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Multiphoton detachment, ionization, and simultaneous excitation
of two-electron systems
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We present results of calculations of perturbative rates for two- and three-photon detachment and
ionization of H and He, and for simultaneous excitation of H, by linearly polarized light over a
range of frequencies extending into the "excess-photon detachment and ionization" region, a region
replete with resonances. Simultaneous excitation of H is more probable than not in the case of
two-photon detachment of H

PACS number(s): 32.80.Wr, 32.90.+a

I. INTRODUCTION

Recently we described a method for treating a two-
electron system in a weak monochromatic radiation field,
and we presented results of an application to two- and
three-photon detachment of H and two-photon ioniza-
tion of He [1,2]. In this paper we present further results.
The method is applicable to light of arbitrary polariza-
tion, but as in our previous calculations we restrict the
polarization to linear.

We report, in particular, on three-photon detachment
and ionization of H and He over a range of frequencies
extending into the "excess-photon detachment and ion-
ization" region where two photons are already sufBcient
to remove the electron —a region replete with resonances.
In the case of H, the three-photon detachment cross
section exhibits a prominent rise as the two-photon de-
tachment threshold is crossed; we attribute this rise to
the sharp rise in the two-photon detachment cross sec-
tion, as explained further below. We also report on two-

photon detachment of H accompanied by excitation of
the residual H atom. We find that simultaneous excita-
tion of the 2p level of the H atom is significantly more
probable than detachment without excitation once the
&equency increases beyond the n = 2 excitation thresh-
old. The likelihood of simultaneous excitation is not sur-
prising since one photon can eject one of the electrons,
and the other photon can "almost" independently excite
the remaining electron to the 2p state; the energy mis-
match for excitation is taken up by the free photoelec-
tron, but as long as this energy mismatch is small the
electron-electron correlation in the final state need not
be strong. As the photon &equency approaches 0.375
a.u. the energy mismatch vanishes.

We begin, in the next section by reviewing the method.
In Sec. III we present our results.

II. METHOD

We denote by A&~, the lowest (Nth) order amplitude(N)

for the atom to absorb N photons and undergo a transi-
tion from the initial unperturbed state i, in which both
electrons are bound, to the final unperturbed state f

in which one electron is bound and the other is &ee.
If V(t) = V+e ' + V e' is the interaction of the
atom with a monochromatic classical field of frequency ~,
within the dipole approximation, and if ~i'& ) represents
the final state f, we have

where the Nth order harmonic components ~E& ) satisfy(N)

the coupled (Dalgarno-Lewis) equations

H =Ho+a (4)

where Ho is the independent-particle Hamiltonian that
describes complete screening of the "outer" electron (the
one which becomes free) by the "inner" electron (the one
which remains bound). Thus if we label the outer and
inner electrons by 1 and 2, respectively, S' is the "short"-
range potential W = e (1/ri2 —1/ri), where ri2 is the
interelectron separation and where rq is the distance of
the outer electron &om the nucleus. We neglect spin-
orbit coupling so that we can factor the spin out of the
problem. The final channel f is specified by the parity, by
the total orbital angular momentum and magnetic quan-
tum numbers L and M of the two-electron system, by the
individual orbital angular momentum quantum numbers,
li and l2, of electrons 1 and 2, and by the (positive) en-

ergy c with which electron 1 emerges. Speaking loosely,
we refer to W as the "final-state correlation" (FSC). If we

were to neglect FSC, the final state would be represented
by the direct product ~Q& ) 3 ~Pi, ), appropriately sym-
metrized and summed over individual magnetic quantum
numbers, where ~Q&, ) represents electron 1 moving with

energy e in. the Coulomb potential —e (Z —1)/ri (with
Z the atomic number of the system, e.g. , Z = 2 for He)
and where ~Pi, ) represents electron 2 bound in the iso-

(2)

(3)

where E, and ~@;) are the energy and state vector of the
atom in state i, and where H is the Hamiltonian of the

atom. We now rearrange this expression for A&,. by first(N)

expressing H as
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lated residual He+ ion. Introducing the resolvent

G+(E) = (E +irj —H )

where g is positive but infinitesimal, and defining Ef =
E; + Nba, the exact final-state vector is given by the
Lippmann-Schwinger equation:

~@&) = T[1+G (Ef)W](~g, ,) (8' ]P~, )),

where 'P is the symmetrization operator. Substituting
the right-hand side of Eq. (6) into the right-hand side
of Eq. (1), noting that [G (E)W]t = WG+(E) and

that Eq. (2) implies that G+(E& )V+@'~ i ) = ~XN ),
yields

(7)

The quantity Bf,. is just the amplitude obtained when

FSC is omitted, and Cf,. is the correction accounting for

FSC. Writing H = Ho + W, and noting that ~Qi, )

~Pi, ) is an eigenvector of Ho with eigenvalue E&, we can

replace W by H —Ef + H0 —H0 on the right-hand side

of Eq. (9); using Eq. (2) we see that the part of C&,.

lnvolvlng H —Ef cancels with Bf, , and hence we can(o) (N)

express Af,. as(N)

The basis that we use has several merits: (i) All matrix
elements (of intra-atomic potentials and the atom-field
interaction) can be evaluated in closed form. (ii) The
matrix representations of the atom-field interaction and
all other interactions except the electron-electron inter-
action are sparse (i.e., tridiagonal matrices, or products
of tridiagonal matrices). (iii) The basis is discrete and
complete (but see below). (iv) Nonspherically symmet-
ric states can be easily described. However, our basis has
several significant drawbacks: (i) Electron-electron cor-
relation is not explicitly incorporated, and therefore esti-
mates of most physical quantities converge rather slowly
with increasing basis size. (ii) When the residual atom
or ion is left in an excited (degenerate) state, the outgo-
ing photoelectron experiences a long-range dipole inter-
action. This modifies the boundary conditions (see, e.g. ,
Refs. [6] and [7]),and a large basis is required to incorpo-
rate this interaction. (iii) The three-body Coulomb inter-
action leads to logarithmic singularities in the wave func-
tion [8], and while they do not have a very significant ef-
fect, they cannot be described by our basis. (iv) While all
matrix elements can be evaluated in closed form, round-
oK error can rapidly accumulate in the matrix elements
of the electron-electron interaction if special care is not
taken.

III. RESULTS

Most of our results pertain to H, and we discuss these
first. Recall that the polarization of the light is linear. In
Figs. 1 and 2 we show total rates (integrated over all an-
gles) for two- and three-photon detachment of H, with
the residual H atom left in the ground state. We also

The last form, i.e., Eq. (11), is particularly suitable for
computation since H0 does not contain the electron-
electron interaction (and therefore matrix elements of
H0 can be calculated easily and rapidly, with minimum
roundoff error) but, of course, the harmonic compo-

nent ~Xiv ) does contain the electron-electron interac-(N)

tion. Note, further, that Eq. (11) is exact and yet the fi-
nal state is represented by the (symmetrized) direct prod-
uct [@i,) (3 ~(It)i, ), which has a simple closed-form expres-
sion in position space; this is a substantial simplification,
for which we pay only a modest price, namely, rather
than calculate ~E~( i l), as required by expression (1) for

A&, , we must calculate P'iv ). We solved Eq. (2) for the(N) (N)

harmonic components on a two-electron basis consisting
~ i("i)~ i (r2)Yii' (ri, r2), where Yii' ( i 2)

couples spherical harmonics and where 8„"i(r) is a radial
Sturmian function, with the "wave number" e chosen to
lie in the upper right quadrant of the complex ~ plane
so as to simulate both outgoing-wave open channels and
exponentially decaying closed channels [3,4]. The results
presented below were obtained using Eq. (11),within the
velocity gauge. The expansion of Af,. on a discrete ba-~ (N)

sis formally diverges, as discussed earlier [5, 3, 4], and we
summed the expansion using Pade extrapolation.
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FIG. 1. Rate I', divided by the square of the intensity I,
for two-photon detachment of H, with the H atom left in
the ground state. We show both our estimates of the total
two-photon rate and those of of Liu et oL [9j. (Note I'/I is
independent of I.) The broken lines are the contributions to
the total two-photon rate from the L = 0 and L = 2 partial
waves.
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FIG. 2. Same as Fig. 1, but for three-photon detachment,
with I' divided by I .

give the contributions f'rom the two partial waves (the
L = 0 and L = 2 waves for the two-photon process and
the L = 1 and L = 3 waves for the three-photon process).
Where comparison is possible, namely over the range of
&equencies below the threshold for excess photon detach-
ment, we compare our results with the semiempirical adi-
abatic hyperspherical results of Liu, Gao, and Starace
[9]; the relative difference is 10%%uo or less. Our results are
not completely reliable for photoelectron energies below,
and in the vicinity of, the maximum of the total rate.
Note that both the two- and three-photon detachment
rates rise sharply as the photoelectron energy increases
&om zero. This is due to the increase in available phase
space, and, as expected &om the Wigner threshold law,
the main contribution just above the threshold comes
&om the partial wave with the smallest value of L; the
angular momentum barrier precludes the emission of pho-
toelectrons with linear momentum much less than (I+ ~ )
a.u.

One expects the detachment rates to fall once the pho-
toelectron energy increases beyond the electron afBnity,
since the linear momentum of the photoelectron then ex-
ceeds the characteristic atomic orbital momentum of the
electron in its initial bound state. (Photons cannot im-

part linear momentum to the electron at least within
the dipole approximation and so the photoelectron can
aquire a linear momentum larger than the characteris-
tic atomic orbital momentum only by absorbing photons
while very close to the nucleus, which is improbable. ) It
is remarkable, however, that the two- and three-photon
total detachment rates begin falling long before the pho-
toelectron energy reaches the electron affinity (which is
about 0.028 a.u.). This is in contrast to the case of one-
photon detachment, where the rate does reach a maxi-
mum at approximately where the photoelectron energy
and electron affinity are equal [10]. The onset of the de-
cline in the two- and three-photon total detachment rates

at a photoelectron energy so close to threshold may be
understood with reference to a propensity rule discussed
in detail by Fano [ll]. This rule states that the pho-
toelectron absorbs preferentially the maximum angular
momentum, if the photoelectron has an energy moder-
ately far above threshold. (Roughly speaking, the rule
follows from the fact that, as long as the active electron
absorbs photons at a distance Rom the nucleus that is
comparable to the characteristic binding radius, the an-
gular momentum of the photoelectron increases with its
linear momentum, and therefore with its energy. ) Thus,
while the contribution &om the partial wave with the
smallest L rises sharply just above threshold, this con-
tribution reaches a maximum, and it subsequently de-
clines rapidly, at photoelectron energies not far above
the threshold; this drop is not fully oH'set by the rising
contribution &om the partial wave with the largest L,
so that the total rate begins declining long before the
photoelectron energy exceeds the electron aKnity.

The vertical broken line in Fig. 2 marks the thresh-
old for two-photon detachment. We see that the three-
photon detachment rate rises at this threshold. A similar
feature was not seen in the two-photon detachment rate
at the one-photon detachment threshold [1]. The rise in
the three-photon detachment rate at the two-photon de-
tachment threshoM is due to a rise in the contribution
from the L = 1 partial wave, and we believe that this
originates in a (coherent) two-step process whereby the
ion first absorbs two photons, without L changing (i.e. ,
L remains zero), followed by the absorption of another
photon which puts the ion into a L = 1 partial wave. The
6rst leg of the process is enhanced by the sharp rise in the
L = 0 contribution to the two-photon detachment rate
seen in Fig. 1 at low photoelectron energies, and this re-
sults in the enhancement of the L = 1 contribution to the
three-photon detachment rate at the two-photon detach-
ment threshoM. As mentioned above, the one-photon de-
tachment rate reaches a maximum quite far above thresh-
old, so a rise in the two-photon detachment rate at the
one-photon detachment threshold is not expected.

Previously we showed pro61es of several resonances in
the two-photon detachment rate (they occur at frequen-
cies above the threshold for excess photon detachment)
[1]. In particular, the two-photon detachment rate has
S' and O' Feschbach resonances below the n = 3

threshold, and we show the lowest of these in Fig. 3.
These resonances combine to give a highly asymmetric
profile, which has a slight inflection. Previously[1] we

overlooked the inHection and we misidentified the single
(combined) profile as a pure D resonance profile whose
asymmetry was incorrectly attributed to strong interfer-
ence with the two-photon detachment background.

In Fig. 4 we show rates for two-photon detachment of
H, including simultaneous excitation to the 2s or 2p
state of the residual H atom. We cover a range of photo-
electron energies up to, and slightly beyond, where one
photon can excite the I shape resonance (i.e. , above
the threshold for one-photon excitation of the n = 2 lev-
els of H). We have not attempted to calculate the reso-
nance structures to very high accuracy since we are pri-
marily interested in illustrating qualitative features. As
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two-photon transition) to write E; + hid = Ei,„i —bur,

gives

(2} s I ( k, vsllV+l@k', i )(@k', i IV+ I@')
k,nl

7l

(14)

If the states nl and n'I, ' are low-lying bound states of the
core, and if a dipole transition between these states is
allowed, the matrix element (@k „&IV+l@k,„,&, ) is maxi-

mum when k = k', this is the basis of the isolated core
excitation technique so commonly used in experiments
addressing multiphoton excitation of autoionizing states
in multielectron atoms [12]. Suppose that the frequency
~ is on resonance with a particular dipole-allowed core
transition n"l" m nl. In this case EI,„~ —EI,„ I,

——h~,
and hence the energy denominator in the integrand on
the right-hand side of Eq. (14) vanishes when k' = k,
for n'l' = n"l". Recalling that the matrix element
(ilik „&IV+lillk, „„i„)is maximum when k = k' it follows
that as long as the probability for one photon to detach
an electron &om H, and leave the core in the state n"l",
is significant, so that the matrix element (iIIk, „„&„IV+ I%', )
is appreciable, the two-photon amplitude A& „& strongly
peaks for u on resonance with the subsequent dipole-
allowed core transition. In fact, if correlation, i.e. , if
W (but not screening), were neglected in the contin-
uum states of H (at least those states for which k' is

in the neighborhood of k), the amplitude Ak „& would
become infinite on resonance; this follows because the
eigenvectors lilik „&) and l@k, „„&„)would each reduce to
a direct product of a plane wave vector and a hydro-
gen atom bound state vector, and the matrix element
(~Irk „&IV+liII'k, „„i„)would be proportional to the delta
function bs(k' —k), plus a finite correction, so the van-
ishing of the energy denominator would not be smoothed
out by the integration over k'.

If, in the final state, the correlation strength (energy) is
AE, „,the time interval, At, „,over which correlation
can be neglected is b,t„„h/AE, „Thus corre. lation
can be neglected in the final state only if the duration
of the light pulse, and hence the coherence time of the
light, At, h, is shorter than At, „;but then the energy
bandwidth, hA~, would be larger than AE, „,i.e. , the
uncertainty in the energy denominator on the right-hand
side of Eq. (14) would be larger than AE, „.In writing
down Eq. (12) we have assumed At, k to be longer than
all other relevant time scales. If, however, the two pho-
tons were temporally separated, the two-photon process
would be incoherent, and in fact would be truly a se-
quential process in which the first photon photodetaches
an electron, leaving the core in the ground state, and
the second photon excites the core; the two-photon am-
plitude would become a product of two amplitudes, with
one amplitude describing photodetachment and the other
amplitude describing core excitation.

We remark, incidentally, that the cross section for one-
photon detachment with simultaneous excitation to the
2p level also exceeds the cross section for one-photon de-
tachment without excitation [6, 7], at least not far above
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FIG. 5. Rate I', divided by the square of the intensity I,
for three-photon ionization from the ground state of He, with
the He+ ion left in the ground state. The arrows mark the
thresholds for two- and one-photon ionization.

the n = 2 excitation threshold. However, this is due
to the I shape resonance just above the n = 2 exci-
tation threshold, which prefers to decay to the 28 and
2p states rather than to the 18 state of H. Simultaneous
photodetachment and excitation by one photon becomes
less probable as the photon energy continues to increase,
beyond the P shape resonance.

Below the threshold for double escape, we see various
structures in Fig. 4. These structures arise from two-
photon excitation of Feschbach resonances below various
excitation thresholds. (As noted above, we have not at-
tempted to calculate these resonance structures to high
accuracy. Nor have we attempted to search for finer
structure, e.g. , Galitis-Damburg oscillations [13,6] above
excitation thresholds. ) Liu et at. [6] have calculated
rates for two-photon detachment with simultaneous exci-
tation to the 2s and 2p states for photoelectron energies
up to about 0.29 a.u. (5 eV), but they found no reso-
nance structures; the reason is that they did not include
coupling to channels above the 2s and 2p channels, and
therefore could not account for Feschbach resonances be-
low the n = 3, 4, . . . , and higher channels. Liu et at [6].
were primarily interested in two-photon detachment with
simultaneous excitation at photon energies just above the
2s, 2p excitation thresholds (i.e., photon energies not
much larger than 0.19 a.u. ) and in this energy range
their calculations are presumably accurate. On the other
hand, our focus is not on the threshold region (in fact, we
experience convergence difBculties very close to thresh-
~lds) but rather the region of somewhat higher photon.nergies where the coupling to higher channels is very im-
portant. Indeed, whereas we find simultaneous excitation
;o the 2p state to be far more probable than simultane-
ous excitation to the 2s state at higher photon energies,
Liu et at. [6] find the reverse.
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At a photon energy above about 0.2638 a.u. both elec-
trons can be liberated by two photons, and we expect
double escape to become the most probable process at
photon energies higher than 0.5 a.u. since then the two
electrons can escape without interacting whatsoever, and
they can each depart with less linear momentuxn than one
electron could do if the other one remained bound.

Finally, we turn to He. In Fig. 5 we show total rates
(integrated over all angles) for three-photon ionization of
the ground state of He by linearly polarized light over a
range of frequencies extending from below to above the
threshold for two-photon ionization. This region is very
rich in structure, arising &om resonances due to two-
photon transitions to singly excited bound states (below
the two-photon ionization threshold), three-photon tran-
sitions to doubly excited autoionizing states (below the

n = 2 and n = 3 excitation thresholds of He+), and one-
photon transitions to singly excited bound states (below
the one-photon ionization threshold). We have labeled
these resonances using the E and T quantum numbers
of Herrick and Sinanoglu [14, 15].
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