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Uniqueness of the chaotic attractor of a single-mode laser
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Measurements on an optically pumped NH; single-mode laser show three different types of chaotic
dynamics, Lorentz-type spiral chaos, period-doubling chaos, and type-III intermittency. Analysis of the
measurements shows that the peak-intensity return maps of these three types of dynamics have the same
shape, indicating that a unique attractor exists for the laser whose topological structure is independent of

laser parameters.

PACS number(s): 42.50.Lc, 05.45.+b

Experimental investigations of the chaotic dynamics of
an optically pumped NH; single-mode laser have shown
different kinds of deterministic chaos, such as period-
doubling chaos [1,2], type-IIl intermittency [3], and
Lorenz-type spiral chaos. Because of the small relaxation
rates of medium and high gain (5], optically pumped NH;
far-infrared (FIR) lasers can fulfill the necessary condi-
tions to realize the dynamics of Lorenz equations, one of
the protype models for chaotic dynamics [6]. Experimen-
tal studies of the properties of the spiral chaos observed
in these lasers, such as the characteristic spiral-type pulse
train, the statistical distribution of the spiral lengths, the
typical cusp form of the peak-intensity return map, etc.,
have shown all characteristics of the predictions of the
Lorenz equations [4,7-9].

Here we report investigations of the three types of dy-
namics as observed in the NH; laser. We find that in
spite of different types of dynamics, their peak-intensity
return maps are of the same form, indicating an invari-
ance of the attractor on the laser parameters and on the
type of dynamics. The experimental results show that the
period-doubling chaos and the type-III intermittent
chaos have the same underlying attractor as the Lorenz-
spiral chaos.

Details of the experimental setup used for the measure-
ments is given in [1]. In short, the laser resonator is a
unidirectional ring, which is designed to approach as
closely as possible the conditions of the laser Lorenz
equations [10-12]. The laser transition is the aR(7,7)
rotational transition in the v,=1 vibrational state of
NH,, which is pumped optically with the P(13) line of
an N,O laser via the vibrational aQ(8,7) transition. The
backward emission at 81 um wavelength of the laser is
used for reasons discussed in [5,13]. The FIR-laser radi-
ation is detected by a Schottky-barrier diode. The signal
is stored digitally. Since the cavity tuning is easy to
change for the laser, the laser detuning is chosen as one
control parameter in the experiment.

The above-mentioned three types of deterministic
chaos are observed experimentally for different combina-
tions of the pump intensity and NH; gas pressure. The
Lorenz-type spiral chaos is observed when the laser reso-
nator is tuned to, or close to, the center of the medium-
gain line. The gas pressure for spiral chaos varies be-
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tween ~4 and 11 Pa, when the pump intensity is changed
between 1.5 and 6 W/cm?. At lower gas pressure, apart
from period-doubling chaos, no spiral chaos is found; at a
gas pressure higher than 11 Pa, because the “bad-cavity”
condition for the chaotic dynamics of th single-mode
laser is no longer fulfilled here, the laser emits only
stably. In general, chaotic pulses can be emitted from
this laser that differ slightly from the pure Lorenz spirals
[8,9]. This is due to the fact that the NH; laser is not a
two-level laser as described by the Lorenz equations but
an optically pumped three-level laser with a coherent
pump [14-16]. Thus in addition to the phenomena pre-
dicted by the Lorenz equations, further effects occur
which are due to three-level coherence effects such as ac
stark splitting of the gain line. The limits in which the
three-level laser behaves like a two-level laser have been
investigated in [17]. The most prominent effect of three-
level coherence is the appearance of an extra large pulse
at the beginning of the pulse spirals [9]. These pulses
were found to produce “double maps” as described as fol-
lows. In [9] it was found that three-level-coherence
effects can be suppressed by pressure broadening; thus
the cases corresponding to two-level dynamics are
recorded at the highest possible NH; pressures.

Figure 1 shows a typical intensity recording of the ob-
served Lorenz-type spiral chaos. Characteristics of the
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FIG. 1. Typical intensity variation of the Lorenz-type spiral
chaos of the laser: pump intensity, 5 W/cm? NH; gas pressure,
10 Pa.
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spiral chaos are the monotonic growth of the intensity
pulses in time during individual spirals and the irregular
length of these spirals. Experimental measurements of
the optical field on the spiral chaos [11,18] have shown
that the monotonic growth of the intensity pulses corre-
sponds to the spiral motion of the laser state vector on
the two leaves of the Lorenz attractor, and the irregular
length of spirals is caused by the irregular jumps between
them.

In previous papers we have compared the dynamic de-
tails of this spiral chaos with those predicted from the
Lorenz equations, and we have found quantitative agree-
ment [7-9]. The so-called Lorenz map [19] was found to
be a good indicator of the Lorenz-type chaos. The
Lorenz map is constructed by plotting successive local
maxima of the Z variable of the real Lorenz equations,
one versus the next. The map so obtained has a typical
cusp shape which differs from the shape of return maps
of other chaotic attractors and is characteristic of the
Lorenz dynamics. Numerically, we find that the same
cusp form can be constructed from the successive local
maxima of the square of variable X or Y of the real or ex-
tended (complex) [11,12] Lorenz equations.

We have examined the peak-intensity return map of
the observed laser spiral chaos. We find that it has the
cusp form of the Lorenz map. In particular, we find that
the shape of the map depends sensitively on the dynamics
of the laser. Small changes of the dynamics produce a
drastic change of the map [9].

Figure 2 shows the peak-intensity return maps of ex-
perimentally observed spiral chaos and the Lorenz return
map calculated from the extended Lorenz equations [11]
for comparison. Figure 2(a) shows the intensity return
map of the spiral chaos under conditions in which the
pump-coherence effects of the laser have been reduced as
much as possible, Fig. 2(b) shows the intensity return
map under influence of the pump-coherence effects, and
Fig. 2(c) is the intensity return map calculated from the
extended Lorenz equations with experimentally accessible
parameters. The similarity between the intensity return
map of the experiment [Fig. 2(a)] and the Lorenz return
map [Fig. 2(c)] is obvious. Figure 2(b) shows that when
the pump-coherence effects are strong, the intensity re-
turn map splits into two cusps, indicating deviation from
the Lorenz dynamics. Experimentally, we find that the
stronger the pump-coherent effects, the more pronounced
is the splitting of the cusp map.

To illustrate further how sensitive the shape of the map
is to deviation from Lorenz dynamics, Fig. 3 shows laser
spiral chaos when there is a weak forward emission of the
laser. Figure 3(a) shows the intensity in the backward
direction as usual; Fig. 3(b) shows the forward emission
recorded simultaneously. Becuase of the laser resonator
setting and the mode competition with the backward
mode, the forward emission is in this case very weak. It
exists only at times when the backward emission is zero
or near zero. Although the intensity shown in Fig. 3(a) is
difficult to distinguish from that of the Lorenz model or
the dynamics shown in Fig. 1, Fig. 3(c) shows that the in-
tensity return map is completely destroyed.

The period-doubling route to chaos is observed in the
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FIG. 2. First-peak-intensity return map constructed from the
Lorenz-type spiral chaos of the laser: (a) under the condition
that the pump-coherence effects can be neglected, (b) under the
influence of the pump-coherence effects of the laser, and (c)
peak-intensity return map constructed from the solution of ex-
tended Lorenz equations [11] with k=2, 6=0.25, r=15, and
6=—A=0.02.
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NH; laser as the laser detuning is decreased from large
detuning to the resonance. Figure 4 shows the typical in-
tensity dynamics of this chaos. The characteristic here is
that the chaotic dynamics occurs after a cascade of
period-doubling bifurcation. It shows the typical motion
on unstable period-n orbits. While the spiral chaos of the
laser allows one to view some typical characteristics of
the Lorenz dynamics directly from the intensity, the in-
tensity of the period-doubling chaos exhibits no proper-
ties obviously related to the Lorenz equations. This type
of dynamics has shown all the universal properties such
as the existence of different periodic windows in the
chaotic range, the period-doubling route to chaos of some
of the periodic windows, etc. [20,21]. The period-
doubling chaos has also been quantitatively characterized
by metric properties including Lyapunov exponents,
correlation dimension, and entropy [7]. These metric
properties, although found in agreement with the Lorenz
equations depend, however, on the laser parameters and
do therefore not constitute clear indications of the rela-
tion of period-doubling chaos with the extended Lorenz
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FIG. 3. Influence of weak counterpropagating emission on
the Lorenz-type dynamics of the laser spiral chaos: (a) typical
intensity of the laser spiral chaos in the presence of the forward
emission, (b) intensity variation of the forward emission, and (c)
first-peak-intensity return map constructed from the laser spiral
chaos shown in (a).
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FIG. 4. Typical intensity variation for period-doubling chaos
of the laser: pump intensity, 4.6 W/cm?; NH; gas pressure, 7.5
Pa.

model. We find that such an indication is given by the
peak-intensity return map.

Figure 5(a) shows the first-peak-intensity return map of
the period-doubling chaos. The intensity return map
shows the same cusp form as the spiral chaos, although
the intensity of this period-doubling chaos does not show
any obvious similarities with the Lorenz-spiral chaos.
Like the case of spiral chaos, the intensity return map of
the period-doubling chaos shown in Fig. 5(a) is observed
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FIG. 5. First-peak-intensity return map constructed from
period-doubling chaos of the laser: (a) under the condition that
the pump-coherence effects can be neglected, and (b) under the
influence of the pump-coherence effects of the laser.
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only under conditions in which the pump-coherence
effects of the laser are suppressed, so that the dynamics of
the laser is the one of the extended (complex) Lorenz
equations. More generally, the intensity return map of
this period-doubling chaos splits into two cusps, and the
stronger the pump-coherence effects, the more pro-
nounced is this splitting, as shown in Fig. 5(b), for exam-
ple. Thus we find the same properties of the peak-
intensity return map of the period-doubling chaos as in
the case of the spiral chaos.

Type-1III intermittent dynamics of the laser is observed
in the gas-pressure range 4—6 Pa with the pump intensity
greater than 3.5 W/cm?. In this gas-pressure range the
spiral chaos is also observed when the pump intensity is
reduced to 1.5 W/cm?. The typical measured intensity of
this chaotic dynamics is shown in Fig. 6. The charac-
teristic of type-III intermittency is that its intensity peaks
fall into two components. During one “laminar” phase,
one component grows, while the other one decreases; two
successive laminar phases are separated by ‘‘chaotic
bursts.”

In a previous paper the good agreement of this ob-
served dynamics with the universal properties of type-I11
intermittency was proved [3]. To show the relation of
this type-III intermittency with the Lorenz-spiral chaos
and the period-doubling chaos of the laser, the first-
peak-intensity return map of the dynamics is shown in
Fig. 7. Figure 7(a) gives the general shape of the first-
peak-intensity return map. It has the same cusp form as
the spiral chaos and as the period-doubling chaos of the
laser. The intensity return map in Fig. 7(a) has two
cusps, indicating the influence of pump-coherence effects.
Like the other two types of chaos, where the influence of
the pump-coherence effects is reduced as much as possi-
ble, this deviation from the Lorenz dynamics can be re-
moved. Figure 7(b) shows such an intensity return map.
To obtain this map, the pump intensity has been reduced
and the gas pressure has been increased to the limit of
disappareance of the dynamics. Even the variation of the
intensity return map of the dynamics under the influence
of the pump-coherence effects has the same behavior as
those of the spiral chaos and the period-doubling chaos.
The clear cusp form of the intermittency indicates that
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FIG. 6. Typical intensity variation for type-III intermittency
of the laser: pump intensity, 7 W/cm?; NHj, gas pressure, 4 Pa.
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the intensity during the chaotic bursts between two lami-
nar phases is not irregular but deterministic. This experi-
mental result suggests strongly that the intermittent dy-
namics of the laser is intrinsic dynamics of the Lorenz
system.

We mentioned that the above shapes of the intensity
return maps of these three types of dynamics do not de-
pend on the operating laser parameters. Whenever these
three dynamics types are observed, their intensity return
map has the cusp shape. To explain, we note the rela-
tionship between the intensity return map and the struc-
ture of the corresponding chaotic attractor. In [22] it is
shown that this return map is in practice the Poincaré
map on a specific Poincaré section. Furthermore, the
one-dimensional structure of this return map is the result
of the Hausdorf dimension of the attractor being slightly
greater than 2. Since the Poincaré map is uniquely fixed
by the dynamic flow in the phase space, and its form
reflects the structural characteristics of the attractor, the
equal shape of the intensity return maps implies that
their attractors are of the same topological structure in
the phase space.

Based on the above, it can be said that the three dy-
namics types originate from the same attractor. From
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FIG. 7. First-peak-intensity return map constructed from the
type-III intermittency of the laser: (a) under the influence of the
pump-coherence effects of the laser and (b) under the condition
that the pump-coherence effects can be neglected.
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this experimental result we see that the topology of the
attractor is not only completely parameter invariant, but
also independent of dynamics type.

In summary, we find that despite the difference in dy-
namics of the three types of chaos observed on the
single-mode N'H; FIR laser, their intensity return maps
show the same shape as the one of the Lorenz attractor,
indicating that they are all produced by the same ‘“laser
attractor,” which is that of the complex Lorenz equa-
tions. Thus, we conclude that inspection of the peak-

intensity return map can provide results like those of “to-
pological analysis” of measurements on chaotic systems
[23].
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