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We present a quantum theory of the micromaser which allows for arbitrary (sub- as well as super-
Poissonian) fluctuations of the pumping beam. It handles the interaction with the active atoms (gain)
and cavity decay (loss) on an equal footing. In conventional reservoir theory the rate of change of the
cavity field is a sum of the changes due to separate interactions with the individual reservoirs, i.e., the in-
teractions are uncorrelated. In our approach, corrections to reservoir theory arise. They contain the
commutator of the gain and loss operators. The magnitude of these additional terms is characterized by
the quantity p /N, where p is a parameter describing pump-beam fluctuations. The parameter is, in fact,
the negative of the Mandel Q parameter of the pump beam so that p =1 corresponds to regular pump-
ing, p =0 to Poissonian one and p <0 to super-Poissonian pump beam fluctuations. N,, is the number of
excited atoms passing through the cavity during the lifetime of the intracavity field. Thus we recover the
conventional reservoir limit if p =0 and/or N, is large. In all other cases the interactions with the gain
and loss reservoirs are correlated. We exploit some of the consequences of the additional terms, present-
ing analytical as well as numerical results for the steady-state photon statistics (mean photon number
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and photon-number fluctuations, in particular) without resorting to the p expansion.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.52.+x

I. INTRODUCTION

One of the main themes in quantum optics in recent
years has been the search for ways to reduce the noise in
the output light of optical systems. One approach has
been to make use of squeezed light [1]. In these schemes,
light with known properties (e.g., light from lasers, in-
stantaneously in a coherent state) is converted into
squeezed light. The generic model for a converter is the
optical parametric oscillator. This approach is based on
the realization that active optical systems are just too
noisy due to the unavoidable presence of spontaneous
emission. Therefore, rather than trying directly to gen-
erate squeezed light in an active system, its light is con-
verted into squeezed light in a passive nonlinear system.

Another approach has been to re-examine the sources
of noise in active systems in order to determine whether
they can be reduced or eliminated. In particular, in
lasers and masers it was realized that the pumping pro-
cess is responsible for much of the output noise [2]. It
has subsequently been shown by a number of groups that
by making the pump process more regular it is possible to
reduce substantially the intensity noise in the output light
[3-9].

Here we wish to build on the work of Refs. [S5] and [6]
to further examine the effects of pump statistics on the
field inside a micromaser. A micromaser consists of a
high-Q microwave cavity which is pumped by a beam of
excited atoms. The beam is sufficiently sparse so that at
most one atom is in the cavity at any time. Considerable
work, both theoretical and experimental, has been carried
out on this system [10,11]. It has been found that the
field inside a micromaser can be highly nonclassical. In
Refs. [5] and [6] a model for the pump beam was
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developed in which the statistics can vary continuously
from Poissonian to regular, and this model was used to
derive a master equation for the field. It was found that
by using a regular pump it is possible to reduce the inten-
sity noise to one-half the level produced by a Poissonian
pump.

The analysis produced in these papers was based on
standard reservoir theory. The gain and loss reservoirs
are treated independently and their contributions to the
rate of change of the field density matrix dp/dt are sim-
ply added. Guerra et al. have recently found from a nu-
merical analysis that in micromasers the interactions
with the gain and loss reservoirs are correlated [12]. This
results in corrections to dp /dt which depend on the com-
mutator of the gain and loss operators. They argued that
the effect of these corrections should be small if the pho-
ton number is large.

In order to explore these issues in more detail we devel-
op here a description of a micromaser in terms of a
discrete map. This description incorporates our previous
model for the pump beam so that we can again examine
pump statistics which range continuously from Poissoni-
an to regular. In this approach we take into account fully
the terms which correlate the interaction of the system
with the gain and loss reservoirs. By comparing the
mean photon number and the variance which we calcu-
late from the discrete map to those we obtained using the
master equation we are able to see the effect of the gain-
loss commutator terms. These corrections are found to
be small if the mean number of atoms which pass through
the cavity in a cavity damping time is large. The general
theory is outlined in Sec. II, its consequences are dis-
cussed in Sec. III.

In the next section we derive approximate analytical
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expressions for the photon-number distribution of the
field. These expressions reduce to a known result in the
limit of Poissonian statistics [10]. The locations and the
widths of the peaks in the number distribution are found.
The locations correspond to the steady-state solutions of
the semiclassical theory [5,6]. Individual peaks are rela-
tively narrow; they are, in fact, sub-Poissonian. There-
fore, when a single peak dominates the distribution the
overall photon statistics are sub-Poissonian as well.

In Sec. V we extend our analysis to consider pumping
beams with super-Poissonian fluctuations in the number
of excited atoms. We adopt a statistical model for the
beam for which the number of atoms which arrive in a
given time is given by the negative binomial distribution.
This leads to a straightforward generalization of our re-
sults for sub-Poissonian beams. In particular, we find
that the super-Poissonian case can be covered by extend-
ing the pump parameter p from the region 0<p <1,
which corresponds to sub-Poissonian pump beams, to
— o0 <p <0. With this extension, our results derived for
the sub-Poissonian case remain valid and describe now
the entire sub- and super-Poissonian domain of pump
fluctuations. In Sec. VI we present a numerical analysis
of the theory outlined in Secs. III-V and, in particular,
compare the “exact” numerical results to the analytical
approximations of Sec. IV thereby establishing the limits
of validity of the analytical approach.

Finally, we summarize our results in Sec. VII along
with a discussion of the implications of our findings for
reservoir theory.

II. MODEL

Our basic model is that of Ref. [6]. Three-level atoms,
with a level scheme shown in Fig. 1, are first excited to
the upper laser level with probability p. They then pass
through the cavity where they interact with the field, as
shown in Fig. 2. The time T between atomic arrivals is
assumed to be uniform; the pump statistics are changed
by varying the parameter p. The case p =1 corresponds
to regular injection statistics, and the case p—0 and
T —0 with the ratio r=p /T fixed (r is the rate of injec-
tion of excited atoms) gives Poissonian statistics.

There are two processes which change the field inside
the cavity. The first is the passage of an atom through
the cavity. In particular, if p is the density matrix of the

c

FIG. 1. Level scheme of the active atoms in the micromaser.
From a distant ground state |c ) the atom is excited to the upper
level |a) of the maser transition with probability p. The lower
level of the maser transition is |b ).
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FIG. 2. Scheme of the pumping process in the micromaser.
A uniform stream of three-level atoms separated by a time inter-
val T and each in their ground state approaches the micromaser
cavity. These atoms are denoted with empty circles. Before
entering the cavity some of the atoms are excited to the upper
level of the maser transition with probability p. The excited
atoms are denoted with dark circles. Thus the probability that
at a given arrival time an excited atom will arrive is p and the
probability that a ground-state atom will arrive is 1 —p.

single-mode field just before an excited atom is injected,
then the density matrix just after the atom has left is
given by Mp where

Mp=cos(At)p cos(AT)

+g2%asin(AT)A~'pA " lsin(AT)a , 2.1

A=g\/m, 7 is the time the atom spends in the cavity,
and g is the atom-field coupling constant. In our model
an incoming atom has a probability p of being excited. If
the atom is in its ground state, its passage does not affect
the field. Therefore, the injection of an atom which has a
probability p of being in its upper state causes the field
density matrix to go from p to [(1—p)+pM Jp. After the
passage of K atoms the density matrix is
([(1—p)+pM ]Kp. In order to derive a continuous ver-
sion of the model we note that the number of atoms
which arrive in a time ¢ is approximately given by ¢ /T,
and so we have that

p(t)=[(1—p)+pM]"/Tp(0) . 2.2)
Taking the time derivative of this equation gives
9P (1T 1+p(M—1)]p . (2.3)

dt

Between atomic injections the field in the cavity decays
due to cavity losses. This is the second process which
causes the field to change. If the losses act for a time T
the density matrix goes from p to exp(LT )p where

Lp=(7/2)(2apaT—atap—pa*a) . (2.4)

The cavity damping time is given by 1/y. We shall as-
sume that 7<<T so that we can ignore the field decay
during the interaction of an atom with the field.

The standard derivation of the master equation for the
maser field proceeds from Egs. (2.3) and (2.4). One as-
sumes that the changes in the density matrix due to the
gain process and the loss process can be treated separate-
ly, i.e., the interactions with the gain and loss reservoirs
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are independent. Therefore, in a time Az which is small
compared to ¥ ~ ! but much larger than T we have that

dp
dt

dp

+
dt

gain

Ap= At 2.5)

loss

where (dp/dt)g,, is given by the right-hand side of Eq.
(2.3) and (dp/dt),=Lp. Dividing both sides of Eq.
(2.5) by At and setting Ap /At equal to the coarse-grained
time derivative [13] gives us the master equation

%?=<1/T)1n[1+p(M—1>]p+Lp .
We can eliminate the auxiliary parameter 7 from this
equation with the substitution T'=p /r, as discussed at
the beginning of this section, which yields the master
equation in its final form,

(2.6)

%Z(r/p In[1+p(M—1)]p+Lp .
This equation was derived and some of its consequences
discussed in Refs. [5] and [6]. We will return to the valid-
ity of this equation in the discussion following Eq. (2.11).

Let us now step back and consider the evolution of the
field density matrix of the micromaser in more detail.
What we shall find is that Eq. (2.7), i.e., the assumption of
uncorrelated interactions with the reservoirs, is only ap-
proximately correct. Let the initial field density matrix
be po- An atom is injected followed by a period of time T
before the injection of the next atom. During this time
the field decays. Therefore, the field density matrix just
before the injection of the second atom is

pr=e"[1+p(M—1)]p, -

2.7

(2.8)

Similarly, the density matrix after K atoms have been in-
jected, and just before the injection of the (K +1)st, is

px={e"T[1+p(M—1)]}*p, . (2.9)

Equation (2.9) completely describes the dynamics of
our model. It is this equation which will be used
throughout the rest of this paper. For the purpose of
comparison with the master equation, Eq. (2.7), it is use-
ful to have a continuous version of Eq. (2.9). This is ob-
tained, as before, by replacing K by t/T. Making this
substitution and taking the time derivative of the result-
ing equation yields

%f—=<1/T>1n{eLT[1+p(M—1>]1p , (2.10)
or, again eliminating 7,
90 _ (s /p)nfert 1 +p(M—1)]}p . @.11)

dt

Note that this equation is not the same as that derived
from the reservoir theory, Eq. (2.7). They would be iden-
tical if [M,L ]=0. This follows from the fact that if two
operators, 4 and B, commute, then In( AB)=InA4 +InB.
If this relation is used to evaluate the logarithm in Eq.
(2.11), then Eq. (2.7) results. However, as can easily be
seen by directly evaluating their commutator, L and M
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do not commute. Therefore, Egs. (2.7) and (2.11) differ
by terms which are proportional to commutators of L
and M. The diagonal elements of [L,M ], which enter
the photon-number equations, were examined in Ref. [12]
and found to be small if the number of atoms injected
into the cavity in a damping time N, =r/y, is large.
One would expect, then, that in this regime the
differences in photon statistics predicted by Egs. (2.7) and
(2.11) would be small. More generally speaking, the in-
teractions with the gain and loss reservoirs become corre-
lated for sub-Poissonian pumping statistics, as has also
been noticed in Refs. [12] and [14]. Although the contri-
bution of the correlation terms quickly decreases with in-
creasing N, for most cases, it nevertheless remains
significant when the photon-number distribution is mul-
tipeaked. In particular, the absence of this correlation
from Eq. (2.7) may lead to negative probabilities in this
case if very high-order terms are kept in the p expansion
of the photon statistics [15]. Therefore, Eq. (2.7) can, at
best, be regarded as an asymptotic series and the p expan-
sion, suggested in Refs. [S] and [6], should be terminated
at a finite order after which the results start to diverge. If
this interpretation is adopted, the results of the p-
expansion asymptotic series method [16] are virtually in-
distinguishable from those of the present paper, based on
Egs. (2.9) and (2.11). The purpose of the present paper is
to examine the effect of the correlation terms by compar-
ing the properties of the steady states predicted by Eqgs.
(2.7) and (2.11).

Finally, let us note the following. As has been men-
tioned earlier, Poissonian injection statistics are obtained
in this model by taking the limit p —0 and T—0 with
r=p /T fixed. A short calculation shows that in this lim-
it all of the commutator terms vanish and Eq. (2.7) and
Eq. (2.11) are identical.

The lesson to be learned from this section is that if the
atomic injection statistics are not Poissonian, then the
gain and loss terms in the master equation are correlated.
This means that the conventional reservoir theory, which
treats gain and loss processes as coming from indepen-
dent reservoirs, must be modified.

III. STEADY STATE

The condition which the field density matrix must
satisfy at steady state can be derived in two different
ways. The first simply demands that the field be un-
changed by the passage of an atom. The second is based
on the principle that at steady state the gain must equal
the loss. We shall discuss both approaches.

The first approach results from the fact that at steady
state the field must be the same just before the passage of
the Kth atom as it is just before the passage of the
(K +1)st. The field density matrices at these two time
are related by

px1=e[1+p(M—1)]pg , 3.1)

so that the condition pg , ,=pg implies that the steady-
state density matrix p must satisfy

p=eT14+p(M—1D]p, 3.2)
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or, equivalently, with T=p /r

p=e’t1+p(M—1)]p . 3.3)

This equation will be used later on in this section to study
the steady-state behavior of the system.

The second approach considers gain and loss. Gain is
represented by the passage of an excited atom which
takes the field density matrix from p to Mp. The loss is a
result of cavity losses and takes the field from p to eL’p,
where ¢ is the time interval over which the losses operate.
In order to obtain the average loss we need to average e’
over the time intervals between excited atoms. The prob-
ability of having n unexcited atoms between two excited
atoms, giving a time interval of (n + 1)T between excited
atoms, is (1—p)"p. The operator describing the average
loss between excited atoms is then

=<
2 (l—p )npeL(n+1)T__.[1_(1_p )eLT]—lpeLT .

n=0

(3.4)

The steady-state condition now follows by requiring that
a gain event, described by Mp, followed by a mean loss
event, described by the operator in Eq. (3.4), returns the
field to its original state, i.e.,

p=[1—(1—p)elT] 1pelT™™p . 3.5)

After some rearrangement, and with T=p /r, this once
again yields Eq. (3.3), i.e., the same as the first approach.
This approach has the advantage that no averaging of M"
is involved and difficulties with noninteger powers of M
can be avoided, in keeping with the spirit of remarks in
Ref. [15].

It should be noted that the steady-state density matrix
depends on the time, relative to an atomic injection, at
which it is defined. We have chosen to examine the den-
sity matrix at times just before an atomic injection. We
could equally well have chosen to look at times just after
an atomic injection. This would give us a different

J

o0

(n)=73 np,

n=0
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answer. In this system, because of the discrete nature of
the injection process, the steady state is characterized by
p(xT+nT)=p[xT+(n+1)T], where 0<x <1 and n is
any positive integer. If x=0", then we are looking at
times just after an atomic injection and if x =17, we are
looking at times just before an injection. What we have is
a family of steady-state density matrices characterized by
X, pgix). They are related to each other by
PslXy y=e 1772 Lpss(xz). If y T << 1, the differences be-
tween density matrices at different values of x are small
[17]. This is the situation which we shall consider.

We now want to use Eq. (3.3) to investigate the photon
statistics of the steady-state field. The operators M and L
(and eX7 as well) couple diagonal density matrix elements
only to other diagonal density matrix elements in the
number representation. For M we have from Eq. (2.1)

(Mp),, =cos(g™Vn +1)p,, +sin(g7Vn )p, _ 1,y ,
(3.6)

and for e£7 [13]

(efp),,=e T 3 [’;‘ }(1—e—7T)'"—"p,,,,,, ) 3.7)

Finally, inserting Eqgs. (3.6) and (3.7) into Eq. (3.3) yields

—,—nyT < m
Pn=—¢ 4 2
=n

i (1_e~7T)m—n

X[(1=psZ +1)pm +PSEPm 1] (3.8)

where we have set p,, =p, and s, =sin(g7V'n ) in order
to simplify the notation.

It is possible to use Eq. (3.8) to gain information about
the mean and the variance of the photon number without
first solving for p,. Multiplying both sides of Eq. (3.8) by
n and summing gives

=3 3 n [T = (1=psE 1 oy +p5Epp -]

n=0m=n

0 -]

=3 [(U=psp41)pm+PSppm-1]3 1

m =0 n=0

=e_yT(<n)+P<S,%+1 )) .

Solving this for {n ) gives

(n)=p{st | )/(e"T—1). (3.10)

In order to obtain information about the photon-number
variance we multiply both sides of Eq. (3.8) by n(n—1)
and sum over n. A calculation similar to that just per-
formed gives

(n(n—=1))=2p{ns?; ;) /(e?T—1). (3.11

7’7: le—nyT( 1—e —'yT)m —n

(3.9)

[

Let us now assume that the photon-number distribution
is strongly peaked about its mean value n,=(n). We
then express n as n =n,+ An, where {(An ) =0, and keep
only terms of up to second order in An. Doing so we find
immediately from Eq. (3.10)

ny=p{(st,)/(e"T—1)
=pstny+1/(e?T—1)

=pa, /e’ N=—1), (3.12)
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where, in the last step, we introduced oz,,s=s%,,)+l and

substituted yT=p/N,. Here, N, denotes the mean
number of excited atoms passing through the cavity in a
cavity damping time, which is equal to p /(yT)=r /v.
This equation gives a condition for determining n;. In
general, this equation has more than one solution. The
solutions are the values of n where the line [(e?7—1)/pjn
intersects the curve sin’(g7v'n +1). The solutions which
correspond to points where sin’(g7V'n +1) has a positive
slope are unstable and can be ignored [10]. If there is
more than one stable solution, then the photon-number
distribution can have more than one peak. This will be

J

v=n {1—ngtanh(p /2N )} /{1—(2p /N, )/[exp(2p /N )—1]a;} ,
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examined in more detail in the next section. For now, let
us assume that

(e"™—1)/p>1/[(3m/2g7)*—1], (3.13)

which guarantees that there is only one stable solution.
Now turning to Eq. (3.11) we have that

((n,+An)n,+An—1))
=2p{(n,+An )(a,,s+a;,SAn))/(e2”—1) , (3.14)

or upon rearranging

(3.15)

where v =((An)?). Here we have introduced the notation a, =cha;,s. Note that if @, <0 then the photon statistics

will be sub-Poissonian.

We wish to compare these results to those derived in Refs. [5] and [6]. Those were derived from Eq. (2.7) which
neglects the gain-loss commutator terms. In addition, the logarithm was expanded and only terms of up to first order in
p were kept. The results embodied in Egs. (3.12) and (3.15) contain neither of these approximations. In order to facili-
tate the comparison with the results of the present paper we shall assume that y T << 1. Then Eq. (3.12) now becomes

nS = Nexan: 4

(3.16)

which is identical to the corresponding result in Ref. [10]. The photon-number variance becomes

v=n,{1—(p /2N )[1—p?/(12N%)In,} /{1—[1=p /N la}} .

The corresponding result in Refs. [5] and [6] is identical
except that the terms in the square brackets [ ] are miss-
ing from both the numerator and denominator. We see
that for N, >>1 the difference between the two ap-
proaches is of order 1/N, and, therefore, small.

For the purpose of comparing the variance given by
Eq. (3.17) with a subsequent result it is useful to evaluate
a; explicitly. Before doing so let us first introduce some
additional notation. If we define 0~,m=\/ N8, then we
can express @, as a, =sin*(8;,,V/'n /N,,). The parameter
6., characterizes the strength of the pumping process
(i.e., the interaction with the gain reservoir) and is typi-
cally of order one to ten. Now differentiating «, with
respect to n and evaluating the result at n; we find

ap = —(Bine/Ney [ 1= (g /N )12 (3.18)
In deriving this result we have made use of Eq. (3.16) and
the fact that the slope of s?2 is negative at n =n;. Substi-
tuting Eq. (3.18) into Eq. (3.17) gives

1—(p /2N )n;

v=n, —, (3.19)
1——(1—p/Nex)eint[l—(nS/ch)]

where we kept only the lowest-order terms in p /N, in
both the numerator and the denominator. It is interest-
ing to note that pump regularity enters the numerator
and the denominator in opposing ways. Namely, in the
numerator its effect is to reduce photon-number fluctua-

(3.17)

[

tions whereas in the denominator its effect is to reduce
the influence of the micromaser dynamics. Thereby this
latter contribution actually increases photon-number
fluctuations in the micromaser output.

IV. ANALYTIC APPROXIMATIONS
TO THE PHOTON STATISTICS

The analysis in the previous section was based on the
assumption that the photon-number distribution has a
single dominant peak. In order to determine when this is
the case, and to gain further insight into the behavior of
the micromaser, we need to find more detailed informa-
tion about the photon statistics of the cavity field.

The equation for the steady-state density matrix, Eq.
(3.8), contains two parameters, p and N.,. As we shall
see, a natural expansion parameter is p /N, =y T. This
means that Eq. (3.8) can be expressed in terms of either
p/N,, and p, or p/N,, and N,,. Both versions can then
be expanded in p /N,,, but they lead to different approxi-
mations. We shall explore both. We shall find that both
approximations agree for small p, as they should, but
differ for larger p values. The first of these approxima-
tions (with p and p /N,, as independent variables) tends
to overestimate the effect of pump regularity, whereas the
second (with N, and p/N,, as independent variables)
tends to underestimate it. In general, for single-peaked
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situations, the second approximation performs somewhat
better.

We first consider the case in which p and p /N, are the
independent parameters. Equation (3.8) is already in a
form which is convenient for this purpose as it is ex-
pressed in terms of p and yT=p/N,.,. Keeping terms
only up to first order in y T gives

= (n+D)yTlps? 1 1p, —(n+ Dy T(1—ps} 4 3)p, 41 =(1—nyTIpsip, ., —nyT(1—ps; 1 )p, -

A normalizable solution results if the right-hand side of
this equation is set equal to zero, i.e.,

_(l—nyT) _ PS.

—1> 4.3)
n nyT 1-ps3+1pn 1
which yields
2
" (1—kyT) PSk
Pn=p , 4.4)
" okI=Il kyT  1—psi4
or in terms of N,
n NCX S’%
Pr=p —p . 4.5)
"o kI=Il k 1=psi 4y

It is clear that this formula is valid only if n is not too
large, because for n > N,, /p it gives values of p, which
are negative. In the derivation of this result, however, it
was assumed that ny T is small. As long as this condition
is satisfied the values of p, given by Eq. (4.4) are positive.
Note that in the limit p—0 and T—O0 such that N, is
fixed, which corresponds to Poissonian injection statis-
tics, we obtain the result

n
Prn=Po H (Nex/k )S,% ’ (4.6)

k=1

which has been derived previously [10].

One case in which Eq. (4.4) should be a very good ap-
proximation is if for some N we have that sy =0 and
¥YTN <<1. This corresponds to a certain subset of trap-
ping states. The condition sy =0 guarantees that p, =0
for n = N. This means that for all n such that p,50 we
have that ¥ Tn <<1 and, therefore, the expansion in this
quantity which was made in deriving Eq. (4.4) is well
justified. If it is also the case that V Ngr=m, then the
photon statistics have only a single peak and the results
of the previous section apply.

Let us also note that if p =1, and there is a number
state |ny) such that Sn,+1=1, then the denominator in

Eq. (4.3) can vanish. In order to treat this case we go
back to the equation which results when the right-hand
side of Eq. (4.2) is set equal to zero. We then find that
Eq. (4.3) holds for s, 1,71, but if 5, . ;=1, then Eq. (4.3)
is replaced by the equation p, _;=0.

In general, if Eq. (4.4) is to be a useful approximation
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Pn=(1—nyT)(1=ps}, )p, +psip,_1]
+(n+DyT{(1—ps} 43)pn+1HD57 +1Pa] - 4.1)

This equation satisfies a detailed balance condition. It

can be expressed as

4.2)

to the photon statistics it should be valid for values of n
up to N.,. This is the region in which the most impor-
tant part of the photon-number distribution lies. Howev-
er, Eq. (4.4) is a good approximation only for those values
of n for which nyT=np /N, <<1. For this condition to
be satisfied around n ~N,, we see that p cannot be too
large. Our numerical studies, which are discussed in Sec.
VI, indicate that Eq. (4.4) is a good approximation for p
in the range 0<p <0.3.

We now wish to examine some of the consequences of
Eq. (4.4). In particular it is useful to find the location and
width of the peaks in the photon-number distribution
which it predicts. These peaks are often the dominant
features of the number distribution and knowledge of
their properties allows one to understand the behavior of
(n) and An.

The simplest task is to find the location of the peaks.
First note that p,, 2 p, _, if

(1—ynT)ps?/[nyT(1—ps_,)]>1. 4.7

If we assume that s, ,;=s,, which will be true for
n>>0,,/N,,, then the inequality in Eq. (4.7) will be
satisfied if ps? > ny T, or in terms of N,,,

s2>2n/Ng, . (4.8)

For simplicity we shall confine our attention to the re-
gime in which 62,/N,, <<1 so that the condition
n>>6%,/N,, imposes no restriction. Let us now consider
the meaning of Eq. (4.8). If we plot both sides of the in-
equality versus n we find that n /N, is a straight line of
slope 1/N,, and s? oscillates between 0 and 1. Equation
(4.8) will be satisfied between the intersection points of
the two curves. In particular, it will be satisfied between
an intersection point where s? has a positive slope (s? is
increasing), and the next intersection point which will
occur when s? has a negative slope (s2 is decreasing).
The peak will occur at this latter intersection point. This
is because between these intersection points we have that
Pn>pPn—1, 1.6, p, is increasing, but after the second,
negative-slope intersection point we have that p, <p, _;,
i.e., p, is decreasing. Therefore, the peaks occur at
values of n where Eq. (4.8) is satisfied as an equality, and
s2 has a negative slope. Note that this is precisely the
condition for finding the value of the mean photon num-
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ber n, which was found in Sec. III from the semiclassical
theory [see Eq. (3.16)].

Now that we know where the peaks are let us examine
their width. We do so by finding Inp, and expanding it
about the location of a peak. Suppose that a peak is lo-
cated at n=n,.

We first need to find Inp, near n;. We begin by ex-
pressing Inp, as

Inp, =Inpy+ ¥, Inf(k), (4.9)
k=1
where
flk)=(1—ykT)ps?/[kyT(1—ps?)] . 4.10)
Near k=n, we can  approximate Inf(k)

%f(nl)+8kd[lnf(k)]/dk|,,l where 8k=k—n,. Be-
cause n, corresponds to a peak we have that f(n,)=1
and f'(n,;) <0 from our previous discussion. Therefore,
for 8n /n; <<1 we have

n,+8n

lnpn]+8n=lnpn|+ 2 lnf(k)

k=n,

én
=lInp, +f'(n,) 3 6k, 4.11)

8k=1

where we have assumed that n >0. A similar argument
holds for the case dn <0. Performing the summation we
find

1np,,l+5,, =lnp,ll +[8n(dn+1)/2]1f'(n;)

=Inp, —|f'(n})l(8n%)/2, (4.12)

where we have explicitly put in the sign of f'(n;) and
have dropped 8n relative to (8n)%. Carrying through the
calculations for the case 6n <0 shows that Eq. (4.12) is
valid in that case as well. Therefore the peak is approxi-
mately a Gaussian with a width given by 1/1/|f'(n,)|.
Evaluating this expression gives

LAV (m)I=V 0, /{146, [1—(n, /N,)]VV2
(4.13)

Note that width of the peak is less than Vv n,; so that the
peak is narrower than a Poissonian one.

If the peak at n, is the dominant feature of the
photon-number distribution we would expect that the
variance of the distribution would simply be given by the
square of Eq. (4.13). However, if a single peak dominates
the distribution we should also be able to find the vari-
ance by means of Eq. (3.19). If we assume that n, /N, is
small, which is a necessary condition for Eq. (4.13) to be
valid, we find that the two equations give the same result
for the variance.

Next we consider the case when N, and p /N, are the
independent parameters in Eq. (3.8). With the notations
x=p/N,, and S, =N,.s2, Eq. (3.8) can be written as

— , —nx < m —x\ym—n
pn=e " mzzn [n ](l—e )

X[(1=x8,, 4 1)pm +XSmpm—1] . (4.14)

Let us now consider the case x <<1. This condition is
certainly satisfied for Poissonian pumping (p =0) and we
expect that the expansion in terms of x yields a reason-
able estimate for the sub-Poissonian domain, 0<p < 1.
Keeping terms up to first order in x in Eq. (4.14) gives

[x(n+1)n+2)/2]p, 4, (n+D[1=xS, 1 ,—x(n+1/2)]p, 41— [n +8, . ,—xn%/2—x2n+1)S, 4, ]p,

+S,(1—xn)p,_=0. (4.15)

Although more complicated, this equation also satisfies a detailed balance condition, just like Eq. (4.1). It can be ex-

pressed as

[x(n +1)(n +2)/2]pn+2+(n+1)[l—xsn+2“x(n +1)/2]p,,+1—[l—x(n+1)]Sn+lp,,

=[xn(n+1)/2]pn+l+n[1_xsn+l_xn /Z]Pn_[l_xn ]Snpn—l .

Again, a normalizable solution results if the right-hand
side of this equation is set equal to zero, i.e.,

[xn(n+1)/2)p, 4 tn[1—xS, ., —xn/2]p,

—[1=xn1S,p,—1=0, 4.17)

reducing the general four-term recurrence relation of Eq.
(4.15) to a three-term one. It is easy to convince our-
selves that in the Poisson limit, i.e., for x =0, Eq. (4.17)
reduces to the well-known and easily solvable two-term
recurrence relation of the micromaser with Poisson

(4.16)

pumping [10], as it should.

We now have three different recurrence relations for
the photon-number distribution, viz. the exact relation-
ship, Eq. (3.8), and two approximate ones, Eqgs. (4.4) and
(4.17), corresponding to the two different p /N,, expan-
sions. We relegate a detailed numerical study of these ex-
pressions to Sec. VI where we shall present numerical re-
sults also for the super-Poissonian pumping to be dis-
cussed in the next section. At this point we just want to
note that all three recurrence relations predict the same
peak positions for the photon-number distribution. How-
ever, the width and peak height predictions are different.
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In general, Eq. (4.4) tends to overestimate the effect of
pump regularity, whereas Eq. (4.17) tends to slightly un-
derestimate it. In addition, Eq. (4.17) yields reliable re-
sults for a wider range of p (about 0=p <0.5) than Eq.
(4.4) (the validity of which is limited to 0 <p <0.2), when
compared to the exact Eq. (3.18).

It is interesting to compare the three-term recurrence
relation of the present approach, Eq. (4.17), to the three-
term recurrence relation of Refs. [5] and [6],

np, —[1+x8, /21S,pn 1 +[x8,S,_,/21p,—,=0,
(4.18)

which was based on the p expansion of Eq. (2.7). In the
limit x —0 both expressions reduce to the known micro-
maser formula for Poissonian pumping [10], as expected.
The terms proportional to x in Eq. (4.18) describe repeat-
ed interaction with the gain reservoir alone. The terms
proportional to x in Eq. (4.17) describe repeated interac-
tion with the loss reservoir and, more importantly, corre-
lation terms between the interactions with the gain and
loss reservoir. These correlation terms are missing entire-
ly from Eq. (4.18) and they represent the crucial
difference between the two approaches.

V. SUPER-POISSONIAN PUMP STATISTICS

In this section we extend our basic model of Sec. II for
the case of super-Poisson pump-beam fluctuations. This
extension is motivated to a large extent by dye-laser
theory [18-23]. It was found there that the assumption
of a bunched pumping process (usually the pumping is
via another laser or a conventional lamp) is necessary to
explain gain and fluctuation properties of the generated
field.

In the following we shall show that a simple and
straightforward generalization of our model is possible
and derive a master equation which holds for bunched as
well as antibunched pump fluctuations. Formally, we
find that Eq. (2.7) remains valid. However, the parameter
p is no longer restricted to positive values but, instead, it
can take any value in the interval — o <p <1. Further-
more, the interval 0<p <1 corresponds to sub-
Poissonian pump fluctuations, as before, whereas the in-
terval — o <p <0 to super-Poissonian (bunched) pump
fluctuations in such a way that p— — o describes, in
effect, a thermal pump and p =0 again corresponds to a
Poissonian pump. Thus, the sub-Poissonian regime
matches continuously with the super-Poissonian regime
at the value p =0 of the pump parameter.

A. Model

Our basic model in this section is very similar to that
of Refs. [5] and [6] which was summarized briefly in Sec.
II. Three-level atoms, with the level scheme shown in
Fig. 1, are first excited to the upper laser level with prob-
ability p. They then pass through the cavity where they
interact with the field. The time T between possible
atomic arrivals is still uniform. The only difference with
respect to the sub-Poissonian case is that now at each ar-
rival time #; more than one atom, say n (n =0,1,2,...,),

may arrive simultaneously, as indicated in Fig. 3. In the
sub-Poissonian case n was either O or 1, i.e., either one ex-
cited atom arrived at ¢; or none. We shall assume that
the probability p(n) of n excited atoms arriving simul-
taneously is given by

p(n)=(1—pylpg, (0<py<1). (5.1

As will be discussed this leads to a pump beam with
super-Poissonian statistics. We expect that a beam of
atoms emerging from an oven will have Poissonian statis-
tics. Thus a method must be found of introducing corre-
lations into the beam. This will be discussed below. At
this point, let us just mention that the distribution in Eq.
(5.1) is the same as that for the number of photons in a
cavity at some specified temperature. We shall hence-
forth refer to it as thermal distribution.

The assumption of simultaneous arrival of more than
one atom at a time requires some clarification. In our
present treatment so far we have tacitly assumed that the
interaction of an individual atom with the cavity field is a
6-function-type kick at t=¢;. If more than one atom ar-
rives the interaction is a sum of nonoverlapping 8§ func-
tions at ¢t =¢; which means that the atoms are bunched
around the arrival time on a time scale much shorter
than T but their overlap can still be neglected. In fact,
our subsequent treatment can easily be generalized for
the case of overlapping atoms but this and other possible
generalizations are left for future publications.

This model for the pumping process can be justified in
the following way. In Refs. [5] and [6] we presented a
model of a pumping beam with sub-Poissonian fluctua-
tions. In Sec. II we gave a simplified version of our origi-
nal derivation. Let us revisit those considerations here,
in more detail. Our model consists of two essential in-
gredients. First, we had an imaginary beam of ground-
state atoms, each separated by a time interval T (or,
equivalently, distance L =vT where v is the velocity of
the beam). Then, out of this regular flow of ground-state
atoms, we excite some atoms to the upper level of the

O O 0O ©°

Excitation Micronave
Cavity

FIG. 3. Scheme of super-Poissonian pumping in the micro-
maser. A bunched stream of ground-state atoms separated by
the time interval T approaches the micromaser cavity. These
atoms are denoted by empty circles. The number of ground-
state atoms in each bunch is itself a stochastic variable. Before
entering the cavity some of the ground-state atoms in each
bunch are excited to the upper level of the maser transition with
probability p. The excited atoms are denoted with dark circles.
Thus the probability that at a given arrival time precisely n ex-
cited atoms will arrive (n=0,1,2,...,)is given by (1—p)p™.
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maser transition (cf. Fig. 2). The exact mechanism of ex-
citation need not be specified. It is enough to merely as-
sume that the probability of excitation is p. Then the
probability p(n,N) of finding precisely n excited atoms in
the time interval (z,,ty), where ty=t,+(N—1)T, is
given by the binomial distribution

p(n,N)= w ]p”(l-p)N“" )

Applying Eq. (2.1) n times we obtain that if the field in-
teracts with »n atoms in a fixed time interval (¢,¢,) then
p'™'=M"p. Of course, here n is a fluctuating quantity. If
we take the average of p(”’ with respect to the above
p(n,N) we again obtain (2.2) and the rest of the analysis
of Sec. II follows (Refs. [5] and [6]). Now, in order to in-
corporate super-Poissonian fluctuations we introduce the
following modifications into our model. We assume a
beam of ground-state atoms where the separation T be-
tween arrival times is uniform. However, at each arrival
time ¢; any number of ground-state atoms may simultane-
ously arrive, in the way described at the beginning of this
section. Their number N, follows the thermal distribu-
tion p(N;)=(1—p, )piv’. We now excite atoms, with
probability p, to the upper level of the lasing transition
out of this thermal beam of ground-state atoms. For a
fixed number N, of ground-state atoms the probability
p(n,N,) of exciting n atoms is

N —n
pn,Np= | p21—p,)"

1
n

Since N, itself is stochastic variable the probability of n
excited atoms arriving simultaneously (simultaneously in
the sense discussed above) is the convolution of p(n,N,)
with p(N ), i.e.,

oo

pn)=3

Nl=n
=[1+(p,p,)/(1—p, )]_I[Plpz/(l"Pl +pp2)]" .

If we introduce p, as po=(pp,)/(1—p,+p,p,) then the
above distribution can be written in the form given by
Eq. (5.1). This is the underlying model of our thermal
beam of excited atoms. It is interesting to note that if
both p,,p, << 1, then py=p,p,, i.e., the elementary prob-
ability in (5.1) is a product of two independent events:
the thermalization of the ground state and excitation.
The above equation expresses a well-known result in the
theory of probability: the convolution of a thermal distri-
bution with a binomial one is a thermal distribution.

Next we want to obtain the probability p(n,N) of
finding n excited atoms in a time interval t=(N—1)T
given that at each arrival time ¢;=iT(i=0,1,...,N—1)
any number of excited atoms, say n;, may arrive. Clearly,
3 ,;n;=n and from (5.1) we easily find that

N+n—
n

N,

N, — N
n Pg(l"Pz)l n(l”P1)P1]

p(n,N)= [ 1]p3(1—p0)N, (5.2)

where the binomial factor arises from combinatorial con-
siderations.
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The above probability distribution function is known
as the negative binomial distribution since expansion of
the normalized binomial expression, g3 (1—p,) ™7, with
exponent —N (negative binomial) in powers of p, (and
with g, =1—p,, substituted at the end) leads to (5.2). One
of the properties of this distribution is

(n)=T3 np(n,N)=(py/q)N .

n=0

Since, by definition of the pumping rate r, {n ) =rt, and
N=t/T we find that r=(p,/q,T) or, conversely, the
auxiliary parameter T can be expressed with the physical
ras T=(py/q,r). In particular, for p,> | the pumping
rate r > 1/T or, rather, the interval between successive
arrivals T is longer than the average injection time
T>1/r.

The second feature of interest for our purposes is the
mean-square fluctuation of the negative binomial distri-
bution for which we find

v=_{(n—<{(n))*)=(py/q0)N[1+(py/q,)]

In other words, the fluctuations are super-Poissonian or
the beam is bunched. For short times or, equivalently,
for N =1 the beam is thermal, as it should be. For longer
times (or larger N) it is subthermal but still super-
Poissonian. From the above expression we find the Man-
del Q parameter of the pump beam, which is defined as
Q=v/{n)—1,tobe Q=p,/q,> 1.

B. Master equation in the reservoir limit

Now we are in the position to work out the generaliza-
tion of Egs. (2.3)-(2.7) for super-Poissonian pump fluc-
tuations. If the initial density operator of the cavity field
is given by p(0) then after interacting with one atom we
obtain p(1)=Mp(0) where M is the superoperator given
in (2.1), describing the effect of a single atom on the field.
For more general models it is straightforward to obtain
more general expressions for M. After interacting with n
atoms in a time interval t =(N — 1)T we easily find that

pM=M"p(0) . (5.3)

The average density operator after a time interval
t =(N —1)T can be obtained by taking the average of Eq.
(5.3) with respect to the distribution of n, Eq. (5.2). This
procedure yields

p(N)= i p(n,N)p(n)

n=0
=3 [V pp—p M0 . G
n=0
The summation can easily be carried out resulting in
p(N)=(1—po)N(1—poM)~"p(0)
=[1—(po/qo M —1)]"¥p(0) . (5.5)

Going from the discrete variable N to the continuous ¢ we
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can write
p()=[1—(po/qo) (M —1)]"""Tp(0)
=[1—(pg/go)M—1)] ""Pp(0)

where in the last step we substituted (1/T)=(q,/po)r,
which was justified above. By taking the time derivative
of both sides we finally arrive at the master equation

(5.6)

%‘tl:—r(qo/po)ln[l—(po/qo)(M—1)]p .
This expression depends only on the particular combina-
tion —(py/qy). If 0<py <1 then this parameter changes
between 0 and — . By formally denoting —(p,/q,)
with p, Eq. (5.7) becomes identical with the gain term in
Eq. (2.7). We can again add the loss term to the above
equation to make the analogy with Eq. (2.7) complete.
The only difference is that the validity of Eq. (2.7) is now
extended from the interval O<p <1 to the entire
— o <p <1 interval. Positive values of the parameter p
correspond to sub-Poissonian fluctuations, as before,
whereas negative values of the parameter correspond to
super-Poissonian fluctuations. Furthermore, as we have
seen in the previous subsection, the parameter p is just
—1 times the Mandel Q parameter of the pumping beam.
This relationship between p and Q holds in both the sub-
and the super-Poissonian case.

Adding the term by hand, which represents the in-
teraction with the loss reservoir, assumes that we can
neglect the commutator between the gain and loss terms.
The validity of this assumption has already been dis-
cussed in connection with Eq. (2.7). Therefore, we leave
this line of inquiry at this point. It should be noted, how-
ever, that this master equation is worth considering in its
own right and we plan to do so in a future publication.
Here, instead, we want to develop the analog of the
discrete map approach presented in Egs. (2.8)-(2.11) and
Sec. III for super-Poissonian injection statistics. This ap-
proach, which takes into account the noncommutative
character of the gain and loss superoperators, will yield
the generalization of Eq. (3.3).

(5.7

C. Corrections to reservoir theory

Let us now step back and consider the evolution of the
density matrix in more detail. We shall find that Eq. (5.7)
is only approximately correct. To find the analog of
(2.6)-(2.11) we must proceed with a little caution. In the
treatment so far p(0) was always taken before the first in-
jection time. In order to fully exploit the analytical re-
sults of Secs. III and IV, however, in the case of super-
Poissonian pump fluctuations we are forced to develop a
theory which follows the discrete evolution of the density
operator immediately after the injection times. In the fol-
lowing treatment let p(0) be the density operator of the
cavity field after the first injection time, t =0. Until the
next injection time the field just decays. Attime ¢, =T, n
excited atoms (n=0,1,2,...,) may enter the cavity.
Therefore, the field density operator just after ¢ is

p"=M"eLTp(0) . (5.8)
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The probability that at a given injection time precisely n
excited atoms pass through the cavity is given by (5.1).
Therefore, the average density operator after ¢, is

pi=3 p(nlp{"=[1—(po/go}(M —1)]"'e"Tp(0) .
n=0

(5.9)

Similarly, right after N injection times (¢t =ty =NT) we
obtain for the average density operator

pn={[1—(po/gqo)(M —1)]"1eLT}Np(0)

={e LT 1—(pg/qo)(M—1)]} " ¥p(0) . (5.10)

This equation completely describes the dynamics of our
model. It is this equation which will be used in the rest of
this section. For the purpose of comparison with the
master equation, Eq. (2.7), which we now know holds for
the super-Poissonian case with negative pump parameter
D, it is useful to have a continuous version of (5.10). This
is obtained, as before by replacing N by t/T. Making
this substitution and taking the time derivative of the re-
sulting equation yields

d _

L = —(1/Dinfe ™1~ (po/g0) M = D]}p .
In the discussion following Eq. (5.2) we found that the
auxiliary parameter T can be expressed in terms of the
physical injection rate r as T=(p,/q,7). Substituting
this expression for T in the above equation we finally ob-
tain

(5.11)

—(zii%=“_r(Po/QO)ln{e_(po/rqO)L[l‘"(Po/QO M—1Dllp,

(5.12)

which is to be compared to Eq. (2.11). Just as we noticed
in connection with (5.7) this expression also depends only
on the particular combination —(py/qy). If 0<py<1
then this parameter changes between 0 and — «. By for-
mally denoting —(p,/q,) with p, Eq. (5.12) becomes
identical with the generalized master equation, Eq. (2.11),
which we found to be valid when the commutator of the
gain and loss superoperators is not negligible. The only
difference is that the validity of (2.11) is now extended
from the interval O0<p <1 to the interval —oo <p <1.
Positive values of the parameter p correspond to sub-
Poissonian fluctuations, as before, whereas negative
values of the parameter correspond to super-Poissonian
fluctuations. So our generalized master equation reads as

iﬂ=(r/p)ln{e("/’)L[l+p(M—1)]}p ,

dr (5.13)

same as Eq. (2.11) but valid in the entire — 0 <p <1 in-
terval and for arbitrary pump fluctuations. Since the
above equation is identical with (2.11) we can, without re-
peating the algebra, just borrow the results of Sec. III and
apply them to the discussion of the steady-state proper-
ties of our model.
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D. Steady-state intensity and fluctuations

The condition which the field density matrix must
satisfy at steady state can be derived from the following
considerations. At steady state the field must be the same
just after the (IV + 1)st injection time, ¢y, =(N+1)T, as
it is just after the Nth, at 1y, =NT. The field intensity ma-
trices at these two times are related by [cf. Eq. (5.10) with
the exponent replaced by 1]

prv+1={[1—(po/q0)(M—1)] ' T}py
={e M1—(py/qo)M—1)]} "lpy . (5.14)

In the limit of N large we may reasonably expect that py
tends to its steady-state limit p and becomes independent
of N. The condition py,=py implies that the steady-
state density matrix p must satisfy

p={e H1=(po/qo)M—1)]} " 'p .
Applying the operation {e LT[1—(p,/q,)(M—1)]} to
both sides of this equation we obtain

p={e H[1—(py/go)(M—1]}p .

We can now eliminate 7 with the substitution
T=(py,/qor) and then formally denote —p,/q, with p,
yielding

p={e?1+pM—1)]}p .

(5.15)

(5.16)

(5.17)

This equation constitutes the central result of this sec-
tion. It is formally identical with Eq. (3.3), except p is
now defined in the interval — « <p <0. To proceed, we
note that in the analytical treatment presented in Sec. III
the actual value of p never really played a role. In partic-
ular, no p expansion has ever been introduced, in sharp
contrast with the method employed in Refs. [5] and [6].
Therefore the analytical results, Egs. (3.12) and (3.16) for
the average intensity and Eq. (3.15) for the photon-
number variance, remain valid. Taking explicitly into ac-
count that the parameter p is negative, we can write the
expression for the mean photon number (average intensi-
ty in the cavity) for the super-Poissonian case under con-
sideration as follows:

eI/ Nexy (5.18)

n,= |planx/( 1—e
In the limit |p|/N,, <<1 we again obtain equation (3.16).
This time, however, we do so by approaching the Pois-
sonian limit from the direction of the super-Poissonian
domain. Therefore the first moment, i.e., average intensi-
ty, is insensitive to the statistics of the pumping beam for
a wide range of parameter values. Namely, the condition
|p| /N <<1 can be expressed in terms of the original ex-
citation parameter p, as |p|=p,/(1—py), i.e.,

Po/(1=pg) <Ny OF o <<Neyp /(1+Ngy) . (5.19)

Even for very modest pump intensities (N, <10) this
condition is well satisfied, since the excitation probability
of individual atoms is small under normal circumstances.

In order to see the effect of pump statistics on the first

moment one then needs extremely low pump-beam inten-
sities and a very large excitation probability (py=1). In
this limit exp(—|p|/N.,) can be neglected in the denomi-
nator of Eq. (5.18) and the expression then reduces to

n=lpla, . (5.20)
Both (5.18) and the above expression predict that the (mi-
cromaser as well as laser) threshold is shifted towards
lower values of the pump parameter 8. In laserlike sys-
tems this threshold shift is also accompanied by an in-
crease in the mean number of photons for the same value
of the pump parameter, indicating that, under very
specific conditions, the super-Poissonian pumping can be
more efficient than the ordinary Poissonian one. This
conclusion is well confirmed in dye lasers [18-23]. The
situation is more complicated in the micromaser where,
due to the multipeaked structure of the photon-number
distribution, the super-Poissonian pump reduces the
mean photon number, as we will show in the next section.
In terms of the excitation probability p, [where, as before
lp|=po/(1—p,y)], the condition for Eq. (5.20) to hold
now reads as

Po/(1=pg)>N,, or po>N. /(1+N,), (521

which is just the opposite of Eq. (5.19). This can only be
met at very low pump-beam intensities (e.g., N, <10)
and even then p, > 0.9 is required by this condition, a for-
midable experimental task in itself.

Much more pronounced is the effect of the super-
Poissonian pump fluctuations on second moments. We
can again borrow the analytical expression, Eq. (3.15),
and apply it to negative values of p. For the normalized
photon-number variance we obtain

v=n,{1+nstanh(|p|/2N.,)}/

—2|p|/Ny,

X{1=2lp|/Ny)/(1—e ), (5.22)

where we have already taken into account that p=—|p|
for negative values of the pump parameter. The most im-
portant modification with respect to the sub-Poissonian
case, Eq. (3.15), is the change of sign of tanh(|p|/2N,)
multiplying the term ng in the numerator of Eq. (5.22).
Thus, the photon-number fluctuations become super-
Poissonian in character, at least for |p|/N,, <1, when
the numerator dominates the overall behavior of the
above expression. Note, however, that while the numera-
tor depends only weakly on |p| [the term multiplying n_,
i.e., tanh(|p|/2N,, ) changes between 0 and 1 as |p| varies
from O to o] the denominator is a monotonic function of
|p| and depends on the sign of a,. Therefore we can dis-
tinguish two qualitatively different types of behavior. For
laserlike devices, on the one hand, a; =0 (=0 at satura-
tion) and the denominator enhances the super-Poissonian
character of the photon number fluctuations. At the sa-
turated regime of operation the denominator of (5.22) is
always 1. The limit of tanh(|p|/2N,) for large values of
the argument is also 1. In this limit Eq. (5.22) reduces to

v=ny{l+n.}, (5.23)
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a remarkable result, indeed, showing that for thermal
pumps the output of the laser approaches thermal
behavior. The conditions of this regime, however, were
given in Eq. (5.21) and it is clear that a unit excitation
probability is required. Therefore, even the most noisy
pumping mechanism conceivable will never quite turn a
laser into a thermal source of radiation (but it comes
close to it).

For the micromaser, on the other hand, a; <0 and the
denominator in Eq. (5.22) always exceeds unity. In fact,
it is an increasing function of |p|. This may compensate
for the tendency to produce super-Poissonian behavior
which stems from the numerator and the micromaser
may produce sub-Poissonian photon-number fluctuations
even for highly super-Poissonian pump beam fluctua-
tions. The limiting expressions for the micromaser case
are

v=n{1+(|p| /2N )n,} /{1—=[1+(|p| /N )]a;} ,
(5.24)
for the case |p|/N,, <<1, and

v=n,{1+n}/{1—Q2|p|/Ny)a.} , (5.25)

for the case |p|/N,, > 1. Equation (5.24) is to be com-
pared to the corresponding expression for the sub-
Poissonian case, Eq. (3.17). Both of the above expres-
sions clearly reflect the competition between the tendency
to super-Poissonian behavior, which stems from the
pump-beam statistics (numerator), and the tendency to
the sub-Poissonian one, which is characteristic of the mi-
cromaser dynamics (denominator).

VI. STEADY-STATE PHOTON DISTRIBUTION:
NUMERICAL RESULTS

A. Sub-Poissonian pump

In Sec. III we derived an exact recurrence relation for
the photon distribution, Eq. (3.8), and in Sec. IV we gave
two approximate expressions, Eqs. (4.4) and (4.17), for
the same quantity. The advantage of the approximate ex-
pressions is in their relative simplicity, i.e., it is much
easier to handle them analytically as well as numerically
than the exact equation.

In Figs. 4—-6 we plot the photon-number distributions,
resulting from these expressions, for various values of the
parameters 8, N, and p, so that we can compare them
for single-peaked, double-peaked, and triple-peaked situa-
tions.

In Fig. 4 we have chosen N, =20 and 6=0.8x which
yields a single-peaked distribution. What can be noted
from these figures is that the validity of the approxima-
tion, given by the two-term recurrence relation, Eq. (4.4),
is rather limited. In fact, for p = 0.3, the distribution re-
sulting from (4.4) overestimates the effect of pump regu-
larity, inasmuch as it predicts a much narrower and, con-
sequently, much higher peak and, thus, more squeezing
than the exact result. The other approximation given by
the three-term recurrence, Eq. (4.17), performs much
better. In fact, it agrees with the exact result very well all

(a)

P(n)

(b)

P(n)

25

(c)

(d)

P(n)

25

FIG. 4. Photon-number distribution for pump parameter
6=0.87, zero thermal background, and N, =20, as a function
of the pump regularity parameter p for sub-Poissonian pump:
(a) p=0.1 (nearly Poisson pump); (b) p=0.3; (c) p=0.6; and (d)
p =1 (regular pump). Pump regularity increases with increasing
p. The solid line corresponds to the exact distribution, Eq. (3.8),
the dotted line to the two-term approximation, Eq. (4.4), and the
dashed line to the three-term approximation, Eq. (4.17). The
steady narrowing of the peak with increasing pump regularity
can clearly be seen while the peak position remains largely
unaffected as p changes.
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the way up to p =1.

While the limit of validity (which can be set to be
p=0.2) of the two-term approximation does not depend
on the number of peaks in the distribution function, the
same statement does not hold for (4.17). In Fig. 5 we
have chosen N, =50 and 6=2.17 which yields a two-

P(n)
o
~

10 20 30 40 50

20 30 40 50

P(n)
o
©

50

FIG. 5. As for Fig. 4, except 6=2.17 and N, =50.

peaked distribution. Equation (4.4) still starts to overesti-
mate the effect of pump regularity around p =0.3. Equa-
tion (4.17), on the other hand, noticeably underestimates
it for p >0.6. The plots in Fig. 5 reveal that the effect of
pump regularity is twofold. First, it makes the individual
peaks narrower. In a single-peaked situation this ex-

(a)

0.2

£0.15
o

n

30 40 50 60 70 80
n

- 2
10 20 30 40 50 60 70 80
n

FIG. 6. As for Fig. 4, except 6=5.017 and N, = 50.



49 FROM SUB-POISSONIAN TO SUPER-POISSONIAN PUMPING . . .

plains immediately why the output fluctuations are re-
duced, sometimes even below the shot-noise level.
Second, it enhances the contribution of the peaks at
larger photon numbers. This might make the whole dis-
tribution noisier with regular pump than with a Poissoni-
an one, in good agreement with the general conclusions
of Ref. [16] which were based on the more limited Eq.
(2.7). This enhancement of the higher lying peaks is
overestimated by Eq. (4.4) and underestimated by Eq.
(4.17) when compared to the exact (3.8). The tendency in
the behavior of the approximate formulas is even more
striking in Fig. 6 which depicts the photon distribution
for N, =50 and 6=5.01, yielding a three-peaked distri-
bution. In fact, Eq. (4.4) predicts a high peak at n =27
for p ~1 which is barely visible in the exact formula and
missed entirely by Eq. (4.17). On the other hand, the two
peaks at n =1 and n =6, 7 are missed completely by (4.4)
and overestimated by (4.17). Again, Eq. (4.4) is valid up
to p=0.2 and Eq. (4.17) up to p =~0.5.

B. Super-Poissonian pump

We illustrate the effect of a super-Poissonian pump
beam in Fig. 7, using the exact expression (3.8), with
N =50 and 6=5.017. Thus, the figure can be regarded
as the extension of Fig. 6 into the super-Poissonian re-
gime. The trend noticed in Fig. 6 continues: making the
pump more random (|p|~N,,) suppresses the peaks at
higher photon numbers and makes the distribution settle
to the peak at the lowest n (in the present case it is n =1)
in Fig. 7(c). Making the beam even more random
(lp|>>N,,) wipes out the effect of the pump beam alto-
gether and settles the system to the thermal background
[which is zero in our case, so Fig. 7(d) corresponds to
vacuum, i.e., a single peak at n =0]. This can easily be
understood in the following way. In such a super-
bunched beam the average time between the arrival of
atomic bursts is several cavity lifetimes. Hence the sys-
tem is, most of the time, in equilibrium with the thermal
background (vacuum in our case). The weight of those
intervals when it is not is inversely proportional to
|p| /N, so when |p|>>N,, the effect of the pumping be-
comes altogether negligible and the photon distribution
becomes identical with that of the thermal background.

It should be noted at this point that the case of a
super-Poissonian pump has been investigated in a recent
work using a different approach [24]. While the overall
trends are in good agreement in both approaches, the de-
tails depends on the specific model employed. This point
requires further clarification which, however, is left to a
future work.

For the sake of completeness, we also present the re-
sults using Eqs. (4.4) and (4.17), in Figs. 8 and 9, respec-
tively. Since, in obtaining those equations, the expansion
parameter is IpI/ch, we only display the results for
lpl=2 (lp|/N=0.04) and 20 (|p|/N_=0.4). Up to
these values of |p| the two approximations agree well
with Figs. 7(a) and 7(b).
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FIG. 7. Photon-number distribution, from the exact equation
(3.8), for pump parameter 6=5.01, zero thermal background,
and N, =50 as a function of the bunching parameter |p|=p for
super-Poissonian pump: (a) |p|=2 (|p|/N.=0.04); (b) |p|=20
(Ip|/Nex=0.4); (c) |p|=200 (|p|/Nex=4); and (d) |p|=2000
(Ip|/N4=40). Bunching of the pump beam increases with in-
creasing |p|. First, (a)—(c), the peaks at higher photon numbers
get suppressed. Then for |p|/N,, >>1, in (d), the effect of the
pump is washed out and the distribution settles to that of the
thermal background (vacuum, a single peak at n =0, in our
case).
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FIG. 8. (a) and (b). Same as for 7(a) and 7(b), except from Eq.

4.17).

L (b)

FIG. 9. (a) and (b). Same as for 7(a) and 7(b), except from Eq.
(4.4).

VII. SUMMARY AND CONCLUSION

In the preceding sections we have presented a rather
detailed theory of the micromaser with specific attention
to the fluctuations in the pumping beam. In Sec. IT we
derived an alternative master equation for the density
matrix of the field in the micromaser cavity. This equa-
tion, Eq. (2.11), differs from the one previously derived by
us, Eq. (2.7), by terms involving the commutators of the
gain and loss superoperators [see also Refs. [5] and [6] for
a more detailed theory leading to Eq. (2.7)]. These com-
mutator terms are negligible when the number of atoms,
N, passing through the cavity in a cavity lifetime is
large and/or the pumping statistics is essentially Pois-
sonian. In other cases, however, the presence of these
new terms leads to correlation between the interactions of
the cavity field with the gain and loss reservoirs. Tradi-
tional reservoir theory, which builds on the assumption
that the total time rate of change of the density matrix is
a sum of the individual changes due to uncorrelated in-
teractions with the separate reservoirs, needs to be
modified. Our master equation, Eq. (2.11), accomplishes
this goal. The present contributions found with its help
become significant when the parameter p /N,, is relative-
ly large. Here, p is a parameter describing fluctuations in
the pump beam. It is essentially —1 times the Mandel Q
parameter of the beam. So for p /N, to become appre-
ciable one needs a low intensity pump beam and a pump
parameter p different from zero, i.e., a non-Poissonian
pumping process. This parameter, through N, charac-
terizes the strength of the interaction with both the gain
and loss reservoirs. In order to see deviations from con-
ventional reservoir theory one needs a small value of N,.
Therefore, lacking a better name, we refer to the case
when Eq. (2.11) is different from Eq. (2.7) as the small
reservoir limit (admittedly a contradiction in itself). By
this we simply mean that in this limit the interactions
with the different reservoirs are correlated. Of course, in
the limit of large reservoirs, i.e., when p /N, is small Eq.
(2.11) reduces to the conventional reservoir limit, Eq.
2.7).

In Sec. III we have exploited some of the consequences
of the present master equation. Using the steady-state
condition, Eq. (3.3), we have derived analytical expres-
sions for the steady-state photon-number (average inten-
sity of the cavity field), Egs. (3.12) and (3.16), and the
photon-number fluctuation, Eq. (3.15). Since this steady-
state condition is a direct consequence of the discrete
mapping type dynamics of the micromaser, Eq. (3.10), it
is independent of the assumption of continuous time
which is inherent in the derivation of the master equation
(2.11). Nevertheless, it coincides with the steady-state
condition of the master equation itself. In our earlier
work (Refs. [5] and [6]) we have introduced the so-called
p expansion. The theory presented in this section is accu-
rate, no expansion in p/N,, is involved. Therefore its
range of validity is expected to be much larger than that
of Refs. [5] and [6]. In particular it is expected to hold in
the small reservoir limit, in the sense discussed above. It
should also be noted at this point that all the results
reduce to those of the large-reservoir limit obtained in [5]
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and [6] when p /N, is small. The lowest-order contribu-
tion to conventional reservoir theory, i.e., the first direct
consequence of the correlation between the interactions
with the gain and loss reservoirs is contained in Eq.
(3.17). It is represented by the term a;(p/N,,) in the
denominator. This term can counteract the dynamical
intensity squeezing in the micromaser when the photon-
number distribution is single peaked and can enhance
squeezing when more than one peak contributes to the
steady-state behavior, in agreement with the findings of
Refs. [12], [14], and [16] which were based on numerical
simulations. Thus the results are not limited to particu-
lar value ranges of this parameter. Instead, they are lim-
ited by the validity of the assumption about the photon-
number distribution. In the derivation we have assumed
that the photon-number distribution is essentially dom-
inated by a single peak although some of the conse-
quences of the results in Sec. III remain valid even when
this assumption breaks down (see the effect of the term
a,(p /N, ), in particular, as discussed above). In Sec. IV
we take a closer look at the validity of this assumption.
We present an analytical theory of the position and width
of the peaks of the photon-number distribution and find
conditions for single peakedness of the distribution func-
tion. This is based on the two approximate expressions,
Eqgs. (4.5) and (4.17), for the photon-number distribution
obtained by expanding the exact (3.8) in terms of p /N,
in two different ways. Since, in general, in the micro-
maser p <<N,, the expressions are expected to have a
rather large range of applicability. The findings of this
section concerning the first and second moment of the
distribution confirm those of Sec. III and provide a firm
foundation of the analytical results.

In Sec. V we extend our investigations to the case of
super-Poissonian pump fluctuations. This is accom-
plished by extending our simple model of the sub-
Poissonian pumping beam, which was explained in Sec.
II, to the case when we allow for bunching, i.e., super-
Poissonian fluctuations in the pump beam. The most in-
teresting result of this section is, perhaps, Eq. (5.13). It
formally coincides with our master equation, Eq. (2.11),
but the range of the pumping parameter is now extended
from the interval 0<p <1 to the interval —o <p <1.
When p is between O and 1 it still describes sub-
Poissonian pump-beam fluctuations. When — o <p <0
it describes super-Poissonian pump fluctuations. In all
these cases p is — 1 times the Mandel Q parameter of the
pumping beam. Then we analyze the steady state predic-
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tions of the extended master equation. Since the analyti-
cal theory of Sec. III was not based on a p expansion the
expressions for the mean number of photons and the
photon-number variance remain valid for negative values
of p and we just simply carry them over to the case of
negative p. With the help of these expressions we have
been able to show that the average number of photons is
rather insensitive to pumping statistics for a large range
of parameters although an extremely bunched pump
beam appears to be more efficient in laserlike systems
than the Poissonian one and shifts the lasing threshold
towards lower values. The variance is super-Poissonian
and in the limit of extreme bunching it approaches
thermal behavior. The findings of this section are in very
good agreement with dye laser theory (Refs. [18-23])
where the introduction of a bunched pumping process via
the assumption of multiplicative noise was necessary in
order to explain the extra fluctuations. Our method leads
to multiplicative noise quite naturally [cf. Eq. (5.22)
where the dependence of the photon number variance on
the pump parameter p is explicit) and, thus, provides a
uniform basis to treat arbitrary (sub- as well as super-
Poissonian] pump fluctuations.

In Sec. VI we presented numerical results for the
steady-state photon distribution for single-, double-, and
triple-peaked distribution functions both for sub-
Poissonian and super-Poissonian pump-beam fluctua-
tions. In the limiting cases our results agree with those of
similar recent investigations (Refs. [16] and [24], in par-
ticular). The method can easily be generalized from the
micromaser to other, laser and maser, cases by generaliz-
ing the operator M of Eq. (2.1) which describes the effect
of a single atom on the cavity field. This and other possi-
ble lines of inquiries, including a detailed numerical study
of the master equation and the steady-state distribution,
are left for future publications.

ACKNOWLEDGMENTS

The authors are grateful to Professors M. O. Scully and
J. D. Cresser for discussions of various aspects of the
influence of pumping statistics on laser and maser dy-
namics. This work was supported by the Office of Naval
Research under Grant No. N00014-92-J-1233, the Na-
tional Science Foundation under Grant No. PHY-
900173, and by a grant of the Research Foundation of the
City University of New York.

[1] For a recent review see K. Zaheer and M. S. Zubairy, in
Advances in Atomic and Molecular Physics, edited by D.
Bates and B. Bederson (Academic, New York, 1991), Vol.
28, p. 143.

[2] Yu. M. Golubov and I. V. Sokolov, Zh. Eksp. Teor. Fiz.
87, 408 (1984) [Sov. Phys. JETP 60, 234 (1984)].

[3] D. F. Smirnov and A. S. Troshin, Usp. Fiz. Nauk. 153, 233
(1987) [Sov. Phys. Usp. 30, 851 (1987)].

[4] Y. Yamamoto, S. Machida, and O. Nilsson, Phys. Rev. A
34, 4025 (1986); 35, 5114 (1987).

[5]J. Bergou, L. Davidovich, M. Orszag, C. Benkert, M. Hil-
lery, and M. O. Scully, Opt. Commun. 72, 82 (1989).

[6]J. Bergou, L. Davidovich, M. Orszag, C. Benkert, M. Hil-
lery, and M. O. Scully, Phys. Rev. A 40, 5073 (1989).

[7]1 T. A. B. Kennedy and D. F. Walls, Phys. Rev. A 40, 6366
(1989).

[8] F. Haake, S. M. Tan, and D. F. Walls, Phys. Rev. A 40,
7121 (1989).

[91 M. A. M. Marte and P. Zoller, Phys. Rev. A 40, 5774
(1989).



1230 JANOS BERGOU AND MARK HILLERY 49

[10] The theoretical literature on the micromaser has become
extensive. Here we cite only two of the earliest papers: P.
Filipowicz, J. Javanainen, and P. Meystre, J. Opt. Soc.
Am. B 3, 906 (1986), and P. Filipowicz, J. Javanainen, and
P. Meystre, Phys. Rev. A 34, 3077 (1986).

[11] Again, our list is not exhaustive. Three relatively recent
papers are: M. Brune, J. M. Raimond, P. Goy, L. Davido-
vich, and S. Haroche, Phys. Rev. Lett. 59, 1899 (1987); G.
Rempe, H. Walther, and J. Klein, ibid. 58, 353 (1987); G.
Rempe, F. Schmidt-Kaler, and H. Walther, ibid. 64, 2783
(1990).

[12] E. S. Guerra, A. Z. Khoury, L. Davidovich, and N. Zagu-
ry, Phys. Rev. A 44, 7785 (1991).

[13] M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser
Physics (Addison-Wesley, Reading, Mass., 1974).

[14] L. Davidovich, S.-Y. Zhu, A. Z. Khoury, and C. Su, Phys.
Rev. A 46, 1630 (1992).

[15] C. Benkert and K. Rzazewski, Phys. Rev. A 47, 1564

(1993).

[16] S.-Y. Zhu, M. S. Zubairy, C. Su, and J. Bergou, Phys. Rev.
A 45, 499 (1992).

[171Y.-S. Zhu, C. Su, and A. Ma, Phys. Rev. A 47, 2319
(1993).

[18] K. Kamanishi, R. Roy, R. Short, and L. Mandel, Phys.
Rev. A 24, 370 (1981).

[19] R. Graham, M. Hohnerbach, and A. Schenzle, Phys. Rev.
Lett. 48, 1396 (1982).

[20] R. Short, L. Mandel, and R. Roy, Phys. Rev. Lett. 49, 647
(1982).

[21]S. N. Dixit, and P. S. Sahni, Phys. Rev. Lett. 50, 1273
(1983).

[22]R. F. Fox, G. E. James, and R. Roy, Phys. Rev. A 30,
2482 (1984).

[23] P. Jung and H. Risken, Phys. Lett. 103A, 38 (1984).

[24] J. D. Cresser, Phys. Rev. A 46, 5913 (1992).



