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The emission of a resonant nondegenerate cascade laser in which up to two fields can be simultaneous-
ly amplified inside a cavity is theoretically investigated. Each field is resonantly coupled with one of the
transitions of a ladder three-level atomic system, in conditions of homogeneous broadening. General
analytical expressions for zero-, one-, and two-field solutions are given. Cooperative emission between
both fields is found. Through the linear stability analysis of these solutions we obtain phase diagrams
showing their respective domains of stability. Together with the existence of Hopf bifurcations associat-
ed with one-photon processes, which coincide with those of a Lorenz-Haken laser, a genuine Hopf bifur-
cation due to two-photon processes has been found. This last bifurcation does not require the "bad cavi-
ty" nor the "Lorenz threshold" conditions. The stability of the orbits that bifurcate from these critical
points is analytically investigated. For this we have rewritten one of the standard criteria in a useful and
straightforward way. Finally, the dynamic regimes exhibited by the system well above the instability
thresholds is numerically investigated revealing transitions to chaos via quasiperiodicity.

PACS number(s): 42.55.—f, 42.60.Mi, 47.20.Ky, 05.45.+b

I. INTRODUCTION

The theoretical and experimental investigations on
laser dynamics have mostly concentrated on single-mode
lasers and on multimode lasers in which all the modes are
coupled to a unique transition of the atoms or molecules
constituting the amplifying medium [1]. In the present
work we study the dynamics of a new class of bimode (or
bichromatic) laser in which the two fields that can be
amplified inside the cavity are coupled to two different
transitions of the amplifying medium. These two transi-
tions share a common level, so that three atomic or
molecular levels defining a cascade (or ladder) scheme are
involved. In this radiation-matter interaction config-
uration new mode competition or cooperation phenome-
na appear, which are brought about by the sharing of the
intermediate-level population and by the presence of
two-photon processes connecting the upper and lower
levels. These new phenomena participate in the radiation
amplification process and, consequently, the steady state
and the dynamic behavior of this class of laser should be
richer than those observed in most other laser classes in-
vestigated so far.

When the two amplified fields are resonant or
quasiresonant with their respective transitions, the sys-
tem is properly called a cascade laser. In contrast, in the
limit of a large enough intermediate-level detuning the
system can become a two-photon laser, if the dominant
amplifying transition is the two-photon one.

The cascade lasers attracted early interest from both
the experimental and theoretical points of view (see Ref.

[2] and references therein). Examples of lasers operating
on cascade transitions are the efficient CO laser and the
He-Cd laser [3]. Some specific experiments on cascade
lasers in other atomic or molecular media have been car-
ried out in the past [4]. However, to our knowledge there
is not any characterization of the dynamic behavior of
these lasers. From the theoretical point of view effort has
been devoted to the quantum description of the cascade
laser [5] and in our recent paper [6] the dynamics of this
laser have been partially studied. In the related case of
the two-photon laser a remarkable achievement has been
attained recently with the first clear operation of such a
class of laser in a Ba atomic-beam medium [7]. Previous
attempts were performed with He-Ne [4(a)] and Li (two-
photon amplifier) [8]. In the microwave region a two-
photon Rb micromaser was developed a few years ago
[9]. From the theoretical point of view the main effort
has also been devoted to the quantum description of the
two-photon laser or maser [5,10]; the dynamics has been
considered only in [11] (two-photon maser) and [12]
(two-photon laser), although in this latter case a two-level
model has been adopted which does not contain the cas-
cade limit.

In the present work we theoretically investigate in de-
tail the stability properties of a cascade laser in condi-
tions of exact resonance of each field with its correspond-
ing atomic (or molecular) transition. Our analysis is quite
general in the sense that a broad region in the parameter
space is considered (independent cavity losses and gain
parameters for each field, and different relaxation rates
for the population inversions, dipoles, and two-photon
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coherence are allowed) in most parts of the study. This
represents a considerable enlargement of our previous pa-
per [6], in which the general model for a cascade laser
was presented, and its dynamical properties were dis-
cussed in a very symmetrical case. As is described in the
following sections, the present extended study has
showed the existence of just two basic (and independent)
kinds of Hopf bifurcations which are shared by both the
single-mode and the bimode solutions. It has also evi-
denced that these stationary solutions are connected by
pitchfork bifurcations, and that no situation of bistability
or multistability exists. All these pitchfork and Hopf bi-
furcations have been determined by means of a linear sta-
bility analysis of the corresponding stationary solutions.
The subcritical or supercritica1 character of the bifurcat-
ing solutions which emerge from these critical points has
also been theoretically studied. Finally, the different
classes of dynamic behavior as well as the roads to chaos
appearing in this cascade laser model above the instabili-

ty threshold have been numerically determined and
characterized.

In Sec. II the cascade laser model is recalled and the
notation and operating conditions are defined. In Sec. III
the different possible stationary solutions are analytically
obtained. In Sec. IV the linear stability analysis of each
one of these solutions is carried out. In Sec. V particular
illustrative cases are considered for which phase dia-
grams showing the different possible emission regimes are
obtained. The stability of the periodic orbits which
emerge from the Hopf bifurcation points is also deter-
mined through nonlinear analysis (the details are given in
the Appendix). In Sec. VI the different dynainics of the
system associated with local bifurcations and large-size
attractors are presented in appropriate phase diagrams.
The characterization of the different periodic, quasi-
periodic, and chaotic regimes is carried out by means of
time traces, attractor projections, and Poincare sections.
Finally, in Sec. VII the main conclusions are summarized
and an outlook is given.

II. MODEL

As in Ref. [6], we consider a three-level active medium
(levels, 1, 0, and 2) interacting with two generated electric
fields 8, and Cz inside a ring cavity. The frequencies of
the dipolar transitions co20 and ~o, are assumed to be
different enough, as we11 as the optical frequencies of the
two fields, to have each field interacting with only one
transition (nondegenerate case, Fig. 1).

The general equations which describe the above model
are given in Ref. [6] for arbitrary values of cavity detun-
ings and density-matrix element relaxation rates.
Throughout this paper we will restrict ourselves to the
case of exact resonance for each field and, for the sake of
simplicity, equal relaxation rate for the two medium po-
larizations associated with the upper and lower transi-
tions. This case is described by the following set of real
equations:

I

I

1 Gd2O

~3p
I

I

I

' Cdo)
I

I

FIG. 1. Three-level system describing the amplifying medi-

um of the cascade laser. The field E& (E2) is resonantly coupled
with the atom transition 0-1 (2-0). The three levels are assumed

to have the same normalized external population relaxation

rate b.

d, = ~ lid 2+ k2 —4a2V2+2m, y

y2 PQ2 +&282+& )X

+2 +2 2+g2y2

d = —y~~d1+~l —4~ V +2~92

y, = —y~] +n&d& —e2x,

6, = —~&cz&+g &y, ,

X = PX +CXP ) CXP2

where dz (di) denotes the population inversion for the

upper (lower) transition, A, , is the constant incoherent

pumping rate for the inversion d, , yz ~, }=Im[po2 ~,o~] is

proportional to the medium polarization at the frequency
of the upper (lower) transition (being p," the slowly vary-

ing complex amplitude of the coherence associated with

transition i —j), az (a, ) is half the Rabi frequency of the

field 6z (A', ), and x =Re[p, z] is responsible for the

coherent two-photon processes through the equations of
evolution for y2 and y, . The parameters y~~, y~, y, and ~,

represent the damping rates for the inversions, dipoles,
two-photon coherence, and the field amplitude a;, respec-

tively. Population decay has been assumed to occur from

each level 1, 0, or 2 to other levels not included in the
three-level system (external relaxation). The radiation-

matter coupling constant —or gain factor —associated
with the field 8, is

(2)

where co; is the reference frequency for this field, which is

chosen to be that of the corresponding transition since
resonance is imposed; N is the number of active mole-

cules per unit volume; po; is the square of the modulus of
the electric dipole matrix element between states ~0) and
}i ), and eo is the vacuum permittivity. Finally, the dots
in (1) denote derivative with respect to time.

Note that Eqs. (1) are symmetric under a change of
subscripts (1~2) and the change x ~ —x.

For the sake of clarity, and in order to deal with more
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E; =a;/yi,
P; =(g;/a;)y;,

D; =(g;/it;)d;,

Q =/(g, /K1 )(g2/K2)x,

and parameters

(3a)

convenient control parameters for this cascade laser mod-
el, we define the following new set of variables:

E1 =E2 =P, =P2 =Q =0,
D2=r2,

D, =r).

(Sa)

(5b)

(Sc)

B. Stationary solution (O,E2)

When the upper transition 2-0 has enough gain, the
field E2 is amplified and the following solution appears:

~;=~;/r. I =r/ri, b=yl/ri
t

~igi g 1 /+1 ~l Plo +2
ri

i g2 /~2 2 P'02 ~1

i =1,2, for which Eqs. (1}become

2
D2 =b (r2 D2 )

—4E2P2—+ E,P1—,

(3b)

(4a)

D, =1,
P2=E2,

E2 =2—,
' Qb (r2 —1),

D =r +—(r —1)1 1 2 2

E, =P, =Q=O.

(6a)

(6b)

(6c)

(6d}

(6e)

1
P2 = P2+E2—D2+ —E1Q,

x
2 +2 2 E2

D, =b(r, D, ) 4E—, P, +—2yE2P2,

P1= P1+E,D—
1 VyE2Q-,

Ei =o 1(P1 Ei ), —

(4b)

(4c)

(4d)

(4e)

Q = —rQ+ E,P, v'qE, P, . — (4g)

In Eqs. (4), r, and r2 represent the pump parameter for
the lower and upper transitions, respectively, and are
defined as in the Lorenz-Haken model [1,13]. y is a
genuine parameter of this cascade laser model. If we in-
terpret g, /s. ; (i.e., the gain-over-losses ratio for the field

E;) as the system's eQciency for arnplification of the field

E;, then y represents the relative efficiency of the system
for the amplification of the fields E, and E2. Note that g
takes into account, on the one hand, the quotients be-
tween transition probabilities (iso, } and transition fre-
quencies which are parameters of the amplifying rnedi-

um; on the other hand, y contains the quotient between
cavity losses, which is a resonator parameter. Note also
that Eqs. (4) are now symmetric under a change (1—+2},
(Q —+ —Q), and (y~ 1/y).

Note that Eqs. (6a) —(6c) are a scaled version of the sta-
tionary solution of a two-level single-mode laser (Lorenz-
Haken model [1,13]}as expected because of the existence
of only one field. This type of solution will only exist if
r2 & 1, as is obvious from Eq. (6c}.

C. Stationary solution (E1,0)

In this case, at least the lower transition 0-1 has
enough gain for amplification. The solution reads

1
D2 =r2+ (r1 —1),

21

E2 =P2 =Q =0,
Di=1,

E, =k —,'Qb(r, —1) .

(7a)

(7b)

(7c)

(7d)

(7e)

As in the previous case, Eqs. (7c)—(7e) are a scaled ver-
sion of the Lorenz-Haken stationary solution and, analo-
gously, it exists only if r ) ) 1.

D. Stationary solution (E„E2)

When both fields are amplified, the corresponding sta-
tionary solution reads

III. STATIONARY SOI.UTIONS

Depending on the fields that are null, the stationary
solutions of Eqs. (4) can be classified into four types: (a)
both fields are null, (b) only the field E2 is generated, (c)
only the field E, is generated, and (d) both fields are gen-
erated. These stationary solutions will be referred to, in
the following, as (0,0), (O,E2), (E„O),and (E„E2),respec-
tively, and will be analyzed separately.

A. Trivial solution {0,0)

As in any class of laser a zero-intensity solution exists
which adopts the form

D —1+ X E2
2 I~ 1

P =E

E' =K 4I ( r 1)+ (b +2I )
—b( r, ——1)—1

1+ XE2
y

Pi=Ei

E2=K 4I (r, —1)+ y(b+2I ) —b (r 1)—
(Sa)

(Sb)

(Sc)

(Sd)

(Se)
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Q — E E1 —X

x
being

(8g)

2=

E& =8]c2=
(9a)

(9b)

where 8; = 4K/cr; (i =1,2—), which is always negative
and

E= (8h)
b(b+2I )(y —1) +12I y

Equations (8) show that the field intensities E, and Ez
have a linear dependence with respect to the pump pa-
rameters r, and rz In. creasing the pump r, (rz) causes
E, (Ez } to grow, while Ez (E, ) grows or decreases de-
pending on the sign of the square brackets in Eqs. (8). In
particular, only if b/(b+21 ) &y &(b+21 )/b do the
two pump mechanisms cooperate, i.e., increasing r, or r2
causes both field intensities to grow. These limitations in
the value of y for cooperation disappear in the case
I ~~, which, according to Eq. (Sg), corresponds to the
absence of two-photon processes (Q =0). This suggests
that the cooperativity between pump mechanisms comes
from the step-by-step processes 2-0-1 (which obviously
contribute to amplification of both fields), while the in-
terference between them and the coherent two-photon
processes can be (when destructive) responsible for the
noncooperation.

Another clear example of strong cooperation is the
case g= 1 (equal efficiency for amplification of both
fields). In this case both population inversions become
equal to 1, for any value of the pump parameters, and ac-
cording to Eq. (Sg) Q =0, denoting an absence of two-
photon processes in average. These two features also
occur in the single-mode solutions [Eqs. (6) and (7)]. This
suggests that for g = 1 the presence of the field E2 should
not affect the amplification of the field E„and vice versa.
However, this is not the case since, interestingly enough,
the field intensities E, and E2 reach larger values than in
the single-mode cases (for instance, for r, = rz = r one has

E& =E2 =2E, where E is the single-mode intensity for
the pump r) Thus casc.ade lasers can exhibit cooperation
between modes through step-by-step processes.

Let us analyze next the conditions for the existence of
the two-mode (or two-field) stationary solution of Eqs. (8).
For the sake of later convenience, we write Eqs. (Sc) and
(SI}as

es=o

I I

iI, '

I

'I

I

I

/

I

I

I

cs=o

R)

and c3 are simultaneously negative. Since we consider
the pumps r, and rz as the main control parameters, it is
convenient to represent the different zones of existence of
{E„Ez)on the plane ((r, —1),(rz —1)). To make the
analysis of the physical mechanisms responsible for the
amplification of the radiation easier, we will distinguish
four cases according to the value of g: (i) y & b/(b +2I );
(ii) b/(b+2I ) &y& 1; (iii) 1 &g&(b+2I )/b; and (iv)
y&(b+2I }/b

Figure 2 shows the zones of existence of the two-mode
solution (Ei,Ez) on the plane ((ri —1),(rz —1)) for
b =I and for a value of y corresponding to the domain
(i) above indicated, y=0.25. In this figure (E„Ez) exists
only in the regions marked with roman numerals I, II,
and III. The regions of existence of the other stationary
solutions (0,0), (Ei,0},and (O,Ez) have not been depicted:
the trivial solution exists in all the plane, while (E„O)ex-
ists in all the right half-plane (r, & 1) and (O, Ez) in all
the upper half-plane (rz &1). This means that there is
coexistence of several solutions. Nevertheless, as will be
shown later, bistability or multistability among them does
not occur.

In the case of Fig. 2 (y=0. 25) the system's efficiency is
larger for the amplification of the field Ez {upper transi-
tion) than for the field E, (lower transition). As is seen in

Eq. (8d) the population inversion corresponding to the
lower transition D, is always positive for this value of y.
A first feature evident in the figure is the existence of a
region in the fourth quadrant (r, &1, rz &1) for which
the two-mode solution exists. This means that the field

Ez can be generated together with the field E, [solution

(E„Ez)]with a pump scheme (rz &1, even rz negative)
for which the field Ez cannot be generated alone [solution

Op 1
241"(r —1)+ (b+2I ) b—(r —1) . ,—

x I FIG. 2. Phase diagram on the plane defined by the pump pa-

rameters R 1
=rl —1 and R, =r2 —1, showing the domains I, II,

and III of the two-field steady solution (E„E,), for b = I and

g=0.25. Domain I: positive inversions in the upper and lower

transitions. Domain II: negative upper inversion but positive
two-photon inversion. Domain III: absence of two-photon in-

version (only lower inversion is positive). The functions c3 and

e3 are defined in Eqs. (10). The arrows indicate the sense in

which c3 and e3 are negative (condition for existence of the
two-field solution). Each division in both R, and R2 axes equals

5 units.

(loa)

(lob)

As is obvious, the stationary solution (E„Ez) will exist
only if E, and E2 are simultaneously positive, i.e., if e3

c3 ——— 4I (r, —1)+ y(b +2I ) b(r —1)—
4
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(O,Ez) requires r2 ]
A second important feature is the existence of regions

where some of the population inversions are negative.
This is marked in the figure with the numerals I (positive
inversions), II (negative upper inversion, D2 (0, but posi-
tive two-photon inversion between levels 2 and 1), and III
(absence of two-photon inversion). The existence of re-

gion III, where the upper level is less populated than any
of the lower levels in steady state, is a demonstration of
the role played by the cooperation between pump mecha-
nisms mentioned above, that lead to a noninverted
steady-state population distribution which is accom-
panied by emission rather than by absorption. However,
one must not think of this kind of emission without inver
sion as an example of lasing (amplification) without inver
sion in the usual sense [14], since the two-mode solution
of this cascade laser model needs positive inversion be-
tween the upper level 2 and the lower level 1 (two-photon
inversion) in the absence of fields.

Some authors have recently suggested cascade schemes
for the generation of laser radiation without inversion,
considering one of the fields as an injected pump field

(they are not cascade lasers} [15,16].This shows the capa-
city of this kind of systems to exhibit nonreciprocal ab-
sorption and emission profiles, which are at the origin of
these kinds of behavior. At difference with other inver-
sionless laser schemes in which there is a positive inver-
sion between a bare state and a state dressed by the
preexistent (external) field [17],in the cascade laser this is
not the case. It is easy to see that, in region III, the
upper level 2 has less population than any (arbitrary}
linear combination of the two lower levels 0 and 1 corre-
sponding either to a dressing by the field E, or to any
other combination.

There is an additional outstanding feature in Fig. 2.
Note that there is a small region for which (E„E2)is not
generated in spite of the positive value of r2 and r, and
the positive value of all three population inversions [zone

I

between the line c3=0 and the (rz —1) positive axis].
This inversion ivithout lasing behavior is an example of in
terference between pump mechanisms, as opposed to the
cooperation shown above. These phenomena are planned
to be investigated in more detail in a forthcoming paper.

When y increases reaching the domain b/(b+2I )

&y (1 the slope of the c3 =0 line in Fig. 2 becomes neg-
ative, so that the domain I penetrates partially the second
quadrant (the small region in the first quadrant for which

(E, ,Ez) was not generated disappears}. In the very par-
ticular case g= 1, the inversions are equal to 1 in all the
plane and coherent two-photon processes are absent in
average, as mentioned above. This leads to a unique re-
gion (region I) with respect to the inversions (regions II
and III disappear). Finally, in the domains (iii} and (iv)
above there is an equivalence with the domains (ii) and (i),
respectively, under the symmetry of Eqs. (4).

IV. LINEAR STABILITY ANALYSIS

d
u(~) =t.u(r },

d1
(1 la)

where u(~} is the so-called local vector and its com-

ponents

u, ( )=rx, (r) —X; (1 lb)

are the variables x; (D2, P2, E2,D&,Pi, Ei, g) shif«d «
their stationary value x; and

Now we analyze in detail the stability of the different
stationary solutions given in the preceding section by
means of a linear stability analysis (LSA). In particular,
we study how the system changes from one to another of
these solutions and how some of them destabilize into a
dynamic solution.

According to the standard technique for LSA, lineari-
zation of Eqs. (4} around the stationary solution which is
going to be analyzed leads to the general expression

D2

2—
x '

0 0

0 0

2——P
x '

1—Q
x
0

1—Ei

0

2yP2

-&ia Ei Di

(1 lc)

0 0

0 &yE, —P, —0 E2 —v'~p2
&i ' &i

Let us proceed to determine the conditions under
which the matrix L provides eigenvalues with a positive
real part (condition for destabilization) for the different
stationary solutions.

A. LSA of solution (0,0)
Diagonalization of the matrix L, when x,. takes the

values given in Eqs. (5}, leads to the following charac-

I

teristic equation:

(k+b ) ()(+I )[A, +(o 2+ 1)A,—o 2(r2 —1)]
X [A, + (o, + 1))i,—o,(r, —1)]=0, (12)

where A, denotes the eigenvalue. From Eq. (12) two in-
dependent conditions for the destabilization of the solu-
tion (0,0) through a pitchfork bifurcation (PB) are ob-



1248 de VALCARCEL, ROLDAN, AND VILASECA 49

tained: rz &1 or r, &1. These conditions coincide with
those for the existence of the single-field solutions (O,E2)
and (E„O), respectively. Thus the trivial solution bifur-
cates through a PB to (O,E2) at r2=1 if r, &1, or to
(E„O) at r, =1 if r2 & l. Bifurcation of (0,0) to the two-
field solution (E„E2)is possible only in the very particu-
lar case r& =rz =1, in which, as will be seen below, both
single-field solutions are unstable.

B. LSA of solution (O,Ez)

In this case the characteristic polynomial reduces to

(A, +b) A2B2 =0,
with

(13a)

Bz =A +c&k +czA. +c3

c, =~,+r+1,
(13c)

(13d)

A2=A+(cr. &+b+1)A +b(o2+r2)A'+2boz(rz —1),
(13b)

wi11 be unstable whenever c3 (0. In order to clarify this
last requirement two cases must be distinguished depend-
ing on the value of g: (i) Whenever g&b/(b+2I ) the
solution (O, E2) is unstable for r2 &r2 . This situation
coincides with the existence of the solution (E„E2), as
can be easily seen in Eqs. (10) (see Fig. 2}. (ii) When

y & b l(b +2I ) the solution (O, Ez) is unstable whenever
rz&rz . Again this condition coincides with the ex-
istence of the solution (E&,E2) (see Sec. III D), except
when y& (b +21 )lb In . this last situation, where r, & 1

implies r2 &0, what occurs is that solution (O, E2) is
born unstable since any value of r2 & 1 [necessary condi-
tion for the existence of (O, E2)] causes c3 to be negative.

The above analysis can be summarized as follows:
solution (O, E2), when bifurcating through a PB, gives
rise to solution (E„E2). There is no domain of bistabili-

ty between these two solutions.
Let us consider now the Hopf bifurcation provided by

polynomial B2. This bifurcation (to be referred to as
HBC in the following} occurs at c&c2 —c3=0, which ex-

plicitly reads

b —2yo. )c,=r(~, +1)—~,(r, —1)+ (r2 —1), (13e)
4(0, +1) r*, r, —

rz =r~ =—1+
2o. , +2—b

(16)

o2(oz+b+3)
7'z )

u —b —12

whenever

(14a)

oz&o'z=&+1 ) (14b)

which is known as the "bad cavity" condition. Thus this
HB (in the following to be referred to as HBL) depends
only on o.

z and b.
As Az, polynomial Bz is cubic and provides a pitch-

fork bifurcation (PB) and a Hopf bifurcation. In order to
make clear the sequence of bifurcations, let us assume rz
to be the main control parameter [remember that r2 & 1

since we are analyzing the solution (O, Ez)]. The PB ap-

pears at c3 =0, which explicitly reads

and c3 is given by (10b).
Again, as in Sec. IV A, due to the factorized form of

Eq. (13a) one can obtain thresholds for instabilities either
making A z

=0 or Bz =0. The polynomial A z is obtained
from the submatrix in L affecting the variables

(Dz, P2, E~), as well as B2 is obtained from the submatrix
affecting (P&,E„Q). Consequently, the repulsive direc-
tions which will appear at the thresholds provided by
A 2

=0 will mainly affect the variables (D2, P2, E2 ),
whereas those provided by Bz=0 will mainly affect the
variables (P„E„Q).Let us analyze separately the condi-
tions Az=0 and Bz=0.

Polynomial Az is identical to that obtained in the
Lorenz-Haken model [13]. As is well known, this equa-
tion leads to a Hopf bifurcation (HB) at r2 = r2, where

with the definitions

r )
—=1+ r(r+&, + I)

(17a)

b(I +1)
o' i(2o' i+ 2 —b)

(17b)

Notice that at difference with rz ", which tends to
infinity as oz does, rz tends to a finite value when o. ,
goes to infinity: r2 (o,~ ~ )=1+2(1 r, —I)/y-.

Again, two cases must be distinguished, depending on
the value of y. If g&y* the oscillations will develop for
r2&r2 (independently of the pump r, ). On the con-
trary, if y &g' the HBC will exist only for r, & r*, and
the oscillations will appear whenever rz &rz . Never-
theless, this last region of instabilities (when existing) is
extremely small and therefore is of no practical impor-
tance.

It is to be recalled that this Hopf bifurcation affects
variables which are null in steady state (E„P„and Q).
Interestingly enough, the field E& can be dynamically
amplified [in a way that will be shown in Fig. 3(b)] before
reaching the threshold for its stationary arnplification in
the two-field configuration (r 2 ).

Obviously the stationary solution (O, Ez) will bifurcate
either at rz, or r~ or rz ", depending on which of
these thresholds is first reached. Codimension-2 and even
codimension-3 points [18] can appear if these thresholds
coincide. In Sec. V these features will be exemplified for
some particular cases.

b y(b +21)—
and is independent of the cavity losses. Solution (O, Ez)

C. LSA of solution (E, ,o)

In this case the pump parameter r, & 1. The charac-
teristic polynomial reduces to



STABILITY PROPERTIES OF A RESONANT CASCADE LASER 1249

(18)

where A& and 8& are polynomials similar to A2 and 82
in Eqs. (13) except for the changes (1~2, y~l/y).
Thus no particular analysis must be made in this case
since all the considerations made in Sec. IV C for (O, Ez)
are valid for (E„O) mutatis mutandi, due to the symme-

try of Eqs. (4).

D. LSA of solution (E&, E2 )

For the two-field solution the corresponding polynomi-
al is of seventh order, so that no general analytical ex-
pressions can be obtained. Only in the very particular
case in which both transitions have the same parameters
(o,=oz and y= 1) and equal pumping (r, =r2), the
seventh-order polynomial is factorized into fourth- and
third-order ones. This case has been recently reported by
us in Ref. [6], where a LSA has been performed and the
associated dynamic regimes have been characterized, and
in Ref. [19], where the infiuence of parameter variations
on the thresholds has been discussed. We refer the reader
to these papers.

V. SPECIAL CASKS

It is clear that most of the bifurcations discussed in the
preceding section do not admit a simple viewing. This
fact is even more acute in the case of the solution in
which both fields are present, (E„E2), since no analytical
expressions are available in general. Thus in this section
we will concentrate on how the sequence of possible bi-
furcations is produced. Given the large number of free
parameters, it will be necessary to fix some of them.

In our model the relaxation rates of both induced di-
poles have been taken to be equal. Although the relaxa-
tion rate of the two-photon coherence I could be
different than those of the dipoles, one can assume I to
be similar to those in many cases. Then we will take
I =1 along this section.

On the other hand, the normalized population relaxa-
tion rate b (which was taken to be equal for the three lev-
els) can vary from 0 to 1. For the sake of simplicity we
have chosen b = 1, which is equivalent to considering the
dephasing collisions to be negligible. In any case we have
verified that variations in the value of b do not affect
qualitatively the results we present next.

One additional simplification must be made. It con-
cerns the value of the cavity losses o. , and o.2. In order to
make the results easily understandable we have chosen
u

&

=cr 2 —=o.. This condition can be fulfilled with a
double-ring configuration, as that reported in Ref. [4(a)].
Even this limitation can be reasonable in the case of only
one ring if the optical elements arranged along it do not
affect both fields quite differently. In any case fixing both
cavity losses to the same value seems to be a natural first
step in studying the system. Specific work on the
influence of different cavity losses for each field will be re-
ported elsewhere.

Summarizing, in the present section we have made the
election

A. Case r, =0

The electron r, =0 corresponds to pumping only the
upper level 2 (or, mathematically, that levels 0 and I are
equally pumped}. This pump scheme prevents the ex-
istence of the solution (E„O). Thus only the bifurcations
affecting (0,0), (O, E2), and (E&,Ez} must be considered.
By increasing rz the trivial solution loses its stability at
r2=1, value at which solution (O, E2) emerges. In turn,
this solution can undergo three different types of bifurca-
tions, namely, PB, HBC, and HBL, whose respective
thresholds and parameter conditions are

r,'8 =1+ 4
3y —1

(19a)

(19b)

HBr. 1+ 0 +30+2
r2

CT 2
(20a)

0 &o. =2,
8(o + 1)

go (2o + 1)—2

o )o'= ,'(&1+16—/y—1) .

(20b)

(21a)

(21b)

This means that (O, Ez) will become unstable for r2
greater than any of these thresholds Equatio. n (20b) is the
bad-cavity condition for the HBL bifurcation in the
present case. On the other hand, condition (21b) holds
for the HBC bifurcation. Note that the value of e' can
be smaller than that of u, and r2 can also be smaller
than r 2 . Thus an interesting conclusion is that in the
cascade laser neither the bad-cavity condition nor the
Lorenz second threshold need to be reached in order to ob-
tain instabilities To this respect. , Eqs. (16) and (17) show
that, if we let o. , and a z be different, the smaHest value of
cr, allowing one to reach the HBC instability threshold
arbitrarily approaches zero as the population relaxation
rate b does.

Obviously only the lower of the Hopf bifurcation
thresholds of Eqs. (20a) and (21a) makes sense, whenever
the pitchfork bifurcation r~ [Eq. (19a)] is not reached.
If r 2 is first trespassed none of the Hopf bifurcations ex-
ist since the stationary solution (0,E2 ) transforms into
the stationary solution (E„E2)and therefore the possible
instabilities should be analyzed from this last stationary

b =I =1, o )=cr2=—0. ,

so that we keep as free parameters the pumps r& and rz,
the common cavity losses 0., and the relative efficiency
for amplification of the fields E, and E2, y.

Since four parameters are difficult to handle simultane-
ously, we have divided the study of the different bifurca-
tions into three subsections. In the first (Sec. VA) and
the second (Sec. V B) two fixed pump schemes are set and
the bifurcations are discussed as a function of cavity
losses 0. and relative efficiency y. In Sec. V C no particu-
lar pump scheme is considered and the bifurcations are
studied for a fixed value of cr.
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solution. This operation has to be made numerically, as
pointed out above.

Figures 3 and 4 illustrate the sequence in which bifur-
cations appear, for different values of y. Figure 3 shows
the dependence of the thresholds on o for the case y= —,'.
For this value the condition (19b) is not fulfilled and con-
sequently the only two thresholds to be considered here
are rz and r2 . The two curves representing these
thresholds intersect, giving rise to a codimension-2 (CO-
2) point. For values of o larger than that corresponding
to the CO-2 point (oco2) the curve ri is below rz
whereas the contrary occurs for o & o co 2 (obviously
when r2 is increased the curve first reached is the one
that determines the actual bifurcation of the analyzed
stationary solution). In order to illustrate how these two
bifurcations affect the stationary solution (O, E2}, Figs.
3(b) and 3(c) show the evolution of the fields near the bi-
furcation point when either r2 or r2 are trespassed,
respectively.

Figure 3(b} shows the time traces of the fields corre-
sponding to the limit cycle that appears at the HBC
point. The field E&, which was null below the bifurcation
point, is now generated with zero mean amplitude and
100% intensity modulation. This modulation slightly
affects the strong field E2, which becomes weakly modu-
lated at twice the frequency (the intensity, however, has
the same modulation). This can be interpreted as a result
of the "slaving" of Ez by E, , P „and Q, since as shown

above HBC comes from the subspace defined by these
three variables.

Figure 3(c) shows the long-term behavior of the system
when the HBL point is trespassed. It is apparent that the
field Ez evolves quite similarly to a typical Lorenz chaos

[1],although with some differences due to the presence of
the other field E, . These small differences with respect to
Lorenz behavior are apparent in Fig. 3(d), which shows
the peak-to-peak map for the intensity Iz =E2. The typi-
cal Lorenz "cusp map" appears slightly blurred due to
the influence of the field E, . The field E, , however, can-
not follow the fast and strong variations of E2 and exhib-
its a slower and more erratic time evolution [Fig. 3(c)],
which gives rise to the non-Lorenz map of Fig. 3(e}.

The outstanding feature of these two Hopf bifurcations
is that they allow the field E& to be generated in spite of
its null stationary value.

In the Appendix it is shown by means of a nonlinear
analysis that the small-amplitude oscillatory solutions em-
erging at the Hopf bifurcation points are supercriticaL
(stable) for HBC and subcritical (unstable) for HBL. Par-
ticularly, it is demonstrated analytically that the equa-
tions governing the stability of the periodic solutions
which bifurcate at r2 " coincide with those correspond-
ing to the two-level single-mode (Lorenz-Haken} laser
[20].

When y & —,
' [condition (19b)], the PB which did not ex-

ist in the preceding case appears. The larger is y, the
smaller the corresponding threshold rz becomes. This is
illustrated in Figs. 4(a), 4(c}, and 4(e), where the three
thresholds are shown for increasing values of
(y=0.4244289. . . , 0.44, and 0.5, respectively).

The existence of r2 leads to the appearance of a new
CO-2 point which is given by the intersection between
the rz and rz lines [Fig. 4(c}]. As y is increased, this
CO-2 point occurs for decreasing values of r2. For a cer-
tain value of y (geo 3), this CO-2 point becomes a CO-3
point since rz intersects simultaneously rz and rz
[Fig. 4(a)].

For r2 & r2, the stationary solution (E„E2) appears.
As stated above, its stability analysis has to be performed
numerically. Figure 4(b) shows both the analytical thresh-
olds for (O, Ez) (which are physically meaningless for
r2 & rt ) and the numerical ones for (Ei,E2) (lines with
dots). Notice how these new thresholds separate from
rz and rz "as o does from o.cQ3 Note also the ex-
istence of another CO-2 point given by the crossing of the
two Hopfbifuractions affecting (Ei,E2).

For y) yco 3 the CO-3 point becomes again CO-2
point [Figs. 4(c) and 4(d)] up to a certain value of y
(y=0. 5) for which it disappears since the ri line
remains always below r2 [Figs. 4(e) and 4(f)]. Al-

though in this last case the curves r& and rz do not
make physical sense, it is worth noting that their position
and shape are quite similar to those of the curves describ-
ing the Hopf bifurcations associated to the two-field solu-
tion [lines with dots in Figs. 4(e} and 4(f)]. Nevertheless,
as g is further increased, the quantitative differences be-
tween the single-field and two-field stability curves be-
come more evident. An additional consequence of in-
creasing y is to bring rz closer to the value 12 =1, the
value at which (O, E2) appears. This means that the
domain of stability of this last solution decreases. This is
natural since increasing g corresponds to favoring the
amplification of the field E& more and more.

Summarizing the dependence on g, three main
domains can be considered: g & —,', for which (O, Ei) de-

stabilizes through a Hopf bifurcation (r2 or ri );

g & —„for which it destabilizes through a pitchfork bifur-

cation (rz ), leading to the solution (E„Ez}(which is
aff'ected by Hopf bifurcations); and —,

' &y& —,', for which

the PB occurs for small cavity losses o and the HB
occurs for larger values of e. This last domain in y is the
one that shows a greater variety of bifurcations and
several types of multicodimensional points.

B. Case F2=0

This case corresponds physically to equally pumping
the upper and intermediate molecular levels, with the re-
sult of no net pumping of the upper transition 2-0
(r2=0). Although this pump scheme is, in principle, of
more difficult implementation, it represents the comple-
mentary case of the preceding one in which we had
r, =0. In fact, due to the symmetry properties of Eqs. (4)
the LSA provides here the same results as in Sec. V A,
changing g by 1/g, r

&
by r2, and taking into account that

the analyzed solution is (Ei,0}in the present case instead
of (O, Ez ). The numerical analysis of the solution

(Ei,E2) provides, obviously, the same results also.



49 STABILITY PROPERTIES OF A RESONANT CASCADE LASER 1251

25
1.899

Eg
1.898

1.897

0.050

10 0.000

s I s I s I i I s

5 10 15 20 25

-0.050
W

10 20 30

00
'0

U

(c)

—2.5-

0.3

0.0

-0.3
I I I I I I 1 I I I I

20

0.25

L 0.20

0.15

& o.or

0.00
000 005 Q 1Q 015 020 025

n'LaX

FIG. 3. (a) Upper transition pump threshold r& as a function of cavity losses cr, =o.&=a. for the "Lorenz" Hopf bifurcation HBL
(dashed line) and the "cascade" Hopf bifurcation HBC (continuous line) afFecting the (O, E& ) solution for r, =0, y =

—,', and b = I = l.
In this case the two-field steady solution does not exist. The intersection of the two lines defines a codimension-2 point. (b) Time evo-
lution of the fields E, and Ez for r2 slightly above HBC (o =10, r& =15.4). (c) Same as (b) but for r2 slightly above HBL (o.=5,
rz = l5.05). (d) Height of each peak of the intensity Iz =E& in (c) vs height of the preceding peak (intensity map). (e) The same for
the intensity Ij =E,.
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C. Case r&AOXr2

In this subsection we do not consider any particular
pump scheme. Thus we let both r, and r2 be free
control parameters. In Fig. 5 we show, on the plane
(r, —1,rz —1), all the possible bifurcation curves affecting
the single- and two-Geld solutions, for o =5 and y=0.25
(a), 0.5 (b), 0.75 (c), and 1.0 (d). The shadowed regions
correspond to the domains of stability of the three sta-
tionary solutions (see Sgure caption). Note how the Hopf
bifurcations affecting the one-mode solutions (O,Ez)—
HBC and HBL—and (E&,0)—HBL—connect in a con-

tinuous way with those affecting the two-mode solution
(E„E2)—HB and HB' —which have been numerically
computed. Note also how the bifurcation diagram sym-
metrizes with respect to the axis r, =r2, as g approaches
1. Since y ~ 1 in these figures the bifurcation HBC affects
only the solution (O, E2) [if y~ 1, HBC would affect
(E, , O) due to the symmetry properties of Eqs. (4).] Let
us point out finally that if one considers a particular
pump scheme given by a Axed proportion of the pumping
rates of the three molecular levels, A,2.A,o.k„a variation in
the pump strength results in moving along the straight
line
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FIG. 4. The same as in Fig. 3(a), for (a),(b) y=0.4244289. . . ; (c),{d) y=0.44; and (e),(f) g=0.5. The line PB describes the pitch-

fork bifurcation transforming the solution (O, E2) into (El,E2). (a) CO-3: codimension-3 point. (b),{d,)(f): the continuous lines with

dots represent the thresholds for the two Hopf bifurcations affecting the two-field solution [the dotted lines in (e) have the same

meaning].
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~2 ~o 1

Ao Af

in these diagrams. As an example, the cases considered in
the previous subsections correspond to moving along the
vertical line r, =0 (R, = —1) and along the horizontal
line r2 =0 (R z

= —1), respectively.

VI. DYNAMIC BEHAVIOR

Here we study the dynamic solutions that Eqs. (4) can
exhibit near and far from the steady points. This is done
for the case reported in Sec. VA, i.e., for r&=O with
b =1 =1 and o, =o.z=cr. We will consider the subcases
y=0. 3 and y=0. 6, which correspond to dynamics linked
to the single-field solution (O, Ez) and the two-field solu-
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FIG. 5. Phase diagrams on the plane (R
& R2) showing the different bifurcation lines for 0.

&
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(a), 0.5 (b), 0.75 {c),and 1.0 {d). The shadowed regions correspond to the stability domains of the stationary solutions (E&,0) (vertical
shadow), (O, E2) (horizontal shadow), and (E, E&) (dotted shadow). PB: pitchfork bifurcation transforming single-field into two-field
solutions. HBC and HBI.: "cascade" and "Lorenz" Hopf bifurcations affecting the single-field solutions. HB and HB': Hopf bifur-
cations affecting the two-field solution. Each division in both R

&
and R2 axes equals 10 units.
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FIG. 6. Phase diagram showing the different domains of dy-

namic behavior corresponding to y=0. 3 and the rest of param-
eters as in Fig. 3(a). H-M denotes the threshold for hard-mode
excitation instabilities. Region I: periodic solution. Region II:
generalized bistability between periodic and chaotic solutions.

Region III: generalized bistability between steady-state (O, E2)
and chaotic solutions. Region IV: chaotic solution. TR: nar-

row domain of quasiperiodic (torus T ) behavior. The dot
denotes the CO-2 point.

tion (E„Ez),respectively.
In Fig. 6 the main domains of dynamic behavior found

for y=0. 3 have been represented together with the
threshold lines for HBL and HBC (dashed lines), which
are the only bifurcations aff'ecting the solution (O, E2)
[Fig. 3(a)j. The dynamics have been investigated both
with hard- and soft-mode excitations, i.e., solving Eqs. (4)
for a given pump rz subject to initial conditions that cor-
respond either to laser off, or to the solution found for a
near value of r2, respectively. When r2 is continuously
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FIG. 8. Poincare sections corresponding to the quasiperiodic
motion indicated in Fig. 7 (line TR) for 0.=12, before (a) and
after (b) destabilization. The Poincare section corresponds to
{a)r, =20. 160 and (b) r, =20. 185.
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FIG. 7. The same as in Fig. 6, for g=0.6. HB and HB':
threshold lines for the two Hopf bifurcations that affect the
two-field solution. Region I: periodic behavior. Region II:
chaotic behavior. TR: torus T'.

rz
FIG. 9. Bifurcation diagram showing the different attractors

appearing in the case of Fig. 7 as a function of the pump param-
eter r2, for o.=12. ST: steady-state two-field solution. T„Tb,
T„and Td.. periodic solutions appearing in region I of Fig. 7.
CH: chaotic behavior.
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increased and soft-mode excitation is used the single-field
solution is obviously stable until HBC or HBL is reached.
If o. & trco 2 (the CO-2 point is inarked with a dot in the
figure) a sudden transition to chaos occurs after HBL. If
a & O.co 2 the supercritical character of HBC causes the
system to develop periodic oscillations around the steady
solution. These oscillations grow in amplitude when r2 is
further increased up to the curve TR, at which a transi-
tion to a torus T occurs. This quasiperiodic solution is
extremely unstable and lasts only as much as a few hun-
dredths in the pump parameter value giving rise to chaos
(quasiperiodicity scenario [21]). Above the TR line no
transition from chaotic to periodic behavior has been ob-
served. %'hen hard-mode excitation is used the threshold
for instabilities is manifestly lowered (up to ca. —, reduc-
tion around the CO-2 point) indicating the existence of
generalized bistability between the stationary solution
{O,Ei ) and the chaotic attractor (region III) and between
the periodic attractor and the chaotic one (region II). The
curve H-M indicates the lowest value of r2 at which
chaotic dynamics is found with hard-mode excitation. In
region I only periodic oscillations exist whereas only
chaoti. c behavior is found in region IV. In this last region
the chaos is approximately of Lorenz-type below and
near the HBL line. An example of the temporal behavior
obtained both in the periodic and chaotic regions has
been shown in Figs. 3(b) and 3(c), respectively.

Next we study the dynamics for the case y=0. 6. For
this value of y the first bifurcation reached by the (O, E2)
solution is the pitchfork bifurcation at r2=6.0. There-
fore we must study the dynamics of the two-field solution
(Ei,E2). In Fig. 7 the dashed line denotes the threshold
for destabilization of this solution. The dot marks a CO-2
point corresponding to the crossing of the two possible
Hopf bifurcations HB and HB' this solution can undergo.
As the HBL single-field bifurcation, the Hopf bifurcation
line HB (low cr domain -in Fig. 7) is subcritical and gives
rise to chaotic motion. The Hopf bifurcation line HB'
(large-tr domain), however, is also sub critical, at
difference from the supercritical character of HBC. The
domain of generalized bistability reached by hard-mode
excitation has not been plotted in Fig. 7 due to its small-

ness, particularly for o & a.co z. As for g=0. 3 there are
two main types of dynamic regimes: periodic (zone I}and

chaotic (zone II), and the transition from one to another

(line TR} also occurs through quasiperiodicity. In Fig. 8

this transition to chaos is exemplified by means of Poin-

care sections that correspond to quasiperiodic motion on

a torus T before [Fig. 8(a)] and after [Fig. 8(b}]destabili-

zation [22].
The dynamics in the periodic domain is much richer

than in the preceding case. There are at least four
different periodic attractors that can coexist, at least two

at a time. Figure 9 shows a detailed bifurcation diagram

of the system for 0.=12 as the pump r2 is varied.

Domains of bistability between the different attractors
axe clearly observed. The periodic behavior denoted as T,
is the one which covers most of region I in Fig. 7. The
other periodic attractors are denoted by T&, T„and Td,
and exist over much smaller regions in parameter space.
Concerning the last two attractors, they have been

i li ii li i i, li Ii Ij ji ii ii lj Ii jj )i Ij',

60

FIG. 11. Time evolution of the fields E, and E2 for the at-

tractor T, shown in Fig. 10(a).

discovered just by hard-mode excitation: if the dynamics
is initiated from the destabilization of the steady-state
solution (E„E2) (ST in the figure) then increasing r2
leads to the sequence T,~ T& ~ chaos (CH in the figure),
and T, and Td are not visited. The destabilization of each
of these attractors has always been observed to be via T
tori. Examples of the dynamics associated to T„T&,T„
Td, and CH are shown in Figs. 10(a)—10(e), respectively,
by means of attractor projections on the field plane
(Ei,E2). Figure 11 shows the temporal series associated
with one of these attractor projections. Note in these
field portraits that the fields do not exhibit in general
clear in-phase nor antiphase behavior, as another
difference with respect to the multimode lasers. Only in
the symmetric case y=1 and r& =r2 we found exact
periodic antiphase dynamics, as reported in Ref. [6].

VII. CONCLUSIONS AND OUTLOOK

In this work we have performed a detailed analysis of
the stationary solutions of a special class of two-field
laser, namely, the nondegenerate cascade laser, in condi-
tions of homogeneous broadening and exact resonance of
the two fields with the corresponding atomic transitions.
No bistability between steady-state solutions exists in this
model in spite of the coexistence of one two-field and two
single-field solutions.

In the two-field stationary solutions situations of
cooperation or interference between pump mechanisms
can lead to lasing without inversion (in a restricted sense,
since ab initio two-photon positive inversion is required)
or inversion without lasing, respectively.

The linear stability analyses have revealed the presence
of two independent Hopf bifurcations that are shared by
both single-field and two-field solutions. In the single-
field case one of these HB's is exactly that of the single-
mode two-level Lorenz-laser model (HBL) [1,13], and
thus corresponds to one-photon processes. The other HB
comes from two-photon processes (HBC) and allows for
(i) instabilities below the second Lorenz threshold and
without the bad-cavity condition [1,13]; and (ii) the "dy-
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namic" generation of the field which is null in steady
state, in conditions where the pump is insuScient for
steady generation of this field (the field is created with
100% amplitude modulation). A nonlinear stability
analysis has shown the subcritical character of the HBL
bifurcation and the supercritical character of the HBC
one.

Concerning the dynamics, we have found that the sys-
tem exhibits chaotic behavior for a large domain in the

parameter space; particularly, for moderate values of the
cavity losses cr. For larger values of 0. a wide domain of
periodic behaviors appears in which several independent
periodic attractors are present and can coexist. All the
observed transitions from periodic to chaotic motion are
via quasiperiodicity [21,24].

The work presented here should be continued mainly
in two directions. Concerning the resonant cascade laser,
the inhuence of different cavity losses for each mode is to
be addressed, as well as the origin of the cooperativity or
interference between pump mechanisms. On the other
hand, the extension to nonresonant configurations is un-

der progress, in particular, the study of the connection
between the detuned cascade laser and the two-photon
laser.
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APPENDIX

GU =f (p;u), (Ala)

where u is given in Eq. (lib), p is the control parameter
(which need not be specified to our purposes}, and f is the
function that gives the time derivative of u. Expanding
(Ala) in a Taylor series in powers of u around the steady
solution (u=O), one obtains

Here we determine the stability properties of the
periodic orbits which bifurcate from the one-field steady
solution (O, E2) at either of the two Hopf bifurcations
(HBC or HBL} discussed in Sec. IV 8. We basically fol-
low the general treatment of Iooss and Joseph [25];never-
theless, we think it is worth outlining the process since it
can be useful to some readers, for we finally give the key
quantities to be computed in order to determine the sta-
bility of the orbits, circumventing the actual construction
of those periodic solutions, as opposed to other authors
[20,26,27].

First we reduce the cascade laser model of Eqs. (4} to a
local form,

which is a symmetric bilinear form, and N3 is null since
no third-order nonlinearities exist in Eqs. (4) (Ns would
be a symmetric trilinear form). Nevertheless, we main-
tain N3 explicitly, for it is necessary in general problems.

The linear part of Eq. (Alb} leads to the problem

L(p)(=A(p)g,

g L(p)=&(p)g

X(p) =a(p)+iP(p),

(A3a)

(A3b)

(A3c)

such that, at the Hopf bifurcation (p=pHa) A(p„a)=italo
and its corresponding eigenvectors will be called g=~
and g =8'. These vectors verify ~.d'=0, and are
chosen so that ~ 8=1.

In order to determine the stability of the periodic solu-
tions which bifurcate from the steady solution we define
the amplitude

Te=— dec ' 'u(r). F,T 0
(A4)

where T =2m /co is the (unknown) period of oscillation of
the sought periodic solution. Although p is the physical
control parameter, we discuss the problem in terms of e:
given a value of e, at which value of p can we find a
periodic solution u(r) of Eq. (Al) that oscillates at a fre-
quency co and bifurcates from U=O at p=pHH? Hence we
make the Taylor expansion

8U =L(p)u+ —,Nz(p;u, u) —,+Ns(p;u, u, u)+O(u ),1 1

d~

(A lb)

where L(p) is the matrix given by Eq. (11c) in which the

1
u(1, e)—eui(7 )+ e Ui(7 )+

1 1$(E)s — e's + e N +2 4
0 2t 2 4) 4

(A5a)

(Asb)
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1 2 1 4
i (e) —

i HB= —e'@2+ —e'i 4+ (A5c)

Bp
BE'

Ba
BI P =PHg

)0, (A6)

Note the absence of odd powers of e in Eqs. (A5b) and
(A5c). The even form of these expansions can be demon-
strated [see after Eq. (VIII.35) of Ref. [25]].Specifically,

p2 controls whether the small-amplitude periodic orbit
exists above (p2) 0, supercritical bifurcation) or below

(i42 &0, subcritical bifurcation) the critical point p=pHB.
The Floquet theory states that the periodic solution for
small values of e is stable when [cf. Eq. (VII.46) of Ref.
[25) )

Let us remark that Eq. (A12) complemented with Eqs.
(A3) and (A13) are sufficient for the determination of the
stability of the small-amplitude periodic solutions that
emerge from the steady solution at a nondegenerate Hopf
bifurcation in any autonomous problem of the type (AI)
As ~ and 8 are norm-indetermined vectors it is essential
to verify the normalization condition ~ 8 = 1.

Let us analyze now the stability of the periodic orbits
arising at the Hopf bifurcation HBL affecting the steady
solution (0,E2 ). We give only the main steps. In this case
the matrix L has the form L =L2L& where L2 is the
upper left-hand 4X4 submatrix in L [Eq. (11c)] and L,
the lower right-hand 3 X 3 submatrix. Since HBL is
governed by L2, the right- and left-hand eigenvectors, r

and 8, are of the form

where a is given in Eq. (A3c}. For small values of e, and
according to Eq. (A5c), Eq. (A6) reads

( li w2) w3i w4i Oi Oi 0)

8=(8,, 82, 83,0,0,0,0) .

(A13a)

(A13b)
aX:—pz

dp
)0, (A7)

which indicates that the periodic solution will be stable if
and only if it exists along the neighboring region of
p= pHB, where the steady solution is unstable (exchange
of stability). The computation of p2 is in general tedious
and not straightforward. However, according to Eq.
(VIII.35) of Ref. [25],

It is worth noting that ~, and 8; (i = 1,2, 3) are identical
to the corresponding ones in the Lorenz-Haken model.
Inserting Eq. (A14) into Eqs. (A12) and making use of the
nonlinear vector N given in Eq. (A2) the condition for
stability reads

(~1~20+~2~20+~1 ~22+~2 ~22 )~22 1 e 2 e 1

4(~2~ 20+~3~ 20+w2 9 22 +~3 9 22 )/1 & 0, (A14)

X= —Re — dre ' V' [N(pHB,'ul, u2)
0

+ —,
'
N(PHB,'U 1,Ul, U

1 ) ]

(AS)

where u20 and u~z2 are the ith and jth components of vec-
tors u20 and u22, respectively. Note that in Eq. (A14)
only the first three components of ~, 8, u2 0, and u2 2 are
present. Next we demonstrate that the first three com-
ponents of u2 0 and u2 2 are identical to those correspond-
ing to the Lorenz-Haken model.

From Eqs. (A12) the vectors u2 0 and u2 2 are given by
This way of writing X is more convenient since it involves
quantities that are computed straightforwardly. Hence
we must determine ul(r) and U2(r). Without loss of gen-

erality [cf. Eq. (VIII.30}of Ref. [25] ]

U2, 0 2[L2 L 1

' )N(i4HBi~i~ } i (A15a)

U2 2 [(L2 21Mp) (L 1 21 pip) ]N(pHBi ~i I )

(r )
—e 14i1 +e Ico10' (A9) (A15b}

u2(r) =u2 2e '"'+u2 ll+U2 2e (A 10)

where the vectors u2 are constant. Inserting Eqs. (A9)
and (A10) into Eq. (AS), the condition for stability of the
periodic orbits reads

Re ~ 8 [N(pHB, ~iu2 0)+N(pHB, ~'i U2 2)

N+(P3'H~B, ~,~ )] ' &0, (All)

where the vectors u2 0 and u2 2 are given by

[L(P'HB} 2i~p]U2, 2 N(PHBi~i~) i

L PHB)U2, 0 2N(PHBi~i~

(A12a)

(A12b)

According to Eq. (VIII.27} of Ref. [25], which gives the
evolution of U2(r}, we can write

It is simple to show that the fourth columns of both the
submatrices L2 ' and (L2 —2icop) ' are of the form

(0,0,0,x). Thus according to (A16) the first three com-
ponents of u2 0 and u2 2 are given by the first three com-

ponents of the vectors N(pHB;~, ~*) and N(pHB, ~,~), re-

spectively. It is also simple to show that, according to
Eq. (A2b) and Eq. (A13a), the first three components of
the vectors N~VHB ~ ~) a&d +(pHB m ~ ) only «nt»n
the components ~, , ~2, and ~3 that are identical to those
of the Lorenz-Haken model. Hence we conclude that the
Hopf bifurcation HBL has the same character of the
Hopf bifurcation of the Lorenz-Haken model, that is,
subcritical [20]. Hence the periodic orbit is unstable.

Concerning the Hopf bifurcation HBC, no clear
analytical result is obtainable. Thus we have extensively
tested the sign of X along a wide region of the parameter
space. None of our calculations has given a negative X
and hence we conclude that HBC is always supercritical,
that is, the periodic orbit is stable.
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