.
In this case, the extinction theorem takes exactly the
well-known form

E;+ VXVX f E —G +GnxV'. E d r
4n.k x Bv Bv

=0, (21a}

I

H;+ VXVX f H —G +GnzV' H dtrx1 BG BH

4~k x v v

=0, (21b)
In the limit of a very sharp boundary (compared to b),

Eqs. (20) must be corrected, since in this case the contri-
bution of the surface layer, with the thickness less than
the Lorentz's sphere radius, must be calculated separate-
ly. Obviously, this contribution will depend upon the mi-
croscopic relief and surface structure of the medium. In
this case the influence of the P, M, and Q surface densi-
ties may be important.

III. FIELD OUTSIDE A MEDIUM
AND MAXWELL EQUATIONS

We next find the fields outside the medium and, in par-
ticular, the refiected waves. It is necessary to start from
expressions (5) and (10) once more, and reduce volume in-
tegrals to surface integrals. With the observation point
situated outside the medium, integration takes place over
the entire volume. Therefore, the integration and
difFerentiation operations are commutative. As a result,
instead of (20) we obtain the formulas
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E=E, +VXVX f E —G +Gnz(V' E) +G(Q nz+ —[MXnz]) d rz,r 4~k 2 Bv Bv
(22a)

H=H, +VxVxf, H —G +Gn, V' H
4~k2

(22b)

nz QXV'G +G nzXV' Q +G Pxnz

For the medium with the "smeared boundary, " Eqs. (22)
may be rewritten in the form (21)

E=E;+ VXVX f E —G
4~k z Bv Bv

+Gn&V'. E d2rz,

1 BBVXE=ikB= ——,V.D=O,
c t'

1 DVXH= —ikD= —,V B=O,
c t

'

D:E+—4nP 4@V—Q

B=H+4mM .

(26)

H=H, + VXVX f H —G
4+k z Bv Bv

+GnzV' H d rz .

(23a)

(23b)

The expression for D is identical to result obtained in

[13] for the case of the continuous distribution of the
charges.

IV. THE LOCAL-FIELD FACTORS
FOR AN ANISOTROPIC MEDIUM

AND FOR AN ELECTRICALLY
AND MAGNETICALLY ISOTROPIC MEDIUM

E=E'— 4g
M ]+y' P ——g:Q ikbj —M —b j:(VP}

+
5

V Q —0i:(VQ» (24a)

By putting Eqs. (18) into formulas (10), we obtain the
connection formulas between E, H and E', H' fields:

p pL+pNL Na~E&+pNL (27)

Finally, we present the macroscopic wave equation in

which, for the medium with the linear polarizability a
and the density of the elementary oscillators N, the polar-
ization term P =NaE' (which is linearly dependent on
E') contributes to the velocity of the propagation. For
this it is necessary by means of Eq. (24a) to express E'
through E in the equality

H=H'— +y M —ikgsr:Q+ikb jM P
and to substitute P into the wave equation (12a). As a re-
sult, we get

—b j,:(VM) . (24b) Vx VxE —k'0 E

4mP+ 8m
V Q

3 5

+ f (VxvxPG —VxVxV QG

E=E;—

Finally, performing the corresponding substitution of
the variables in Eqs. (5),

e= 1+4m 1 — Na —Na. y3
~Na,

=4~k' f, PN'+f ~ ( VQ )

l+—V X M f Na.F—
k P (28a)

(28b)

+ikV XMG)d r', {25a)

H=H — M
4m.

I 3

+ f (VXVXMG+ikVXV QG ikV XPG)d r-' .
cr

f = 1 — Na Nay-
P 3

(28c)

fg=fp. (28d)1 — Na Na j 8 Na, .g— —
15

(25b} F=—g:Q+ikb j~ M+f y, :(V }P, (28e}

Now by the use of Eqs. (B4) of Appendix B, we can ob-
tain the relationships between E and H, which, in fact,
are the macroscopic Maxwell equations:

where e is the dielectric permittivity tensor.
The separation of the terms in Q and M, linear in E'

and H', for the case of an isotropic spatially homogene-
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ous medium leads to not very complex formulas. Taking
into account the symmetrical properties of the medium,
we come to the following expression for the linear part
Q of the tensor Q:

pole and magnetic "polarizabilities" of the medium.
Now return to the question about macroscopic proper-

ties of media. For an isotropic medium, Eqs. (24) take
the form

Nag BE BE'-
(Q)J= 2 a +a (29) E=E' — P+ V Q, H=H' — M .

3 5
'

3
(33)

Obviously, for a given oscillator only the field in its vi-

cinity is essential. Therefore, differentiation in (29) is per-
formed over the coordinates of the points near the oscil-
lator, where E' and H' satisfy the microscopic Lorentz
equations:

V X E'=ikH', VXH'= —ikE', V E'=V H'=0. (30}

P=NaE'+PNL, V Q = Na&E'+—V Q

M=NaMH'+M~L
(32)

where the constants a& and aM may be termed quadru-

The requirement of the vector equalities covariance in the
case of linear dependencies P on H' and M on E' for an
isotropic medium leads to the expression

P =NaE'+ —NaH V XH',l

(31)
M =NaMH'+ —NaEVXE' .

k

Here differentiation is performed in the same sense as in
Eqs. (29) and (30).

With the admission of Eq. (30), it is evident that the
dependencies of P on H' and M on E' only renormalize
the constants a and aM. As a result, for an arbitrary iso-
tropic medium we obtain E'

~ pNL ~ V.QNL
3 5

4m Sm
1 — Na — Na

s

H'=
M&L

3
4m

1 — NaM

(34)

Then the wave equation (12a) for E takes the form

With substitution of Eq. (32) into (33) and into the

wave equations (12), it is necessary to take into account
the following circumstance: Unlike the case of Eqs.
(29)—(31) on differentiations of the quantities P, Q, and
M the radius vector r' now changes from one oscillator
coordinate to the next, etc. (but it never lies between the
oscillators}. As a result a "macroscopic" derivative
arises. The quantities E' and H' in Eq. (33) and the
right-hand sides of Eqs. (12) are differentiated in exactly
this way. With the differentiation defined in such a
manner, obviously the quantities E' and H' are compati-
ble neither with Eqs. (30} nor with Eq. (26). Therefore,
for the calculation of the derivatives in Eqs. (33) and (12)
it is essential to pass from E' and H' to E and H. After
doing so we can use Eqs. (26), into which only the macro-
scopic derivatives enter.

By use of the equalities (32) and (33), we obtain

VXVXE=k
1+ NaM

Sm

4m
1 — NaM

1+' Na+" Na Q

4m. Sm
1 — Na — Na

s

E+4~

4m.
1 — Nag

4m Sm
1 — Na — Na

5

PNL

1+ Na
4m

1 — Na — Na4m Sm

5

~NL l VXM
k 4m

1 — NaM

(35)

with the precisely analogous form for H.
By means of formally introducing only two new quanti-

ties (instead of the microscopic parameters a, a&, and

aM)~

we convert Eqs. (35) into the wave equations of a stan-
dard form with the additional electric-quadrupole and
magnetic-dipole terms

1+ SmNa+ 12mNa
5

1 — Na — Na
4m. Sm

5

1+ NaM
8~

4m
1 — NaM

(36a)

(36b)

VX VXE—k'@ATE

4 k2 ~+2 pNL 2~+3
V Q

3 5

+ ' P+ VXMNL
k 3
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VXVXH —k peH

=4vrk & M + — VXV Q'
3 k S

I E+2
k 3'' (37)

2E'+ 3

5
(38)

and with concurrent allowance of the electric and mag-
netic phenomena the factors f and f& are reduced to

2m+ 3
and fg =p

5
(39a)

Thus the well-known local-field factor f~ =(a+2/3) in
the case of quadrupole nonlinear source takes the form

Eq. (21) the macroscopic field enters, whereas in EOET
the linear polarization is proportional to E' as well as E.
With allowance for these respective factors, both the ex-
tinction theorem statements become identical.

Proper accounting of the quadrupole radiation in the
framework of linear optics for @=1 gives complete agree-
ment of Eq. (36a) for a macroscopic refractive index with
the expression given in Wierzbicki's paper [6] for the case
of a plane wave propagating in the semi-infinite, isotro-
pic, homogeneous, linear medium. After substitution of
variables (33) and some mathematical transformations, a
highly cumbersome expression for an extinction theorem
in the paper [6] transforms into the universal formula
(20a).

Consider a special case of the nonlinear homogeneous
isotropic medium for which the nonlinear part of the po-
larization p satisfies the wave equation. In distinction
to the work of Ref. [7] and following Refs. [11,12], we
take here as a wave equation the expression

Presumably in a general case of 2n-multipole radiators
local-field factor f2„takes the form VXVXp & k p =0 (41)

ne+n+1
(39b)

but not the form

gpNL & k 2pNL 0 (42)

V. DISCUSSION

In the special case of the isotropic linear medium, Eqs.
(28b) and (36a) immediately reduce to the Lorentz-
Lorenz formula

n —1 4m.
Ne, n =e.

n +2
(40)

At the same time, due to the vanishing of the third in-
tegrand term (since divE=O) the extinction theorem for-
mulation (21) becomes equivalent to the classical EOET
statement [1]. The sole distinction lies in the fact that in

Here c/Qe, is the velocity of the nonlinear source wave.
An approach with the use of Eq. (42) will be discussed
later. Let us assume now that now only E but the field E'
also satisfies the wave equation

VXVXE' —ek E'=4~k f'P (43)

A volume integral in Eq. (5) may be reduced to a surface
integral without any preliminary substitution of the vari-
ables. Then Eq. (5) will be satisfied by proper choice of
only two (e and f ') but not three (P, e, f or g} parame-
ters, as takes place in a general case:

4m. @+2, 4~
Nn

3 e —1
S

e, +2 f' PN'+E, + Vx Vx —G +n,V'
e —1 k

ng

X E'+ 1—
E 1 E'5 1

4mNaf~
pNL d 2r =0

e—1
(44)

As a result we come to the Lorentz-Lorenz formula (40), and the parameter f ' takes the form

+2 E' +2 p+2
4~Na 3 3 3

In addition, we obtain the following expression for an extinction theorem:
T

E.+ VXVX —G V'. E' — P d =0 .
4+k x Bv Bv E+2 3

(46)

By using Eqs. (33) and (40) and neglecting the quadrupo-
lar radiation, Eq. (46) reduces to a universal form (21a).
It is easy to verify that appearance of the "extra" factor
(e, +2)/3 is connected with the distinction between E
and E' in Eqs. (37) and (43). The local factor f' turns

into f on changing from E to E' in these equations with

use of Eqs. (33) and (34). Bloernbergen and Pershan [7],
who for the first time considered the case of nonlinear po-
larization, analyzed model (42), but not (41}. Due to this
fact they obtained an additional term in Eq. (44) [Eq. (7.5)
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in Ref. [7]}:

VV.(P +NaQ'),
(e, —1)k

where Q' and Q are the induced and free parts of the
wave produced by the nonlinear polarization and the in-
cident field E,.(E'=Q'+Q ). Due to this fact the cases of
the transverse and longitudinal nonlinear polarizations
were analyzed in Ref. [7] separately. For the transverse
waves models (41) and (42) are identical. As for the case
of the longitudinal wave from Eqs. (32), (33), and (37a),

I

2

8n. @+2 NL 2 @+2 4m.P
9 e 3 3 e

(47)

of Ref. [7]. The "extra" [in comparison with (e+2)/3]
factor —', appears here due to the difFerence between E and
E' in this case.

As well as in the above-mentioned case, quite an intri-
cate form of the extinction theorem [Eq. (7.6) in Ref. [7]]

when Q =0 and M=O, we immediately come to the for-
mula

Q"+ — VXVX ds' [V'G(R)] Q (r')+
CO X e—1 e, —1

G(R)V—' N Qb(R')+ NaQ'(r'}+F(r')
E 1 e —1S

reduces to the universal expression (21a) if one takes into
account the identity E'=Q'+Q and performs substitu-
tions (33) and (34).

As an illustration, consider a rather elementary prob-
lem applying the Lorentz sphere method in the case of a
medium with a not discretely but continuously distribut-
ed charge density. Then the Lorentz's sphere radius has
no lower limit. Obviously, in this case Eqs. (5) hold true.
By limiting ourselves for simplicitly to the case Q =0 and
M =0 we calculate the field in the center of the Lorentz
sphere. This field E' ' is equivalent to that of two uni-
formly and oppositely charged balls with the bulk densi-
ties p, that are displaced by a distance l &&a, as shown in
Fig. 1. Evidently,

4m 3 4m

3 3
a pl= a I'. (48)

Apparently the product of p into I must correspond to a
given electric-dipole moment density. For I &a the field
in the center of symmetry of such a system is the easiest
to calculate. Namely, it is E' ':

E = — pl= — P .( ) 4a 4m

3 3
(49)

In such a way a medium with a continuous distribution
of charges formally is equivalent to a certain "anisotrop-
ic*' medium with the tensor

FIG. 1. The contribution of the continuous dipole medium
from the interior of Lorentz's sphere is equivalent to the 5eld of
two homogeneous and oppositely charged balls. Note that in
the whole intersection region of these balls the Seld is uniform.

4m
7 (50)

and then from general formulas (18) and (28) it immedi-
ately follows that

P=O, E=E', a= I+4nNa= I+4m', f =1, (51)

where g is the linear susceptibility.
Thus we come to a natural result that for a medium

with a continuously distributed charge density the for-
mally introduced macroscopic field coincides with the
acting one. As regards the extinction theorem, the gen-
eral expression (20a) holds true in this case as well. For
the discrete-oscillator medium no additional bulk or sur-
face currents (the parameters k and j in the notations of
Ref. [10]) may exist, other than those described by the
variables P, Q, and M. In this case, and when Q equals
zero, our results coincide with the results of Refs. [8,9]
and with Ref. [10],formula (28).

VI. CONCLUSION

The general idea of substitution of variables into the in-
tegral equations (5) of molecular optics, which corre-
sponds to passing from the acting fields E', H' to the
macroscopic fields E, H, allowed us, under the most gen-
eral assumptions about nonlinear, anisotropic, spatially
inhomogeneous dipole, quadrupolar, and magnetic-dipole
media of arbitrary shape, to solve the following problems.

(i) The matching of two approaches of the radiation
propagation into the media (Maxwell's equations ap-
proach for media with the continuous charge-density dis-
tribution and the integral-equation approach for media
with a discrete charge-density distribution).

(ii) To formulate an extinction theorem in a general
and compact form.

(iii} To obtain universal connection formulas for the
characteristic fields and the microscopic and macroscopic
quantities of the medium in a general case.

The approach developed gives results coinciding with
the previous ones in a11 special cases. The common prop-
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erty of the previous approximations and assumptions be-
comes clear: Earlier it was possible to solve similar prob-
lems without the substitution of variables (10) only in
particular cases when, for one or another concrete
reason, the acting field E' satisfies the Maxwell equations
at the same time as the macroscopic field E satisfies it.
The MIE allows us to combine into a single framework
both approaches for deduction of the extinction theorem,
which correspond to two different models (microscopic
approach [1—7, 11], and the Maxwell-equation approach
[8—10]}.Though the quantities E and H were introduced
due to a formal mathematical requirement, in the end
these variables acquired a remarkable additional physical
meaning. At least, in the case of an electric-dipole medi-
um these quantities coincide exactly with quantities
which arise from different considerations about elec-
tromagnetic fields registered by macroscopic devices. As
is already known [13,14], [see also formulas (50) and (51)],
the physical meaning of the connection between E and E'
becomes evident if we compare the magnitudes of the
fields of the two media with the different microstructures
(continuous and discrete charge distribution) at the
centers of their respective Lorentz spheres. The
difference between results in these two cases is caused by
the contribution from the structures, continuous and
discrete, inside the Lorentz spheres. It should be em-
phasized that for the medium with a continuous charge
distribution the field in the Lorentz sphere center E' 'WO

[formula (50)], whereas under random or a cubic lattice
distribution of discrete dipoles such a field E' ' always
equals zero. In this sense a discrete model does not allow
one to obtain the limit of a continuous medium under an
unrestricted decrease of the distance between the radia-
tors with simultaneous reduction of the size l, each of
them in such a way that the inequality l «b holds. As a
result, assuming that for a continuous medium E=E' [see
(51}], for the field E' acting on a given dipole of the
discrete medium, we obtain

E'=E+ P+y.P .
3

Therefore, in the dipole approximation, neglecting the
spatial derivatives of P, we have an expression which
coincides with the result of the integral-equation ap-
proach [formula (24a)]. The above-mentioned impossibil-

ity of passage from a discrete to a continuous medium is
a remarkable example of how optical phenomena can be
sensitive to the medium structure with arbitrarily small
characteristic sizes in comparison with the wavelength.
Such sensitivity is realized through local-field effects.

A second example is a distinction in the magnitudes of
the constants y and g for media with different sym-
metries. As follows from Appendix A, tensors y„yM,
and g equal zero for any inversion-symmetry medium;
tensors y and gM become zero not only for chaotic media
but for a cubic lattice as well. Finally, for a chaotic
media tensor $, =0. For the cubic lattice this tensor is

given in Appendix A. These differences show that quad-
rupole radiation allows one, by use of the optica1
methods, to measure finer symmetrical properties of the
medium than is possible by means of the dipole radiation

only [see formulas (A5) and (28)]. It allows one, for ex-
ample, to distinguish the cubic lattice from a medium
with randomly distributed radiators.

It is interesting to note that for magnetic phenomena,
in contrast to electric phenomena, the formal substitution
(10) together with a requirement that a new variable must
satisfy the wave equation, leads not to the field averaged
over the interatomic distances (i.e., magnetic induction
vector B), but to the quantity H which enters into the
Maxwell equations.

With the simultaneous allowance for electric and mag-
netic linear polarizabilities it becomes evident that in a
wonderful manner the quantities e and p in formula (36),
which appear due to a formal mathematical treatment,
have the meaning of the electric and magnetic permittivi-
ties. As a result the electric and magnetic characteristics
of the medium, which were described by the cumbersome
formulas (34) and (35), are separated and reduced into
two factors e and p. These factors give the well-known
expression for the refractive index: n =ep. An even
stronger and less evident assertion is true: the local-field
factors of the nonlinear electric-dipole, electric-
quadrupole, and magnetic-dipole "polarizabilities" in the
wave equations include only such combinations of the mi-
croscopic polarizabilities a, a&, and aM, which reduce to
the quantities e and p [see Eqs. (35) and (37)]. In the case
of a nonmagnetic medium we also have reduction to one
parameter e instead of two parameters a and a&.

Equations (38) and (39) for these factors permit one, in

principle, by measurement of density-dependent non-
linear susceptibilities, to establish the nature of the medi-
um nonlinearities, namely to distinguish anharmonic
electric-dipole and electric-quadr upolar microscopic
mechanisms by means of macroscopic observations. The
timeliness of this consideration follows from present ex-
perimental reality. It is now possible to arrange condi-
tions when only electric-quadrupolar and magnetic-
dipole nonlinear susceptibilities make contributions to
the generation of the second harmonic in a solution of
biomolecules [15].

The usual physical interpretation of EOET consists in
a statement that an extinction of the incident wave takes
place due to the surface layer of the dipoles. But such an
interpretation is not fully correct, since, in the expression
of the EOET there are two integrals and only one of them
corresponds to a radiation from the surface dipole layer.
Now, when the role of the quadrupolar radiation became
clear, the possibility of the unambiguous interpretation of
EOET arises. We notice, in particular, that the first in-

tegrand term exactly agrees with the Geld of the quadru-
polar component Q„=E,nz, /4~k (the antisymmetric
part of this tensor corresponds to the magnetic moment)
distributed over the surface. Therefore, it may be said
that the incident field is canceled by the effective radia-
tors with the electric-dipole (nzV. E—BE/Bv)d rz/4~k
and electric-quadrupolar End rz /4mk moments which
are arranged in a surface layer.

All our considerations are valid for the field outside the
medium as well. This means that the reAected wave for-
mation takes place in such a manner as if it had occurred
in the surface layer only. But the state of these surface
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radiators (P and Q) is subject to the action of all the rest
of the medium.

The calculations in Appendixes A and B were per-
formed with an accuracy to ka and kb terms, inclusive.
Hence all our results are valid to an accuracy of the first
order in kb terms. The consideration of the terms (kb)
with allowance for the spatial dispersion effects will be
presented elsewhere.

It should be noted that the main results of this work
have rather a simple form, and may be used without de-
tailed acquaintance with the mathematical technique.
These are the formulas (28) for the dielectric permittivity
e and the local-field factors f~ and f, for an anisotropic
nonmagnetic medium, and the expressions (36), (38), and
(39) for e, ru, and local-field factors in the case of the iso-
tropic medium. This also applies to an extinction
theorem formulas (20} and (21), and formulas (20) and
(23) for the refiected wave for an arbitrary anisotropic
nonlinear medium.
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APPENDIX A: THE CALCULATION
OF TENSORS P and g

FOR CHAOTIC MEDIA
AND REGULAR CUBIC LATTICE

General requirements for tensor covariance in center
symmetric media demand that

'Y& pM (Al)

Next tensors P, g, and /sr are calculated. The idea of a
calculation (see, for instance, Ref. [14]) consists of the
fact that for the medium with three orthogonal planes of
symmetry (rectangular lattice) all odd-powered terms of
the Cartesian components n

&
vanish, and we have

(A2a)

(g&)$&q= bg [—15[(nz&), (n &) 5$, 5 q+(nj&), (njz), 5, 5, +(n &), (nz&), 5$q5, ](1 z35„5&q5&—) —6(n &) 5„5&q]
J Rg

(g~)$$~ =3b'g e$$~(njz ), /R, '~ .
J

(A2b)

(A2c)

(A3)

where f, and fz are arbitrary functions. In particular,
from Eq. (A3) it follows that

X (n,z)$&(R)&)= 3+f(RJ, ) . (A4)

From (A4), which is valid for a cubic lattice, it follows at
once that p=0, and g~ is proportional to e Then t.he
contraction g~ with the symmetric tensor Q equals zero.
It is equivalent to setting tensor gM =0 and writing an ex-
pression for g, in the following form [16]:

0 1 $$$$ z 4 1 $$$$

1 —
5(n~& },

,'b g — = —14.01,
R .

/

(A5)

whereas the remaining components of the tensor g, equal
zero. Note that Eq. (A5) converges rapidly approaching
the limit value after summation over three or four oscilla-
tor shells.

For a cubic lattice additional equalities are valid [14].
In this case we have

gf &([n,&]$')fz(R v)=X f&([njz]&)fz(R,z }

Finally, for a chaotic distribution of the oscillators, and
taking advantage of the averaging over an ensemble of
the random spatial configurations, summation may be re-
placed by integration. From symmetry considerations it
follows that there will be a zero average for all uniform
tensor components. In addition, due to angular depen-
dence (n~& )„the right-hand side of Eq. (A5) goes to zero
after angular integration. As a result, Eqs. (9) follow.

APPENDIX B: FACTORING
OF THE OPERATOR V X V X

OUTSIDE THE INTEGRAL SIGN
We start from an equally [1]

f Fd r'= f d r'+ f Fn;d r', (Bl)
BX; o o BX; o.

where F=F(r, r'} is an arbitrary function, and n is the
unit vector normal to the surface cr.

Set F=f(r')e'""/R and, taking into account the small

size of a, expand f(r') in a power series in the vicinity of
the point r:

f(r')=f(r) — n;a+ n,.n az+ .df pe

Q
2

=f(r) —a(n. V)f+ (nn:VV)f+. . . (B2)
2

Calculating directly integrals over o. in the right-hand
of equality (Bl), we come to the equations:
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g4pf fGn;d r'=fae'"'J n;dQ —"a e'"' n, n dQ+ — " a e'"' Jn, n, nkdQ+0 a
ax4

4m g2 p4
a e'"' " +0 a " =0+0(a ),

3 Bx. ax4
(B3a)

a g4f f n;d r'= —(1 ik—a)e'"' f Jn;n dQ+. f n;n nknidQ +0 a = — f54 3 V (B3b)

+0(a ), (B3c)

n, d'r =4. axjaxkax, '
S

k 1 t)2f 2 d f cjf t) ff+ , —(~;,~kl +~ik ~j!+~it ~jk )+— 4(+ &,i+

(B3d)

Formulas (B3) are accurate up to first-order terms in
ka, inclusive. Here, just as in Eqs. (6) and (8), appears the
factor (1 ika)—e'"', which equals unity to the same order.
By use of Eqs. (Bl) and (B2), we obtain equalities which
are accurate up to the first-order terms in ka, inclusive:

VX f'fGd r'= f VXfGd r', (B4a)

Vx J *VxfGd'r = f'VxVxfGd r'+ f, (B4b)
C7 o' 3

V x J''V x V x fGd'r'= f 'V x V x V x fGd r'

+ VXf,
3

(B4c)

VXVX f fGd r'= f VXVX fGd3r'+ f,
o' o 3

VXVx f'V xfGd r'= J' V xV xV xfGd'r'
o' o'

+4~VX f,

(B5a)

(BSb)

VXVX f V fGd r'
o'

= f'VXVXV fGd r'

With an additional use of Eqs. (B4), we arrive at the
desired relationships:

VX f V fGd r'= J V XV fGd r' — e:f,
cr cr 3

VXf VXV fGd r'

= I VXV XV fGd3r'

+ [V f 'VTrf+ 'V (f—' ——f )]—

(B4d)
+ [V f ,'V Trf+ ,'V——(f f")]—, —

VXVX f V XV fGd r'
o'

= f V X V X V X V fGd'r'+ 4trv X V f
+ [VXV.(f' —f)—k e f],

(B5c)

(B5d)

VX f V XV XV fGd'r'

= I V X V X V X V fGd'r'.
cr

+ [V X V.f+ ,' VV ( e:f ) b( e:—f) ) . —
5

(B4e) where f ' is for the transposed tensor f.
In conclusion we see that the effect of factoring the V

operators is the appearance of new terms in addition to
the integral. All these terms contain factors (1 ika)e'"', —
and all the equations are valid not only in a static-field
approximation, but with the additional terms ka, as well.
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