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Suppression of resonant multiphoton ionization via Rydberg states
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We discuss atomic stabilization in the process of resonance ionization via Rydberg states. We show

that a strong resonance interaction between Rydberg states and a low-lying state substantially suppresses
ionization. As a result, the population is trapped in the Rydberg states. Raman-type coupling of Ryd-

berg states via the continuum is shown to be essential for the effect even when the bound-free interaction
is weak.

PACS number(s): 42.50.Hz, 32.80.Rm

I. INTRODUCTION

One of the most interesting recent results in the phys-
ics of laser-atom interaction is the discovery of atomic
stability against ionization in intense laser fields [1]. In
this paper, we discuss one of the possible stabilization
mechanisms. We show that resonance ionization via
Rydberg states can be suppressed owing to strong reso-
nant coupling of Rydberg states to the lower-lying bound
state.

Several mechanisms of stabilization have recently been
discussed [1-5]. Some are related to the stabilization of
Rydberg states against one-photon ionization under
difFerent conditions [3—5]. The problem considered here
is close to that studied in Ref. [3], and the relation be-
tween our results and those of Ref. [3] are discussed
below. In this paper, we show that the mechanism we
discuss, like other mechanisms of stabilization of Ryd-
berg states, requires Raman-type coupling of the states
via the common continuum, which leads to the destruc-
tive interference of bound-free transitions. We emphasize
the role of strong resonant coupling and show that it can
be responsible for this destructive interference.

In the field of a single-frequency laser pulse, Raman-
type transitions between Rydberg levels are nonresonant
and ionization suppression arises when the resonance de-
tuning is compensated by large bound-free coupling, or,
qualitatively, by an effective broadening of the Rydberg
states due to strong bound-free transitions [4]. Alterna-
tively, the detuning can also be compensated by the
Fourier-limited bandwidth of an ultrashort pulse [5], in
which case ionization may be suppressed when the band-
width is much larger than the distance between neighbor-
ing Rydberg levels.

The suppression of ionization we discuss here is due to
the strong interaction of the initial (e.g., ground) state
with Rydberg states. It occurs even when the bound-free
transitions are weak and the pulse duration is long. Nev-
ertheless, coupling of Rydberg states via the continuum is

central to this stabilization mechanism; stabilization
disappears completely when this coupling is not taken
into account. Qualitatively, an interaction with the
ground state leads to the so-called efFective jield broaden
ing [6] of Rydberg states which compensates for the de-
tuning of Raman-type coupling via the continuum.

A pictorial scheme for the process is shown in Fig. 1.
The initial state is either the ground or a lower excited s
state of an atom. The laser field 6 ( t)
=CLf(t)(exp( itoL —t)+c.c. ) is linearly polarized along
the z axis. Absorption of one laser photon Picot excites
the atom to high Rydberg states ofp series (n »1, 1=1);
absorption of another photon ionizes the atom to the s or
d continuum. We do not include the coupling of l=2
continuum states to 1=3 Rydberg series (which is decou-
pled from the ground state). In other words, we neglect
the migration of population from np Rydberg states to-
wards 1=3 and, possibly, !=5,. . . states. This approxi-
mation will be discussed below.

We call coupling of the initial state ~g ) and the Ryd-
berg states

~
n ) strong when

Ws„=—zs„Co & n

where zg„ is the transition matrix element between the
states ~g ) and ~n ), and n is the distance between adja-
cent Rydberg levels. Under the condition of Eq. (1) many

--n
0
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FIG. 1. Qualitative scheme of the process; no is the Rydberg
state closest to resonance.
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adjacent Rydberg levels resonantly interact with the ini-
tial state ~g). On the other hand, we assume a weak
bound-free coupling, that is, m~ V„E~—:m. ~z„@Co~ &&n
where ~E) is the continuum state and E=E„+co. Note
that

~ V„E ~
includes the coupling to both s and d continu-

um states,
~ V„z ~

=
~

V"
~

+
~

V'"'~ .
It is well known [7] that for high Rydberg states the

matrix elements z „and z„z depend on the principal
quantum number as n: z „=z&n, z„z=z2n
where z„z2 are n independent. Therefore, Eq. (1) re-
quires Co & I /(n ~ z, ). This condition becomes less
severe with increasing n. On the other hand, the condi-
tion for weak bound-free coupling is n independent:
8,« I /(~z, ).

It is useful to give a quantitative estimate for the inten-
sities required to satisfy the conditions of strong bound-
bound and weak bound-free couplings. According to
Ref. [7], an asymptotic form for a 2s np dip-ole matrix
element in hydrogen is z2, „=4n . Hence, for n =50
the condition of Eq. (1) is satisfied for intensities I & 10'0

W/cm . On the other hand, bound-free coupling remains
weak until I-10' W/cm . Note that this latter estimate
is n independent for a given laser frequency, which is
fixed by the initial state (e.g., 2s).

Under the condition of Eq. (1) many Rydberg states are
in resonance with the initial state and hence a Rydberg
wave packet is excited when the field is turned on [9].
Upon passing the nucleus while moving along the Kepler
orbit, the wave packet can proceed along three channels:
(i) emit a photon, (ii) continue its motion along the
Kepler orbit, and (iii) absorb a photon and ionize. As we
show below, strong coupling to the initial state suppresses
the third channel and favors the first two.

It is interesting to compare this quantitative picture,
which is discussed in detail below, to the results of nu-
merical simulations [3]. In Ref. [3] resonant two-photon
ionization of the 2s state of hydrogen was studied, with
one-photon resonance at not very high Rydberg states
(typically n-10), at laser intensities I&10' W/cm.
The spatial structure of the excited Rydberg wave packet
suppressed further ionization; most of the wave function
was localized far from the nucleus, where photon absorp-
tion is weak, and stabilization was attributed to this spa-
tial structure [3(a)]. It is also important that partial re-
turn of population to the ground state was observed.

In our opinion, the spatial structure of the wave packet
[3] was due to several factors: (i) short duration of the ex-
citation pulse, (ii) Raman mixing of adjacent Rydberg
states due to both strong coupling to the continuum and
resonant coupling to the initial state, and (iii) fast spread-
ing due to low values of principal quantum number n. In
this work we analytically study the second factor, which
is vitally important for stabilization. We also attempt to
study it in a "clean" form. Therefore, we consider the
case of large n of excited Rydberg states, so that the
wave-packet spreading is slow. The pulse duration ~I is
long compared to the Kepler period T„=2mn, so that
the pulse bandwidth is narrow compared to the distance
between neighboring Rydberg states. Finally, the
bound-free coupling is weak,

~ V„E ~

n && 1, so that we can
neglect above-threshold ionization and the migration of

population to the states with high angular momenta (see
below). Under these circumstances the only physical
mechanism left to cause destructive interference of
bound-free transition is strong interaction between Ryd-
berg states and same initial state, which enhance the Ra-
man coupling of Rydberg states via the continuum.

II. BASIC EQUATIONS AND APPROXIMATIONS

Let us focus on the mathematical formulation of the
problem. In order to treat it analytically we need to
make several approximations, which are discussed in suc-
cession. We also first consider the simplest case of an
abrupt turn-on and turn-off of the laser pulse:
6'(t) =26'Of(t )coscoL t with f(t ) =1 at 0& t & rL and

f(t ) =0 otherwise. Subsequently, the case of a smooth-
pulse envelope is discussed.

Using the model of sharp turn-on and turn-off of the
pulse requires some attention. It is well known that the
Fourier spectrum of a step function is very wide. There-
fore, one has to be careful about effects that can be intro-
duced by the artificially broad spectrum. The model
pulse we consider here is a difference between two step
functions, and its Fourier spectrum is
6'(Q)/h(coL ) ~ sin(x )/x, where x =(Q —

coL )rt /2.
Obviously, the relevant value for one-photon
transitions shown in Fig. 1 is laser intensity I. In our
model the intensity spectrum is I(Q)/l(coL )

=sin [(Q—
coL )rL/2]/[(Q —coL )rt /2], with the width

b,Q-l/iL determined only by the pulse duration ~t.
Therefore, for pulses with duration ~L &&2mn we can
neglect possible direct one-photon ionization from the in-
itial (2s) state: the relative intensity at the required fre-
quencies is about (rt /n ) »n times less than at the
resonant frequency coL. Similarly, one can also ignore
possible population of near-threshold continuum states
due to one-photon transition from the Rydberg states:
the laser frequency is much larger than their binding en-

ergy n, and the spectral width is characterized by
7 L ((n . Hence, in the basic equations for essential
states involved in the dynamics it is suf5cient to take into
account coupling of the initial state to the Rydberg states
close to the resonance and resonant coupling of the Ryd-
berg states to high states in the continuum. As for the
nonresonant interaction of any given Rydberg state with
its neighbors and near-threshold continuum states, it only
contributes to the ac- Stark shift which is equal to
Eoz/4co2t and is incorporated into the energies of Rydberg
states.

As mentioned above, our model neglects the migration
of population from 1= 1 to 1=3 Rydberg states via corn-
mon 1=2 continuum. Indeed, 1=3 states are decoupled
from the ground state. Together with the condition
~~ V„z~ &&n, it means that the migration can occur
only if 1=1 and 3 Rydberg states are degenerate, i.e., it is
possible only in a hydrogen atom. Indeed, in complex
atoms p and d Rydberg states have different quantum de-
fects and their difference is on the order of unity. In oth-
er words, the detuning of the two-photon transition
np ~Ed ~nf is about n and the two-photon coupling
is much less. Strong resonant coupling to the initial
states also cannot help —f states are decoupled from it.
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Still, in hydrogen atom-population transfer to f Ryd-
berg states is possible, owing to the accidental degeneracy
of the states with difFerent 1. This problem was studied in
Ref. [8] in some detail. It turned out that when exact di-
pole matrix elements of bound-free transitions are used,
the migration np~Ed +n—f is very difficult. The reason
is, in particular, the Bethe propensity rule for bound-free
transitions. A detailed numerical study of this problem
in the situation similar to ours was made by Huens and
Piraux (Ref. [3c]), with the following conclusion: migra-
tion of population to 1=3 Rydberg states becomes impor-
tant only at very high intensities. Quantitatively, intensi-
ties above 10' W/cm (at co=3.21 eV) were required to
obtain significant migration of population from p to f
Rydberg states. At these intensities it is a very important
efFect that increases the stability of the atom [3(c}].How-
ever, we are well below these intensities in our paper.

In our opinion, the basic origin of ineffective popula-
tion transfer to the states with higher angular momentum
is the ratio of laser frequency to the Kepler frequency:
co »n . Consequently, in moderate fields classical elec-
tron motion can be well separated into slow motion along
the Kepler orbit and fast wiggling in the laser field. As a
result, in the limit co »n the angular momentum turns
out to be a conserved quantity. Only in a very strong
field does the separation of motion into slow and fast fail,
and only in this region does migration of population be-
come important.

According to the above discussion, under the condi-
tions considered in this paper the essential states in the
problem are the initial state Ig ), resonant Rydberg states
I
n ), and continuum states with energies close to

E +2cot and 1=0,2. Let Ino) be the Rydberg state
closest to the resonance, and choose its energy E„as a

0
zero-energy level (Fig. 1). Using the rotating-wave ap-
proximation (RWA}, the probability amplitudes cg, c, (to
find the atom in initial state Ig ) and Rydberg states In ),
respectively} are given by the usual set of equations
[5(b),9—12]

approximation equation (2a) is valid if the two require-
ments are met.

First, the excess of energy Eg+2~L =E„+coL over

the ionization threshold must be sufBciently large, that is,
much larger than the width of the zone of continuum
states populated in the ionization process. This allows
one to neglect the presence of ionization threshold in the
integral over the energies of continuum states.

Second, the dependence of V„E on E has to be smooth
enough. Ideally, the matrix element V„E should be E in-
dependent (flat continuum model) [5(b)]. This is never
true for a real quantum system. However, as far as the
RWA is valid and the width of the zone of populated
continuum states is narrow compared to the excess of en-
ergy E„+mL over the ionization threshold, the require-

0

ment to the function V„z=F„(E) is much less severe.
Namely, it is required that the continuum should be flat
within the width I' of the zone of populated continuum
states. Physically, this result is transparent —as far as
the RWA is valid, the only relevant states in the problem
are those close to resonance.

As we see below, in our case the largest energy scale is
given by I -I W„zI n, which determines the widths of
the populated zones, both in the Rydberg spectrum and
in the continuum. Obviously, we should require
I &&n to avoid population of near-threshold states due
to resonant interaction with the initial state. Therefore,
in our case the requirement to the dependence of V„E on
E is very easy to meet: the continuum should be flat
within the width I —

I W„z I
n near the energy E„+co .L0

The presence of the ionization threshold can be ignored
as far as I &&E„+ml, which is automatically fulfilled

0

because I &&n and co& »n
We solve Eqs. (2), using the method of Laplace trans-

formation, and that Wz„/VE„ is n independent for n » l.
In the Laplace space, the following expression for Cz(z},
the Laplace transform of c (t), can be obtained:

I W,„I'
ic„=W„zcz+6„c„im g V—„EV&I,ck,

k

(2a}

ic = g Wz„c„+5 c (2b) P(z)=m g (3)

where h„=E„—E„and Lakg Eg+coL E, Rydberg
states are coupled via both s and d continuum,
V„EVzk = V„'E VEk+ V„'E'VEk', and the initial conditions
are cg(0)=1, c„(0)=0.

Equation (2a) is not exact. Instead of two equations
connecting the Rydberg-state amplitudes c„ to the
continuum-state amplitudes cE, we have only one equa-
tion where each Rydberg state c„ is coupled to all other
Rydberg states ck by the Raman-type transitions via the
continuum [sum in Eq. (2a)]. Derivation of Eq. (2a) and
the procedure of excluding the continuum is discussed in
detail in the review [6] and Refs. [5(b),9(a),10], and the
general approach is described by Faisal [11]. The most
recent and very detailed discussion of the approximation
equation (2a) can be found in Ref. [12]. In summary, the

Within the main assumption described above, i.e.,
sufBciently large excess of energy E„+coL over the ion-

0
ization threshold, the inverse Laplace transformation of
Cz(z) can be reduced to the inverse Fourier transforma-
tion with the change of variable z = —i e [6,9(a),10,12]:

c (t}= C ( ie)exp( —iet)de . —
2m-

The integral can be calculated using the residue theorem
and is given by a sum of residues of Cg( —i e) in the com-
plex poles e'"', with the coefficients exp( ie'"'t) The- .
ground-state amplitude must decay with time, and hence
the complex poles e'"' must have a negative imaginary
part, e'" =co'"'—iy'"'. Then, completing the integration
contour clockwise in the lower-half plane, we obtain
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c (t )= —i Q Res[C (
—ie'"')]exp( —ie'"'t) .

wo"' = i R—es[Cg( —ie'"') ] . (6)

From Eq. (5) it is clear that the poles e'"' determine the
complex quasienergies of the dressed atom [11,12]. The
real part co'"' determines the position of the quasienergy
E'"' with respect to the above chosen zero-energy level
E„:co'"'=E'"'—E„. The imaginary part y'"' gives the

decay rates of complex quasienergy states.
Furthermore, the residues Res[Cg( —ie'"'] give the ini-

tial populations wo"' of complex quasienergy states.
Indeed, by expressing the wave function as a superposi-
tion of the quasienergy states of the dressed atom, pro-
jecting it onto the initial state ~g ) and using the initial
condition cg(t =0}=1, we obtain [E'"'—(Es+coL ) ]y'"'=~ V„, '

I /4+[E'"' (E +—co )]
(10)

strong bound-free coupling [4,10]. The difference is that
now the reconstruction of the Rydberg spectrum is due to
strong resonance interaction with the lower-lying isolated
discrete state rather than due to interaction with the con-
tinuum. Another difference is that far from the reso-
nance [~E'"' (E—g+coL )

~
&)I ] the spectrum recovers its

field-free structure, that is, E'"'=E„.
We now discuss the ionization rates of complex

quasienergies E'"'. We show that strong resonance in-
teraction with the initial state (W„s »no ) suppresses
ionization decay of complex quasienergy states. Using
Eqs. (3) and (8) we find that y'"' is determined by the fol-
lowing relation:

Equation (10) has a form of standard Fermi golden rule
(y„oa=n. V„E ~

) multiplied by an additional factor.
From Eq. (10) it is immediately clear that the ionization
decay of those states E'"', which are close to the reso-
nance [i.e., with ~E'"' —(E +coL ) ~

&& I ], is strongly
suppressed. Indeed, recalling that Eg +coL =E„,we can

0

estimate the resonance detuning in Eq. (10) as
E'"' (Eg+coI—)=(n —no}no . Using this estimate in

Eq. (10), we find that states with energies close to reso-
nance [~E'"'—(Eg+coL)~ &&I ] ionize approximately
N /(n —no) times slower than they would normally do,
with

These populations decay with rates 2y'"'. The ionization
probability measured at the end of the pulse is

W, (rL )=1—g wc" exp( —2y'"'rl ) .

Therefore, the problem of studying the ionization dy-
namics is reduced to the problem of finding the poles E'"'

of C (
—ie}, Eq. (3). The poles can be found using the

semiclassical expression for P( i e) i—n Eq. (3) [13]:

P( ie)=in—
~ V„~En cot[n.v(e)],

v(e) =no/—+1 2@no—. (8)
N = no I /2 =—n

~ W„g ~
n n o ))1,

This expression is valid when v(e) » 1.
Equations (3) and (6)—(8) contain all the information

we need to know about the ionization process. In order
to extract this information we will first find the poles of
Cg( ie), wh—ich will give us both the positions of the
quasienergy levels and their widths. Then we wi11 calcu-
late the residues and thus find the ionization probability
as a function of pulse duration.

the number of states in the half-width of resonance I /2.
The closer the state to the resonance, the slower its de-
cay. Far from the resonance ( ~n

—no ~
&&N} ionization is

determined by the Fermi golden rule: y'"'=~~ V„E ~
.

It is strong resonance interaction with the initial state

~g ) that is responsible for the stabilization of the states
E'"'. However, if the Raman-type coupling via the con-
tinuum is not taken into account in Eq. (2a), the ampli-
tude Cg(z) will be determined by an equation different

from Eq. (3), and one can easily show that the widths of
the complex quasienergies will be y'"'=n.

~ V„z ~, without
the small factor (n no) /N —« l. In sum, the stabiliza-
tion mechanism we are discussing here is due to both
Raman-type coupling of Rydberg states via the continu-
um and strong resonance interaction with the initial
state, which compensates for the detunings of the
Raman-type transitions.

The result of Eq. (10) has an interesting relation to an
earlier result by Cardimona, Raymer, and Stroud [14]. If
the laser frequency is tuned to a resonance with a recon-

(nO)
structed Rydberg state, that is, E +cuI =E ' for some

particular no, the corresponding width of this particular
level is exactly equal to zero. This is exactly the effect
discussed in Ref. [14]. No wonder that for high Rydberg
states specific laser frequency corresponds to tuning ap-
proximately in the middle between Rydberg states no and

no+1. However, Eq. (10) contains much more informa-

tion than this simple result. It says that any Rydberg lev-

el, which is sufficiently close to the resonance, is strongly

III. RESULTS AND DISCUSSION

A. Spectrum of quasienergies

We first discuss the position of quasienergy levels E'"',
and then their decay rates. Using Eqs. (3) and (8) we find

that the position of the quasienergies E'"'=E„+co'"'de-

pends on whether they are close to or far from the reso-
nance; that is, whether E'"' (Eg+coL) is mu—ch less or
much larger than the width of the resonance I, where I
is given by

I =2~] W„, /'n ' .

Note that this expression coincides with a simple Fermi
golden rule for the transitions to the quasicontinuum of
states with density p„=n . This is not surprising, as the
"field broadening" W„g [6] exceeds the level separation.

Close to the resonance, i.e., when ~E'"' (Eg-
+col ) ~

&&I, we find that the quasienergy levels are local-
ized almost in the middle between the field-free levels:
E'"'=(E„+E„+i )/2. This result is similar to the case of
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stabilized. This effect is due to strong resonance coupling
and is frequency independent, that is, it occurs for any
detuning between E +~L and a Rydberg state no. It
also completely disappears if I becomes less than n
and then only the eS'ect described in Ref. [14] survives.

B. Ionixation dynamics

In order to describe the ionization dynamics, we need
to find initial populations wo"' of complex quasienergies.
The probability of finding the atom in the quasienergy
state E'"' at time t is w(")(t) =wo(") exp( 2y'"—'t ), and the
ionization probability is given by Eq. (7). As was dis-
cussed earlier, wc(") are given by Eq. (6), and the poles of
C ( —ie) have already been found. Calculating the corre-
sponding residues, we obtain

0.09—

0.06
O
C5

o~ 0.031
0

0-
-3.5 -2.5 -1.5 -0.5 0.5

(E'"'-E )n
n Q

0.8

1.5 2.5 3.5

(„) 1 I'/2
~ I' /4+[E'"' —(E +ci) )]

(12)

Qualitatively, the result of Eq. (12} is quite natural.
Indeed, at t (&no the discrete structure of the Rydberg
states is not resolved, and the transition from the ground
state is similar to the bound-free transition. The transi-
tion rate I'= 2n~ W„s~ n is large (1 n() &&1), and the
ground state is totally depleted in a time much shorter
than no. As a result, a wave packet with Lorentzian
shape is created, similar to ionization. However, in our
case the wave packet is bound and ionizes slowly, with
the ionization rate of each state E'"' given by the corre-
sponding y'"'. As y'"' increases with increasing
~E'"' (Es+coL )~

—[see Eq. (10)], the decay of the wave
packet begins at the wave packet's periphery and moves
slowly to the center. In the absence of stabilization the
decay rate is 2y„oa=2m ~ V„E~, so it is convenient to use
6=2y„~Rt as a time variable. Without stabilization the
ionization decay of the wave packet would occur at
8-1. In our case the ionization decay is much slower.
Figure 2 shows the probability of finding the un-ionized
atom at the moment t: W(t)=1 —W;(t). The decay of
W(t} is nonexponential, and using Eqs. (10) and (12) one
can show that W(t}~1/v'8 for 8& &1. The dashed
curve shows the ionization decay in the absence of stabili-
zation, which is much faster.

So far the model has assumed an abrupt turn-on of the
laser pulse. An optical pulse with a rise time ~„shorter
than the Kepler period T„=2m.no for resonant Rydberg
states and a long fiat top is realistic [14]. Then, similar to
the abrupt turn-on, a Rydberg wave packet will be creat-
ed and, while moving along the Kepler orbit, it returns to
the nucleus at f —T„, the pulse intensity having already

achieved its peak value. The only difFerence will be in the
shape of the Rydberg wave packet, that is, in the initial
populations of the quasienergy states. If
2n~ W„~ n ~„=Ir„&&l, no significant excitation will
occur at the pulse front and the Rydberg wave packet
wi11 be the same as in the case of abrupt turn-on. If
I ~, &&1, the shape of the wave packet and initial popula-
tions wo"' will be determined by I, ~„and the pulse
shape. The pulse should also be turned off much faster
than in one Kepler period. Such a turn-off will not affect

0.60
~~

0.4
O0

0.2

0—
0

I

10
I

15

Time 8

20 25

FIG. 2. Ionization decay of a model atom. W(e) is the resid-
ual population of a11 bound states, 8'(e)=1—8';(8). The
number of states in a half-width of resonance [Eq. (11)]is N= 6.
Dashed curve —Fermi golden rule ionization.

IV. CONCLUSION

In summary, in this paper we have presented an analyt-
ical study of the process of multiphoton ionization under
the conditions when the initial low-lying state is strongly
coupled to a series of high Rydberg states. We have
shown that for a long laser pulse ~L )2mn strong reso-
nance interaction with high Rydberg states leads to the
excitation of a Rydberg wave packet which is stable
against further ionization. The stability of the wave
packet is due to the coupling of many Rydberg states to
the same initial state below, which gives rise to an
ef5cient destructive interference of transitions to the con-
tinuum. Under the conditions of strong resonant cou-
pling this effect is not sensitive to the laser frequency: the

the wave packet moving far from the nucleus, where it
spends most part of the Kepler period.

Another important problem is the ponderomotive shift
of the Rydberg levels. In the model it is time indepen-
dent and is included in the energies E„and resonance
conditions. In the case of a smooth pulse it is time
dependent and can shift the Rydberg states from the res-
onance. However, as long as roL «1, for one photon res--
onance the shift, EE„=B()/4coL, is much smaller than
the resonance width I . Indeed, semiclassical estimates
for the matrix elements of transitions to and from Ryd-
berg levels [4] give the ratio hE„/I'-co~~3 &&1. There-
fore, resonance will not be afFected by the Stark shift of
Rydberg states.



1170 M. YU. IVANOV 49

laser can be tuned to any point between adjacent Rydberg
levels. All Rydberg states sufficiently close to the reso-
nance are strongly stabilized, and outside the resonance
zone I =2m.

~ W„s ~
n ))n the original structure of the

Rydberg states is restored.
Experimentally, the e8'ect predicted in this paper can

be observed by measuring the population remaining in
the Rydberg states after the end of the pulse, as a func-
tion of pulse duration or pulse intensity. According to
the calculations presented here, with increasing intensity
the number of resonantly excited states N increases as

~ W„s~ . Hence, the population excited to each Rydberg
state decreases as I /N ~ I/~ W„s ~

. However, the ioniza-
tion lifetime of each Rydberg state close to resonance will
increase as N ~

~ W„s ~
. Experiments could be done us-

ing ground-state Cs and a tunable dye-laser operating at a
wavelength about 318 nm. The intensity, rise time, and
pulse duration required depend on the principal quantum
number of the Rydberg states to be excited. The charac-
teristic time scale is determined by the Kepler period of
excited Rydberg states; for states with n -70 it is about
50 psec.
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