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Snperdressed two-level atom: Very high harmonic generation and mnltiresonances
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We show that a simple nonperturbative two-level model of an atom driven by a very strong periodic
field results in a rich picture of very high harmonic generation and related phenomena. It reproduces
the experimentally observed plateau, yields simple analytic formulas for the plateau cutoff frequency,
critical driving intensity, and saturation, and predicts intensity-induced multiresonances.

PACS number(s): 42.50.Hz, 32.80;Rm, 42.65.Ky

One of the most fascinating phenomena discovered re-
cently in nonlinear interaction of light with atoms and
ions is very-high-order (up to 135}odd harmonic genera-
tion (HHG) by intense (-10'3 W/cm~ and higher) optical
laser radiation in rare gases and some ions [1]. The spec-
tra of generated harmonics drastically deviate from the
perturbation-theory predictions [2]. In particular, inten-
sity of harmonics, falling monotonically with their orders
only up to a certain point, levels off, forming a so-called
"plateau, "and falls monotonically again beyond it. Gen-
erally, harmonic generation depends on phase-matching
conditions and nonlinear response of individual atoms. It
has recently become clear, however [2—4], that the major
features of HHG, in particular the plateau, result mainly
from general properties of atomic nonlinear response
(moreover, the plateau also appears to be a generic
feature of many nonlinear models, including classical
nonlinear systems [2(c)]). The most direct and apparently
successful way so far to approach the problem theoreti-
cally has been numerical simulation of the Schrodinger
equations [2,5—7] (including an empiric rule [6]) for
many-electron atoms using Hartree-Slater approxima-
tion. This approach requires, however, a tremendous
number of calculations and involves many processes,
making it difficult to gain simple insights. An interesting
simplified model [8] based on a three-dimensional 5 po-
tential with a single (ground) level [9] produces results in
the form of integrals. The idea [9] of retaining a single-
energy scale (ionization energy) brings one close to an
even simpler system: a two-level model atom. A two-
level model of HHG [10], however, due to various com-
plications introduced into it in order to take into account
some experimental factors, did not attempt to generate
simple results, whereas an analytic solution [11]holds for
a virtually degenerate two-level model only (see below)
which is inapplicable to rare-gas atoms used in experi-
ment [1—4,7,9]. A very interesting and detailed earlier
work [12] holds only for quasiadiabatic approximation.
Besides, no relaxation was considered in [10—12].

In this article we present a two-level model (nondegen-
erate and with relaxation) that not only reproduces exper-
imentally observed plateau, but also allows one to evalu-
ate its characteristics in explicit analytic form and pre-
dicts dramatic effects [13]. Our very simple analytic for-
mulas for the cutoff frequency of the plateau, critical in-

x +~ '(x —1 }=2i Q„(y —y
'

)sin( tot ),
y+(T +itoo)y=iQttx sin(tot), (2)

where the Rabi frequency Qtt =—d&2.E/A' is a measure of
the dipole interaction energy, and T and ~ are longitudi-
nal and transverse relaxation times, respectively. Equa-
tions (1}and (2} can be reduced to a differential equation
for a single variable (e.g., x), which allows one to directly
obtain analytic solutions in many cases [15]. They can
also be solved simultaneously in the form of Fourier ex-
tensions,

x =xo+ g (x„e '""'+c.c.),
n=1

ygyei(2n —1)cut

(3)

tensity for the plateau formation, and saturation at each
individual harmonics relate all these quantities to the en-

ergy of the first excited level, E, (rather than to the ion-
ization limit, E;,„, to which they are usually attributed),
and are consistent with the available experimental data,
at least for some gasses. We also predict well-ordered
multiresonances in harmonic intensity and in population
difference vs driving intensity when the energy of interac-
tion becomes comparable with E, . Due to its simplicity,
the model offers new insights into the HHG and points to
new situations in which this phenomenon can be ob-
served.

A two-level atom with relaxation is described by a den-
sity matrix whose diagonal elements are related to the
population per atom at both the ground (p») and excited

(p2z) levels (p»+p22=1), and whose nondiagonal ele-
ments, p,z=pz„are related to the induced polarization
P=d|2(p»+p2, ), where d12 is a dipole moment. The
population difference, g=p&& —

p22, is maximal, g=go, at
the thermal equilibrium determined by the Boltzmann
distribution; rio=tanh( —kTz/2Acoo), where Tx is the
temperature, k is the Boltzmann constant and too is a res-
onant frequency of the two-level atom (in most of the
cases of interest, go=1}. In terms of normalized variables
x =—sl/slo, y =—pz|/slo, the dynamics of an atom driven by
a periodic field Esin(cot } is governed by the equations
[14]:
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By solving first Eq. (2) for y,
—(i/2)pR (x„,—x„)

2n —1+R (1 —iI )
(4)

and using it in Eq. (1), one arrives at a recurrent formula
for the ratio w„=—x„/x„

f„(1—w„')+f„+,(1—w„+, ) =2n /R p, n & 1, (5)

X& =XPW1W2 ' ' '
W&

where f„=N/—(N —R ), N= N —iR—I, N=2n —1 is a
harmonic number, tt = n —i 8R—I, R—:cog/co,

I =(Tcog) ', 8= T/2—r (8=1 for purely radiation relaxa-
tion), and p =—f4/cog is a dimensionless driving ampli-
tude; thus
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The Fourier coeScients p„ofnormalized polarization

p =P/d»ng=~+y'= g [p.e"" ""'+c.c. ]
n=1

are obtained then as

p„=ipR x„,(1—w„)f„/N .

A recurrent formula for the ratio v„=p„+,/p„ is

(8)

FIG. 1. HHG polarization spectra, ~p„~ (N =2n —»»«-
monic order), for various dimensionless driving intensities p,
and R =7.24 and I =10 (except 4b, where I =0.1). Curves:

1, @=0.4; 2, @=2;3, @=4;4, @=6; la —4a, respective envelope
approximations. Arrows indicate plateau cuto5'points. Inset:
cutoff ratio square v vs re~ for Xe. Crosses: experiment [2(a),4];
solid line: linear fit.
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where g„=N/(N+2—), so that [16,17]

pn+1 p1vlv2 '
vn

The equation for xo is

xg ' —1=@R Im[fi(1 —wi)]l8I';

(9)

(10)

[11,15] is then

x =cos[2pR cos(tot )],
p= —R f sin[2pR cos(cot)]d(cot) .

1.e.,

x„=(—I )"J2„(2pR),
p„=R ( —1)"J~(2pR ) /N,

(14)

(15)

it coincides with a familiar formula for resonant satura-
tion when R =1, p«1, and w, =0. Physical solutions
w„and v„of Eqs. (5), (9), and (ll) are those vanishing as
n —+ ~. Figure 1 shows the (~p„~ } spectra calculated by
setting wsgc=0 in Eq. (5) for 8=1, I'=10, and
R =7.24 [assuming cog=E, /A and co as in a Xe atom
driven by a neodymium-doped yttrium-aluminum-garnet
(Nd:YAG) laser]. Formation of plateau and "irregular"
behavior inside it as p increases are evident. In the
small-perturbation approximation [p, « ~(N/R) 1~ ], —
Eqs. (5) and (9) yield

w„=f„/(f„+f„+i 2ir/p R —),
v„=g„/[I+ g„+n, l(n+1) —25/p R f„+i],

(12)

x = —2' sin(cot ), p/cog+p =2@x sin(an't) . (13)

If R « 1 (degeneration into a virtually one-level system),
one can neglect the term p in these equations, thus mak-
ing them isomorphic to a rotation wave approximation
for exact resonance [14,15] (p «1, R =1). The solution

i.e., w„=v„=—(pR /2n ) as n ~~. In the limits of ei-
ther R «1 or R »1 (and I =0) approximate analytic
solutions can be obtained for arbitrary p. We now
rewrite Eqs. (1) and (2) as

where N=2n —1, and J (z} is an ordinary Bessel func-

tion of mth order. (Note that p ~0 as R ~0.} Equations
(5} and (9} show that spectrumwise, this approximation
holds for arbitrary R to some factor C=C(R,p, ) and
only for N »R [18]. If now R »1 (a typical situation
for the HHG experiments [2]), neglecting the term P/cog
in the above equations, one obtains [12]

x ~ x =[1+4p sin (cot ) ] (16)

Fourier components X„and p„are expressed then in

terms of elliptic integrals. Spectrumwise, this approxima-
tjpn hplds pnly for N «R .

To explore HHG spectrum in the entire range of N's

and p's, one has to deal directly with Eqs. (5), (9), and
(11}.They show that for "end" areas, i.e., for N ~ ao and
N +R, w„and v„are slowly varying functions of n. For
N &R this is consistent with X„and p'„being smooth
functions of n, and for n ~ao, with similar behavior of
J„(z}for sufficiently large n (see below). By assuming,
e.g., in Eq. (5) that w„+ i =w„and f„+i =f„,Eq. (5) is re-

duced to a quadratic equation for w„,

(w„—1) +2nw„/(f„p R )=0 .

Its solution,
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w'""=Ah+A —1, A=1 —n/(f„p R ),
is real (note that w„and v„must be real if I is neglected)
only if either

N & R or N & N,„,=R +1+4p,

(The upper sign in the formula for w '„'""corresponds to
N &N,„„and the lower sign to N&R. ) Between these
two points there lies an "inside" area, R &N & N,„„with
distinct irregular spectra, Fig. 1, consistent with other
models [2,6]. These chaoslike (with respect to the order
or number of harmonic) fluctuations are originated by
Eqs. (5) and (9) in the "inside" area, where these equa-
tions are to the extent similar to the well-known iterative
equations giving rise to a strange attractor (although the
former are more complicated, especially in that they have
"number-dependent" parameters). In the limit pR »1
and N »R, this behavior can be explained by the prop-
erties of the zeros of Jz(2pR ) approximating the solution
in this limit. It is well known [19] that none of zeros of
Jz(g) (except for (=0) coincides with zeros of Jz+, (g).
The lowest positive zeros, zN, of Jz(g} are given by the
Tricomi formula [19] z~=N+2N'~ +N '~ +O(N ').
When N & g, JN(g} is an almost oscillatory function of g
with a slowly accumulating dependence of its phase on
integer ¹ this dependence is reflected in the Tricomi for-
mula, in the terms nonlinear in N. This makes the chaos-
like behavior of harmonic amplitudes as function of their
order, similar in nature to the ball dynamics in "round
billiards" in the case when the single angular "hop" of
the ball is incommensurate with 2m. The smooth en-
velopes of these spectra, w '„'"' and v '„'"' [they also approx-
imate monotonic spectra for N &R for large p and away
from resonance; Eq. (23) below] are obtained by assuming

p~ ~ in Eqs. (5) and (9}, which results in w '„'"'=1, and
v'„'"'=g„=N/(N +2), i.e.,

x '„'"'(N) =const and p '„'"'(N) =const/N .

The analytic envelopes for p„based on v'„'"" and v„'"' are
shown at Fig. 1, curves la —4a; they clearly show that the
inside area is a plateau. A good fit between these en-
velopes and exact solutions is evident; the best predicted
is the plateau cutofF, N,„,. The simple "cutoF' formula
can be written in a universal form:

v=N, «/R =(1+4@ )' or co,„,=(aP~+4Qz )'

(19)

which allows for comparison of difFerent atoms driven by
different lasers. The plateau width scales almost quadrat-
ically with p, (or with the driving intensity) when p «1
(similar to [6]), and linearly with p [10], N,„,=2Qz /co,
when p&&1. From the mathematical point of view, the
latter result is understood by noting that in such a limit,
J&(2' ) in p„ in Eq. (15}becomes a monotonic function
of N at N N,„,=2', and rapidly vanishes as N~~.
The physical interpretation of this result is that for
suSciently large excitation, p » 1 or Qz »coo, the max-
imum energy of the electron in the two-level atom is
2AQz, which coincides with the maximum (cutoff} energy

of generated photons. It is worth noting also that the
cutoff point is insensitive to the relaxation; see curve 4b
for I =0. l in Fig. l.

The analytic formula, Eq. (19},that suggests the scal-
ing law linear with the driving amplitude (or with Qz)
contradicts the numerical result [6], the latter suggesting
that co«, increases linearly with the driving intensity (or

Qx in our notations), or, more specifically, that the cutoff
energy increases as -3U&, where Uz is the ponderomo-
tive potential proportional to the driving intensity.
%hile the experimental confirmation of the "3U& rule" is
still at a dynamic stage, with the coefficient at U varying
between 2 and 3+, we show here (see below) that, at least
for Xe atoms, our analytic formula, Eq. (19), is consistent
with the experimental data at the intensities up to —10'
W/cm . The common point for both of these results is
that they both relate the plateau cutofF with the max-
imum energy of the driven electron. Indeed, as shown by
Corkum in his "almost-classical" 3D model [20], the
coeScient 3.17 at U corresponds to the maximum ener-

gy gained by an electron from the optical field if the
atomic potential is neglected, while 2AQz is the max-
imum energy of the electron bound within a two-level
system.

If R » 1, the critical p required for the plateau to ap-
pear at all is evaluated as

p2, =1/R or (Qz )„=cooco . (20}

Since Qz =d&2 E, d, 2
~ coo ', and F- ~ n~„co, where npb

is the flux of the driving photons, Eq. (20) suggests that
for coo»co (n&b) ~coo and does not depend on co; this
indicates the potential for HHG at lower frequencies.
Figure 1 shows that, consistently with experiment [3], the
harmonic intensities as function of their order make deep
minima, which could be substantially below the envelope,
Eq. (18}, if p »p„. The position N, of this first
minimum for relatively small p, is N&-R+p, /p„. For
p»1, N, fiuctuates considerably with p, in a periodic
fashion [see also Eq. (23)] [below; however, (N&),„
=0[(pR) ]. As p increases, the chaoslike spectrum
inside the plateau becomes more "regular, " with the
number and amplitude of the dips increasing; the spacing
s between them is maximal near both ends of the plateau
[s«, -2(2pR)' for p»1] and very small in the middle
of it. As I' increases (or p rapidly varies in time), these
jumps become significantly inhibited, and the spectrum
smoothes out; see curve 4b in Fig. 1. [Note that in the
limit N »R and 8= 1, Eq. (9} results in
p„~Jn(2pR)/N, with complex index N=N+iR I .]

Although the real systems (rare gases and rare-gas-like
ions) in which HHG has been observed so far are much
more complex than a two-level atom, they may not be in-
consistent with the two-level description as far as HHG is
concerned. Indeed, the energy E, of a rare-gas atom is
fairly large (R =E& /fuu » 1) and very close to E;0„, so
that hE —=E;,„—E& &(E;,„,and hE -fico. Thus virtually
all the higher harmonics, in particular, most of those in-
side the plateau (except for very few of them), may "see"
a cluster of atomic levels between E, and E;,„as a single
level; its efFective parameters are determined by all the
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theory (I =0.1, except 1b, where I =0.01),
[7]. Curves: 1, N= 17; 2, N= 19; 3, N=21.

contributing levels, with a strong dominance of the first
excited level. Rabi splitting of each individual level in
that cluster and multiple- (most of them avoided) level
crossings may also be instrumental in forming a bandlike
single level. Comparison of the model with experimental
data is encouraging. The inset in Fig. 1 shows a theoreti-
cal straight line [see Eq. (19)] in the space of parameters
v and ~Ej a:p, and available experimental points for Xe
[2(a),4]. The fit is good considering that no other of many
contributing effects was accounted for. Writing now

p, =PI, where I is the driving intensity in 10'3 W/cmi
and P=0.47 is the coefficient found by us from this plot,
we evaluate critical intensity for plateau formation, Eq.
(20), for Xe as 5.5X10' W/cm, which compares well
with experiment [2], 5.0X10' W/cm .

Ions produced by the ionization of rare-gas atoms have
an electronic structure significantly different from that of
an original rare-gas atom, such that the two-level model
may not apply to them. For example, a single-ionized He
atom is a H-like ion, whose energy levels are distributed
much more evenly (and therefore are less bandlike) than
those of He. Because of the significant increase of the
transition frequencies in ions, however, the harmonic in-
tensities at the "ionic" plateau are expected to be much
lower than those for the main, "atomic" plateau, so that
Eqs. (17) and (19) are expected to be valid for the main
plateau.

It is known [2(a}]that before the saturation sets in, the
slope a~ of logip(~p„~ } vs logio(p) for N =2n —1 inside

the plateau is less than N, as opposed to the
perturbation-theory predictions. Consistently with [2(a}],
we found that for the harmonics above the resonance
(N=13—21), a~ is insensitive to N, az —12—13. Fur-
thermore, again using P=0.47, we were able to closely fit

(Fig. 2) experimental [7] and theoretical data on the ¹h
harmonic intensity (for N =17,19,21) vs p, , assuming [2]
that the harmonic amplitude reflects atomic response,
i.e., polarization. We chose I =0.1 for theoretical curves
for all the harmonics since for larger I"s theoretical
curves are close to their envelopes measured in short-
pulse experiments [for comparison, for N = 17 we show a
curve, 1(b), for I'=0.01]. Our calculations predict that
(at least for N & R) the onset of saturation of p„(as p, in-

creases} occurs at difFerent intensities for each individual
harmonic ¹

p, (N) =N/2R, (Qx ),=Nro/2, (21)

—i A.cot ~ i(2n +1)cut+a~8 ~ ~

which offers a very simple saturation formula. Figure 2
shows that Eq. (21) is consistent with experiment [7] for
X = 17, 19,21. We found that a similar good fit could be
attained for harmonics 15—9 by reducing P'

ca�diz

by a
factor of 1.2—1.5, in amazing agreement with a similar
adjustment in Ref. [9].

One of the factors believed to be a major reason for sat-
uration of individual harmonics [2] is the depletion of
neutral atoms due to ionization, although neither theoret-
ical nor experimental proof has been offered for this con-
jecture. The depletion of neutrals due to ionization must
certainly be a factor in the HHG phenomenon, to the ex-
tent "external" to any model. It is hard to believe, how-
ever, that the ionization makes a drastic impact on the
saturation of individual harmonics. First of all, while
ionization may deplete the population of neutral atoms
by one or two orders of magnitude, the amplitude of very
high harmonics are affected by other factors by many
(often more than ten} orders of magnitude. Second, cal-
culations based on the standard Hartree-Slater approach
[7] show that ".. . the saturation seems to also be present
in the single-atom response, without invoking. . . the de-
pletion of the neutral-atom population. . .." Third, there
are experimental observations of saturation [9] indicating
almost negligible contribution of the ionization to HHG
(for subpicosecond pulses). Finally, one can argue that if
the ionization were the major factor, all the harmonics
would undergo the saturation at the same driving intensi-

ty, contrary to the experimental observations that the sat-
uration intensity significantly increases with the harmon-
ic number. Amazingly enough, Eq. (21) shows a good
agreement with experiment [7,9].

A significant feature in Fig. 2, curve 1(b), consistent
with experimental data [7,9,21] is intensity-induced reso-
nances in HHG when I «1. The most pronounced and
"ordered, " though, are very large multiresonances in the
population difference xo [see Fig. 3(a), curve 1, for
I = 10 ]. They appear almost periodically with the am-
plitude p as it increases. For the sake of demonstration,
we chose relatively low resonant frequency, R =4.25,
and I =10; for larger R the resonances become too
sharp. [Due to complex N in Eqs. (5) and (9), the reso-
nances are inhibited as I' increases; see Fig. 3(a), curve 2,
for I'=0. 1]. The smooth saturation envelope, curve 3 in

Fig. 3(a), is obtained analytically from Eq. (9) with w, ap-
proxiinated by Eq. (12) for n = 1.

We found that all these resonances are directly related
to the structure of the intensity-induced eigenfrequencies
(or quasienergies) A, (p, } (essentially "super-Rabi" frequen-
cies) of a hard-driven two-level atom. We use the term
"super" here to emphasize the fact that the Rabi frequen-
cy becomes larger than the initial resonant frequency of
the system, thus marking a very large perturbation in the
system. Due to Floquet theory, the "eigensolution" (i.e.,
the one with frequencies diferent from the driving fre-
quency or its higher harmonics) of Eqs. (1) and (2) can be
sought in the form



49 SUPERDRESSED TWO-LEVEL ATOM: VERY HIGH HARMONIC. . . 1279

10
I
I

O

10
V
C
QI 10~&

10
~94

(a)4
10

10~
0

1.00

C
I
I .75I

.50

1.0 2.0 3.0

(b)

4.0

bp=n/2R', b,(Qti)=otto/2 . (23)

with T '=~ '=0, is depicted in Fig. 3(b), and demon-
strates a close resemblance between our numerical results
and that of Ref. [12]. The multiresonances of population
difference occur almost exactly at the maxima of the
function Ap(p), i.e., near avoided crossings, with all the
harmonics simultaneously resonant to the intensity-
induced frequencies (A) i 2. This behavior is universal; for

p R »1 the resonances occur at the zeros of the analyt-
ic solution for such a case, xp= Jp(2pR), or, in the limit

p, ))1, at the zeros of sin(2pR+P), where P is a con-
stant. Thus the spacing between any two adjacent reso-
nances is

1-0 2.0 3.0
Driving Axnplitude pc

FIG. 3. Multiresonances in population difference xo (a) and
eigenfrequency Q in the (0,1) domain (b) vs amplitude p, for
R =4.25. Curves in (a): 1, I = 10 ', 2, I =0.1; 3, envelope ap-
proximation.

leading to the infinite set of linear algebraic equations for
a„. These equations are obtained from Eqs. (1) and (2) by
assuming that the total solution is x+bx (and y+hy,
with hy found through M) where x and y are the driven
solutions, Eq. (3). Each of these linear equations couples
three neighboring coefficients a„„a„,and a„+,. The
eigenfrequencies A, are found by setting the determinant
5& of that infinite set of linear equations for a„ to zero.
Thus there is an infinite set of the solutions for the
super-Rabi frequencies A, ; the most important contribu-
tion is provided by those which lie below the cutoK In
the superdriven two-level atom the contribution of many
eigenfrequencies (or quasienergies) A, to the oscillation in
the system becomes significant; by contrast, a familiar
weakly perturbed two-level dressed atom [22] is
comprehensively described by the splitting of just two
original energy levels.

A property of Floquet solutions, Eq. (22), is that if
some Ap&(0, 1) is an eigenvalue, then any A, =2n+Ap,
n E( —ap, ap ) is an eigenvalue too. In our case, all the
solutions A,(p) are developed by the interplay of two fami-
lies of curves (with avoided crossings between some of
them}, (A„)i z=2nk[R+F(p)], where F(0)=dF(0)/
dp=0 and dF/dp~const as p~~; there is only one
p-dependent eigenvalue A,p&(0, 1) for each p. Note that
( —1,0)HA, = —Ap. Because of asymptotic properties of
F(p), Q(p) is an almost periodic function, with a slowly
decaying amplitude due to increasingly widening gaps at
the points of avoided crossings of (A }i and (A)2 branches
around A. =2n —1 (the crossings at A, =2n are not forbid-
den). A p(p }E (0, 1 ) for R =4.25, as a numerical solution
of the algebraic equation 6&=0 for 5& of the 44th order,

Some distinct resonant features have been observed in
many experiments [21,23], and have been attributed to
some unspecified or rather conjectured atomic reso-
nances. Although this may be true, the resonances pre-
dicted by us may constitute substantial if not dominant,
contribution to this phenomenon. The major manifesta-
tion of the new, intensity-induced resonances that set
them aside from the other resonances is their near-
periodical dependence on the driving amplitude. It is
worth noting that according to the computer simulation
in Ref. [9] based on model [8], "the phase of dipole. . .
appears to sweep through resonances at soine integer
value of ri" (il in [9] is related to the driving intensity).
Since the theoretical model [8] assumes a 5-function po-
tential, this may indicate some profound underlying simi-
larities between the behavior of such a system and the
two-level atom. The resonances disucssed here may be
observed using time-resolved spectroscopy with longer
driving pulses in order not to smear out the resonances
by rapidly varying amplitude p(t}. Also, while at the
multiresonances the dc population difference is inhibited,
the population oscillations, in particular, at the frequency
2' (~w, ~

&&1), substantially increase, which may be ob-
served using a probe field resonant to some isolated quan-
tum level.

In conclusion, a simple nonperturbative two-level mod-
el of a hard-driven atom reproduces major HH6
features, analytically describes their characteristics, com-
pares well with the experiment for some gasses, and pre-
dicts new intensity-induced multiresonances. Aside from
a possible HHG mechanism in rare-gas atoms or ions by
optical lasers, our results suggest that (in addition to the
known nonresonance effects, such as in plasma at sur-
faces), HHG based on two level system-s may also be pro-
duced in other media and frequency domains, e.g., by mi-
crowave sources (such as gyrotrons) in an electron gas
[24] or plasina in a magnetic dc field, or by IR lasers (e.g.,
CO and CO2 lasers) in gasses or even semiconductors.
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