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Keldysh-like expansion for above-threshold ionization
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We develop a systematic expansion based on a semiclassical description of the ionized electrons for an

atom subjected to a laser 6eld. This expansion yields a transition amplitude for atomic multiphoton ion-

ization which accommodates both the above-threshold ionization peaks and atomic resonances. The
lowest-order term in the expansion yields the usual Keldysh approximation if the Snal state is replaced

by a plane wave. We show that, even though this term is not reliable in general, it may produce an excel-
lent agreement with the exact result for a three-dimensional zero-range potential and a circularly polar-
ized Seld. For this situation, we calculate exactly the next nonvanishing term in the expansion, and es-

tablish precisely the conditions under which it can be neglected.

PACS number(s): 32.80.Rm, 42.50.Hz

I. INTRODUCTION

It is now well known that multiphoton processes under
strong fields require, for their analysis, methods that go
beyond the realm of a perturbation theory on the atom-
field interaction. In fact, even though higher-order per-
turbation theory [1] has been successfully tested in
several experiments [2], problems arise for stronger fields,
due not only to the computational difBculty inherent to
high-order diagrams, but also to the lack of convergence
of the perturbative series. Indeed, the energy spectra of
ionized electrons in recent experiments [3] display a
series of peaks, corresponding to the absorption of more
photons than the number strictly necessary for overcom-
ing the binding energy. Successive peaks, even though
associated with a higher number of absorptions, are com-
parable in magnitude, thus raising a serious concern on
the applicability of perturbation theory to describe this
phenomenon, commonly called above-threshold ionization
(ATI}.

Many methods, of nonperturbative nature, have been
proposed to tackle this problem. Among them are adia-
batic and semiclassical approximations [4], applications
of Floquet theory [5], partial summation of the perturba-
tive series [6], and dressed-state approaches [7]. Here we
address ourselves to a class of methods that stem from a
seminal paper by Keldysh [8—10]. These methods are
based on the replacement of the final state in the time-
dependent first-order transition matrix element by a Vol-
kov state, that is, a plane wave describing the motion of
the outgoing electron in the presence of an oscillating
field. Depending on whether the length or the velocity
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gauge is used for describing the interaction between the
atom and the applied laser field, this scheme is known as
the Keldysh [8,9] or the Faisal-Reiss [10] ansatz, respec-
tively. These Keldysh-Faisal-Reiss (KFR} theories have
the obvious advantage of reproducing in a simple way the
multiple-peaked structure of the final electronic spec-
trum. However, doubts have been cast on their basic
foundations [11,12], and comparison of the correspond-
ing theoretical predictions with numerical and experi-
mental results has led to conflicting conclusions. In gen-
eral. KFR models give a qualitatively good agreement
with the experimentally measured relative heights of the
ATI peaks, particularly so for circular polarization [13],
to a lesser degree for linear polarization [14],being, how-
ever, sensitive to the choice of gauge. Keldysh-type ap-
proximations have been shown to work well for a three-
dimensional short-range potential model with one bound
state, in the presence of a circularly polarized field, as
long as the intensity of the field is not too high [15,16].
In one dimension, on the other hand, KFR predictions
are in conflict with the results of numerical simulations
[11,17]. It has been argued, however, that these approxi-
mations should not be applied in one dimension at all
[18). Total ionization rates for long-range potentials tend
to be underestimated by up to several orders of magni-
tude in comparison with calculations [19] based on a nu-
merical solution of the Schrodinger equation, Floquet
theory, or, where applicable, perturbation theory of
lowest order. However, a correction suggested by Kel-
dysh in his original paper [8], namely, correcting the final
state for Coulomb effects, removes a good part of the
discrepancy. Experimentally, total ionization rates are
notoriously diScult to measure, so they do not constitute
a very sensitive test of approximations, as opposed to the
ATI spectrum. The only measurement [20] that can be
interpreted in terms of a one-mode laser gave results that
lie in between the KFR and the Floquet results and agree
best with the Coulomb-corrected rate of Keldysh's origi-
nal paper.

Considerable discussion has been published on the
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basic foundations of KFR theories. As we mentioned
above, Keldysh's original approach was formulated in the
length gauge, while the proposals by Faisal and Reiss
were based on the velocity gauge. These two choices lead
to different results, which has been attributed either to
the fact that the approximations involved are not gauge
invariant [11,12], or to the intrinsic advantages of one of
the gauges over the other. Of course, there is in principle
no need for an approximation to preserve the gauge in-
variance of the exact result. In this case, however, a nat-
ural question can be raised as to which choice leads to a
better result. Similar questions arise also in other
methods, as in the application of the Floquet theory by
Potvliege and Shakeshaft [5], where the length gauge is
shown to lead to divergences associated to the singular
character at infinity of the corresponding atom-field in-
teraction.

Most frequently, the KFR method has been viewed as
a convenient ansatz, which allows a quick insight into the
main dynamic effects associated with the ionization in a
strong laser field, without, however, any claim to accura-
cy [21]. The justification of this ansatz, as well as its re-
gion of validity, have been the source of frequent debate
in the literature (see, for instance, Ref. [22]).

Of course, it would be highly desirable to establish the
KFR theory as the first term in a systematic approxima-
tion procedure. This would allow for a better under-
standing of its region of validity and, furthermore, for the
calculation of successive corrections. Attempts in this
direction have been presented in several papers [10,23].
In fact, it can be shown that the KFR ansatz can be ob-
tained as the first term M' ' in an expansion of the exact
ionization amplitude in terms of either the interatomic
potential [11]or the external field interaction [12]. How-
ever, the next term M" ' in the expansion brings in a con-
tribution that cancels out the KFR term. Furthermore,
this contribution does not disappear by internal cancella-
tions within M"', so one cannot say that M"' is smaller
than M' '.

In this paper, we propose an alternative approach to
KFR-like nonperturbative treatments. It is based on a
semiclassical approximation of the final state and leads to
a systematic expansion of the exact multiphoton-

ionization matrix element, providing successive approxi-
mations. Our approach yields the multiple-peak ATI
spectrum, and at the same time allows for transitions be-
tween atomic bound states. At the same time, it does not
suffer from the above-mentioned cancellation problems of
other expansions [11,12]. The first contribution of the ex-
pansion corresponds to the Keldysh amplitude (length
gauge) corrected for the effects of the intra-atomic poten-
tial on the final state. Each successive approximation is
expressed in terms of gauge-invariant quantities. Also,
we are able to explain, using our method, the remarkable
agreement between the exact result and the Keldysh ex-
pression found in the case of the three-dimensional 6-
function potential [16,24].

We start our discussion in Sec. II with a brief review of
the usual derivation of the KFR ansatz, in terms of an ex-
pansion of the exact transition amplitude, so that an easy
comparison can be made between that method and the
one we propose now. Then, in Sec. III, we introduce our
approach which we apply to an explicit model in Sec. IV.
In Sec. V, we summarize our conclusions.

II. KELDYSH-FAISAL-REISS ANSATZ

In this section we discuss the KFR ansatz without
adopting any particular gauge, so that the discussion ap-
plies both to the length (Keldysh) and the velocity
(Faisal-Reiss) gauges. The matrix element for
(multi)photon ionization from an initial state Pz '(rt)
[normally the ground state of the binding potential V(r)]
to a continuum state P' '(rt), still in the presence of the
binding potential, with asymptotic momentum p, is given
by

M = lim fd r d r'g' '(rt)'iG(rt, r't')$0' '(r't') .

(2.1)

Here G(rt, r't') is the retarded propagator in the pres-
ence of both the external time-dependent field which
causes the ionization and the atomic binding potential
V(r). It satisfies

G(rt, r't')=Go(rt, r't')+ f d r"dt"[Go(rt, r"t")Hi(r"t")G(r"t",r't')],

or, symbolically,

G =Go+GoHs6

In this expression Go denotes the retarded propagator in the presence of the binding potential only:

(2.2)

(2.2')

iGO(rt, r't')=8(t t') g f'„'(rt)P'„'(r't')*—+ f d p P~ '(rt)P' '(r't')' (2.3)

where the sum and the integral are over the bound states and continuum states of the potential V(r), respectively. The
wave functions in Eq. (2.1) [as well as (2.3)] are those in the absence of the external field. We assume that this field is
turned off for early and late times (t ~ —co, t~ ao ). The matrix element (2.1) is then evidently gauge invariant. The
interaction Hz represents the interaction between the atom and the external field. We assume that the long-wavelength
approximation is justified for the external field so that its vector potential A(t) depends only on time.

Another equation satisfied by G(rt, r't') is
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G =G'+G'VG, (2.4)

where now G is the retarded propagator in the absence of the binding potential, with only the external field present.
If we insert (2.4) into (2.1), we get

M = lim f d r d r'P' '(rt)*iG'(rt, r't')gz '(r't')
f —+ —oo

+i f d r d3r'd r"dt"g' '(rt)'G'(rt, r"t")V(r")G(r"t",r't')go' '(r't') (2.5)

X V(r')P' '(r't') . (2.6)

Upon replacing the final state by a momentum eigenfunc-
tion, one gets precisely the expression proposed in Ref.
[9] (where the length gauge was used}:

M'0= —i d r t ' 'rt*V r 0'rt . 27

On the other hand, with the help of Eq. (2.4), in the
form 6'V=1 —G'6 ', and using 6 '=60 ' —Hz, we
can also rewrite M' ' as [11]

Mp0= lim fd r d r'dt'g' '(rt)'G'(rt, r't')

XH(tr' t' )f ~0(r't') .

Again replacing the final state by a momentum eigen-
function, one gets precisely the expression usually associ-
ated with the KFR ansatz [8,10]:

M 0= —i r t rt *Hz rt 0 rt

with

g +(r t )+ = lim fd3r(2~) 3~2e —iP re&~ ~2m~t
P g~ oo

(2.9)

XiG'(rt, r't') (2.10)

I

Here the first term on the right-hand side (rhs) is zero
in the limit where t ~ co and t —+ —00. In this limit the
propagator G' reduces to the free propagator (not to the
propagator Go in the presence of the binding potential)
and, loosely speaking, free propagation cannot lift the ini-
tially bound particle up into the continuum. (The argu-
ment can be made rigorous by just inserting a plane-wave
expansion of the free propagator. } In the remaining term
in Eq. (2.5) we replace G by Go, viz. , the first term on the
rhs of Eq. (2.2). We then get

M +M 0= —lim fd r d r'dt'P' '(rt) G'(rt, r't')
f —+ oo

I

the Volkov solution. The process is described as a transi-
tion, induced by the interaction Hz, between the initial
bound state and a Volkov state, that is, a plane-wave
solution of the Schrodinger equation for an electron in-
teracting with a plane electromagnetic wave.

The above discussion helps one to understand some of
the basic ingredients of the KFR ansatz. The approxima-
tion of the final state by a plane wave might be valid for
sufficiently short-range potentials and highly energetic
electrons. It should certainly not be used for the calcula-
tion of the total ionization rate, since then an integration
over all final momenta should be performed, and low mo-
menta contribute appreciably to the result [11]. One
should note that this approximation is not necessary and
has actually been circumvented in the literature by keep-
ing the final state as an eigenstate of the atomic Hamil-
tonian, conveniently modified by the external laser field
[11,25,26]. On the other hand, approximating G by Go in
(2.5) amounts to neglecting the effects of the field on the
initial bound state. In particular, the depletion of this
state due to ionization and transitions to other bound
states, as well as the level shift due to the applied field,
are disregarded. Neglecting these effects would be, at
first sight, a weak-field approximation, which in particu-
lar would not account for atomic resonances. In order to
assess the validity of this approximation, however, one
would have to show that, for weak fields, the remaining
terms in the expansion are smaller in magnitude than the
Keldysh term.

The procedure described above actually allows one to
calculate the corrections to the KFR ansatz, which come
from further iterations of Eq. (2.2). We avoid here the
approximation of the final state by a plane wave, and con-
centrate on the approximation which results from the
truncation of the iterative series stemming from (2.2).
The first correction is

M
&

= lim i fd r d r'd r"dt"d r"'dt'"gp '(rt)'
f = —ooI

X G'(rt, r"t")V(r")Go(r"t",r'"t"')Ht(r'"t"')Go(r'"t"', r't')Po' '(r't') .

The propagator G' satisfies (symbolically)

(Go '+ V Ht)G'=G'(Go '+—V Ht}=1—
so that

(2.11)

(2.12)

6'VGO=G HrGO+Go 6 (2.13}
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Using Eq. (2.13) in Eq. (2.11) we obtain

Mz, = —lim fd r d r'dt'g~ '(rt)'G'(rt, r't')Ht(r't')gz '(r't') i—fd r dtgz '(rt)'Ht(rt)gz '(rt)
t —+ oo

+ lim f d r d r'd r"dt'dt"gz '(rt)*G'(rt, r't')Ht(r't')GD(r't', r"t")Ht(r"t")$0 '(r"t") .
f —+ oo

(2.14)

Comparison of this expression with (2.9) shows that the
KFR ansatz is exactly canceled out by the first contribu-
tion on the right-hand side of (2.14). It is also clear that
in general the contributions from the first and the third
terms on the right-hand side of this expression are quite
different, since the third term involves one more transi-
tion between atomic states than the first one (in particu-
lar, the third term gives rise to resonances which are not
present in the first term). However, one could still hope
that the difference between the first two terms on the
right-hand side of (2.14) is of higher order in Ht, so that
(2.7) would be a bona fide lowest-order term of a can-
sistent expansion. This would only be true in general if
G' approached Go when HI ~0, which is certainly not
true: in this limit G' approaches the free-particle propa-
gator, while Go remains the free-atom propagator.
Therefore the correction M» is not necessarily smaller
than the KFR term.

Examining more closely the structure of expression
(2.14), we see that the second term on the right-hand side
is just the ordinary perturbation-theory contribution, as-
sociated with one-photon transitions, while the last term
is a higher-order KFR-like contribution, equally canceled
when the next correction is considered. For a multipho-
ton transition (multiplicity greater than one), the second
term will actually not contribute at all due to energy con-
servation. As the expansion is continued, however, one
would eventually pick up the perturbation-theory contri-
bution, which would become relevant in the term of the
same order as the multiplicity of the transition.

We show now that it is actually possible to replace the
KFR ansatz by a closely related one, which can be shown
to be the lowest-order contribution of a consistent expan-
sion, such that the next term indeed becomes of higher
order when the external-field amplitude goes to zero.

2

H,'" "'(t)=——p A(t)+ A'(t),
2m

(3.3)

H t"z'(rt)= ——(p —p) A(t) . (3.4)

G(A) G (A)+G (A)H (A)G(A)
I,p

with

(3.5)

G '"'(rt, r't') =exp i f d—rHtI"'"'(r) Go(rt, r't') .

(3.6)

That is, if the propagator Go in the presence of the bind-

ing potential is known, then so is G '

Let us now, in the integral expression (2.1) for the ma-
trix element M, iterate the full propagator once using
Eq. (3.5). The first term cancels in view of the ortho-
gonality of Po

' and Pz ', which is not obstructed by the
newly introduced phase in Eq. (3.6). We obtain

M = lim f d rdtd r'P' '(rt)'4 (t)H~&"'(rt)
t'~ —oo

where

X G'"~(rt, r't')g' '(r't'), (3.7)

The c-number momentum p (notice the distinction be-
tween p and p } is at this point arbitrary. Later, however,
we will identify it with the asymptotic momentum of the
continuum state under consideration. A similar decom-
position was used in the treatment [27] of infrared diver-
gences of relativistic quantum electrodynamics. Now, if
we insert the decomposition (3.2) into Eq. (2.2) for the
complete propagator chosen now in the p A gauge it
turns out that the c-number part (3.3} can be entangled
with Go so that, in the symbolic notation introduced in
Eq. (2.2'),

III. SEMICLASSICAL ASYMPTOTICS:
A NEW EXPANSION METHOD 4 (t) =exp i f d~—Ht'"'"'(~)

t
(3.8}

Our proposal is based on the consideration that, after
leaving the atom, the electron undergoes a quasiclassica1
motion. Henceforth we will in a11 gauge-dependent quan-
tities specify the gauge by a superscript. We find it con-
venient to start from the p- A gauge so that

H'"'(rt ) =H'"'"(t)+H '"'(rt ),I I,p I,p

with

(3.2)

2

H (rt)=H'"'(rt)= ——p'. A(t)+ A (t), (3.1)
277l

with p= —i V.
We now decompose the interaction Hamiltonian (3.1)

into a c-number part and the remainder according to

Equation (3.7) is still exact. Notice that the matrix ele-
ment M becomes zero if g~ '(rt) is replaced by a plane
wave with momentum p since

H' "'(rt)e'~'=0
I,p

(3.9)

There is no contradiction here. Recall that in the deriva-
tion of Eq. (3.7) we employed the fact that g&

' and $0
'

are states in the presence of the same binding potential
V(r). Hence replacing f' ' by a plane wave in (3.7) is not
equivalent to making the same replacement in (2.1).

Getting manageable approximations out of Eq. (3.7)
depends on approximating the propagator G'"'. Before
doing so we transform to the electric-field gauge,
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O( A)(rt r t &

) e ier A(t)O(E)(rt r t )e
—ier' A(t') and

where O' ' satisfies Eq. (2.2}:

(3.10)
[eier A(t)g(0)(rt)] — P + P(r). () . ( —eA)

Bt 2m

O' '=G +O H' 'O' '=O()+O' 'H' 'O (3 11)

with
+er E(t)

Ht(r, t)=Ht( '(rt)= —er.E(t) . (3.12) ier. A(t)y(0)(rt ) (3.18)

%e now have

M&= lim f d r dt d r't)'i( )(rt)'4 (t)

XHt z'(rt)exp[ier A(t)]

XG' '(rt, r't')((ti0 '(r't') . (3.13)

M =+M("),
n=0

where

(3.14)

M'"'= irti' "C)Q—t"'exp(ier A)(G0Ht ')"$0 ',
(3.15)

again in symbolic notation. The lowest-order term of this
expansion, viz. ,

M"'= i d'r dt —g"'(rt)'4 (t)P P P

——(p —p) A(t)
m

Xexp[ier A(t)]$0'(rt),
can be rewritten as follows. Notice that

(3.16)

——(p —p) A(t)@ (t)= i +[—p —e A(t)]
m Bt 2m

p @~(t), (3.17)
2m

At this point it is reasonable to build an approximation
scheme on iterating G' ' with the help of Eq. (3.11}.The
interaction of the electron in the continuum with the
external field is fairly well described by the phase 4 (t),
which is the Volkov phase, while inside the atom a per-
turbation expansion in terms of r E provides optimal
convergence. Notice that this is not so for a perturbation
expansion based on Ht(") [Eq. (3.1)]. First, in the latter
case many more states must be considered in sums over
inserted intermediate states, in order to achieve satisfac-
tory convergence, since the proportionality of the matrix
element of p A to the energy difference between the con-
nected states enhances the contribution of farther-lying
states; and, second, there are extensive cancellations be-
tween the p A and the A terms, which would snake any
evaluation beyond the lowest-order extremely cumber-
some.

Carrying out the suggested iteration we obtain

Using Eq. (3.17) in Eq. (3.16), integrating by parts, and
using Eq. (3.18), we arrive at

M'0'= i —d r dt g' )(rt)'@ (t)e"'
P P P

X[—er E(t)]$0( '(rt} . (3.19)

The integration by parts does not yield any boundary
terms as we assumed that A( t)~0 for t ~+ rr .

Equations (3.16) and (3.19} provide equivalent expres-
sions for the matrix element M' '. However, the
equivalence only holds if both f&

' and $0(
' are wave func-

tions corresponding to the same potential V(r), a fact
that was used in deriving Eq. (3.19) from Eq. (3.16). If
g~(

' is replaced by a plane wave, this equivalence is de-
stroyed: Eq. (3.16) then yields zero while Eq. (3.19) in
general will not. If tt~'

' is expanded in a Born series, then
the first (plane-wave) term will not contribute to Eq.
(3.16}, and the leading contribution will come from the
once-iterated term containing the potential. On the other
hand, the plane-wave term may make the dominant con-
tribution to Eq. (3.19). In fact, replacing fz

' by a plane
wave in Eq. (3.19) will actually be exact if the initial and
the scattered part of the final state are s waves and the
field is circularly polarized. This can be easily shown by
considering that, for a circularly polarized field, A E=O.
Therefore, changing to a reference frame which rotates
with the field vector and choosing the y axis parallel to
the electric field, we can see that the integrand in Eq.
(3.19) is odd with respect to the transformation y~ —y,
if we replace rtiz '(rt) by the scattered part of the final
state, and this is assumed to be an s wave, in the same
way as the initial state. Therefore under these conditions
only the plane-wave part of the final state contributes to
Eq. (3.19). This will be the case for the three-dimensional
5-function potential, discussed in the next section: this
potential has only one l =0 bound state, and, due to its
zero range, scatters only s waves.

The consequences of replacing rti' ' by a plane wave
have been investigated in detail for the case of one-
photon ionization in ordinary perturbation theory [28].
It has been shown that owing to this replacement the
originally gauge-independent matrix element developed a
spurious gauge dependence. For a Coulomb potential,
the result in the length gauge is larger than in the velocity
gauge by a factor of 2, with the latter approaching the ex-
act result in the high-energy limit. The discrepancy
remains and can even get worse for short-range poten-
tials. Thus, if the potential is regular at r =0, the length
matrix element is three times larger than the velocity ma-
trix element at high energies [28). For a zero-range po-
tential, however, both gauges yield identical results [this
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can easily be shown from Eq. (2) of Ref. [28] or from our
Eq. (2.7)]. Within the Floquet approach and in the
weak-field limit, Potvliege and Shakeshaft [5] have
demonstrated that the plane-wave approximation leads to
discrepancies which stay in most cases, but not always,
within one order of magnitude.

The amplitude M' ' as given in Eq. (3.19) (as well as
the higher approximants M'"' to be derived below) is
manifestly gauge independent since, through 4 (t) and
the product P' '(r, t)*exp(ier A), it only depends on the
gauge-invariant mechanical momentum n(t) =p —e A(t),

I

as well as the gauge-invariant quantities r and E. Howev-
er, upon replacing P' ' by a plane wave, it will, for a
Coulomb potential and one-photon ionization in the low-
intensity and high-energy limit, deviate by a factor of 2
from the exact result, as discussed in the preceding para-
graph.

It should be remarked that Eq. (3.19) with the exact
wave functions has been used, in an ad hoc fashion, for
extensive calculations of above-threshold ionization in

hydrogen [25,26].
We now want to rewrite

M" I = i f d—r dt d r'dt'f' ~(rt)'(p (t) ——(p —p) A(t) exp[ier A(t))GO(rt, r't')[ er' E—(t')]$0( '(r't') (3.20)

along the same lines. We start as before with Eq. (3.15), and use

i e"' —'"Go(rt, r't')=5(t t')6(r ——r')e"' '"+ (p —e A) +V(r)+er E(t) e"' ("GD(rt, r't') (3.21)

P( '(rt)'4 (t)exp[ier A(t)]GO(rt, r't')[ —er' E(t')]$0('(r't') .

in place of Eq. (3.18). This yields

M'" = i f—d r dt d r'dt'g' '(rt)"4 (t)exp[ier A(t)][ er E(t)]—G o(rt, r't')[ —er' E(t')]$0('(r't')

+i fd r dt g' '(rt)'e (t)exp[ier. A(t)][ er E(t)]g—o '(rt)

+ fd r d r'dt' lim — lim
f —+ oo t —+ —oo

(3.22)

Here the boundary term at t ~ ~ makes a contribution
while the one at t ~ —~ does not since the propagator
Go is retarded and E(t)~0 for t ~ —co. All of the M("'
with n ~ 1 can be rewritten in exactly the same way. We
may summarize the result as follows:

M' '=K' '
P P

M'"I =re("' —I(. ("-"+P("' (n ~1)
P P P p

where, in symbolic notation,

I( (n| ig(0)e@ ei er A( er.E)'
P P P

X [Go( —er E)]"P() '

and

(3.23)

(3.24)

(3.25)

P'"'= —iP' '*( —er E)[G ( —er E)]" 'g' ' (3.26)

The P'"' are just the matrix elements of ordinary nth or-
der perturbation theory in r-E. If a minimum of Ã pho-
tons are required for ionization then

P'"' =0 for n &X . (3.27)

I(. ' I coincides precisely with the Keldysh ansatz [8] (but
not (oith the Faisal Reiss expressio-n), if g( ' is replaced by
a plane wave. Of course, this approximation has the
problems mentioned in Sec. II and below Eq. (3.19).
Note that the phase exp(ie A r) combines with the factor
exp( —ip r) coming from the final plane-wave state to
yield a dependence of the matrix element on the kinetic
momentum, a gauge-invariant quantity. Therefore this
phase factor should not be neglected, and it has indeed

been shown to alter results significantly for higher inten-
sities [26]. Potvliege and Shakeshaft [5] arrived at the
same conclusion, even in the weak-field limit, in the con-
text of the Floquet method. The presence of the phase
exp(ie A r) also helps in explaining the experimental ab-
sence of a fourfold symmetry in the ATI angular distribu-
tion for general elliptic polarization (which is predicted
by E' ' without the phase factor) [29].

Equations (3.23) and (3.24) have a remarkable proper-
ty, similar to the one discussed in connection with the ex-
pansion in Sec. II. It is clear from (3.24) that each suc-
cessive term in the iterative expansion of M~ [Eq. (3.13)]
brings in two Keldysh-like contributions, one which can-
cels out the result of the previous iteration, and the other
which represents a higher-order Keldysh term. Again, it
is clear that the contribution from K'"' will be in general
quite different from the one coming from K„'" ", since
they involve a different number of atomic propagators [in
particular, K'"' exhibits more singular denominators, as-
sociated with resonances, than l( '" "]. Contrary, how-
ever, to what happens in the expansion discussed in Sec.
II, we can see from (3.24) —(3.26) that this time I(.'"
does cancel out P'"' when the external field goes to zero.
This has the following interesting implication: If we take
(3.27) into consideration, we have, for m & N,

while for m ~ X we have
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n=0
M(n) —~(m) + ~ p(n)

n=N
(3.29)

From these two equations, and from the above discus-
sion, we can see that, while for m & N it is not generally
true that M' +" is smaller than M' ', for m ~ N, on the
other hand, one can be sure that for suSciently weak
fields M' ' is indeed of higher order than M' '. This
reasoning indicates that M' " is the most reliable
Keldysh-like approximation. It has the appealing feature
of describing the Nth order transition between atomic
states, and at the same time it takes into account the
semiclassical change in the final state due to the applied
field, which provides the complete ATI spectrum. We
note that this contribution has the same general structure
as the ansatz proposed in Ref. [30], which has provided
good agreement with experimental results (cf. Ref. [14]).

It is clear also that if one goes one term beyond this ap-
proximation, ordinary perturbation theory starts to play
a role. That is, for m ~N (N being the multiphoton or-
der of the ionization process), term by term ordinary r E
perturbation theory creeps back in and replaces every-
thing that has been done before. Ultimately

with resonances [6]. This would yield a corrected expres-
sion for M'"' in (3.15) in which the small denominators

P
are replaced by expressions containing linewidths. We
can now apply to these corrected contributions the pro-
cedure leading to Eqs. (3.23)—(3.26), in which all (inter-
mediate) Go's with small denominators are replaced by
resonant expressions [note that the leftmost Go in Eq.
(3.15}is not affected by this summation, and therefore the
partial integrations leading from (3.15) to (3.24} can still
be performed; cf. Eq. (3.21}].This approach yields an ex-

pression for K' ' that accommodates both the ATI peaks
and the intermediate resonances. It is interesting to note
that our procedure actually leads to the justification of a
modified "resonant ansatz" introduced already by Kel-
dysh in Ref. [8].

IV. EXAMPLE

In this section we will compute the lowest approximant
M' ' for the three-dimensional 5-function model [16,24],

~
P

discuss the validity of this approximation in this case,
and compare it with the standard Keldysh approximation
M(~).

P
The model is defined by the zero-range potential

lim g M'"'= lim g P~"~,
m~oo p m~ oo

(3.30)
V(r) = 5(r) r,217 8

mK Br
(4.1)

as one should expect, provided both sums converge. Of
course, for some special cases, the first term in the expan-
sion, EP ', may already yield an excellent approximation.
Physically, this would be the situation whenever multi-
photon transitions do not involve bound states other than
the ground state. One such case is the three-dimensional
5-function potential to be discussed below and possibly
any other short-range potential with just one bound state.
It is quite possible that more general potentials may be
well described, at least qualitatively, by E&', provided
that intermediate resonances play no role. The latter
question is strongly dependent on the polarization of the
external field, since for circular polarization resonances
are less likely to be encountered than for linear polariza-
tion. If an n-photon resonance is close, one could expect
that EP"' should be used instead. In fact, one can do
better than that. When intermediate resonances become
important, one can sum up, in the expansion (3.14) and
(3.15), the terms which contain small denominators.
That is, we apply to (3.14} the same summation tech-
niques used in conventional perturbation theory to deal

I

which has a single bound state at energy

KEO=-
2m

(4.2)

A complete orthonormal set of wave functions consists of

(p) V» e "
iI&0 I&

0 rt= e
2K r

(4.3)

for the bound state and

q(0)(rt )
iP r1

(2 )3/2

—iE t
P

K+iP r
(4.4)

for the continuum states, where Ez=p /2m. We will

now evaluate the matrix elements M'n' for this potential
and an external field specified by the vector potential
A(t).

We start with M' ' in the form (3.16). Inserting the
wave functions (4.3) and (4.4) and replacing (e/m)p A in
the integral by a time derivative acting on 4~(t) yields

i v'»
3 e ' i(E + lEol)t e oo

z Jd rdt e ' ' exp i f —dr A ()2r
(2n. ) (» —ip) 2m

K1'

i—A.y+i —e te A.~

m

oo

exp i— dip- A(z)
m t

(4-5)

Integrating by parts with respect to t and having one-half of the derivative 0/Bx act to the right while integrating by
parts with respect to the remaining half, the tenn in square brackets is replaced by

E +~Eo~ — (» ip) ——er E,
2m r

where E= —3 A/Bt. We notice that

(4.6)
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te g.r - ter[( A r))/r]e = —
& e

BT

Another integration by parts with respect to r leads to

d3
M' '=i fdt f e '"+'~'"expi[(E + IEol)t]4~(t)[ —er E(t)]e"'

(27r) (» ip—) r

(4.7)

+ (» ip)—exp[i(E +I Eol)t]4 (t)
2&

m
(4.8)

The second term on the rhs of Eq. (4.8) is a boundary term at r =0 originating from the integration by parts. The spa-
tial integration in the first term yields

f
+3 —(.~+ip)rt 1 ier. A 2~ A E

e &

—er E~e
2 A2

1»+ip+ie
I Al +2. »+ip

ln . . +2ie
»+ip —ie

I AI {»+ip)'+e' A'

8~)' e2 A E e2 A2

(»+ip) (»+ip)
(4.9)

Hence the first term does not contribute for circular po-
larization where A E=O.

The second term in Eq. (4.8), viz. , the boundary term

Mz aT =i f dt exp[i(E + IEoI)t]4 (t)

' f" dt exp(ilEolt)

Xexp f dt n(t), (4.10)
2m

is easily seen to be identical with the standard Keldysh
amplitude, Eq. (2.8). That is, we have for the three-
dimensional 6-function potential

where pr =Qp„+p~, p„=pTcos5, p~ =prsin5, and
U =e a /2m.

The equality (4.12), even though it holds only in the
special case of the three-dimensional 5-function potential
and circular polarization, is quite remarkable. Recall
that only the scattering term of the wave function (4.4)
contributes to M„'' while M„' ' derives solely from the
plane-wave term.

The time integration in the first term of Eq. (4.8) can-
not be carried out analytically. Fortunately, in many sit-
uations this term is small compared with the second
term. A rough estimate suggests that the first term is of
relative order

p, BT p

and for the particular case of circular polarization,

(4.1 1)
A E

(»+ip) 2'(» ip) 2m(» +p )(»+ip)
(4.15)

M"' =M'~)
P P

(4.12)

A(t) =c1 (x coscot +y slncot ),
we have

(4.13)

eapT(o)

m „"mco
in'

X5{Ep+IEol+ U nco), —(4.14)

Specifically, for a circularly polarized monochromatic
plane wave with vector potential

with respect to the second. For p (&~, this ratio assumes
the value (e A /2mco)(collEo ) l(4~), which is quite
small under the conditions where typical above-
threshold-ionization experiments have been carried out.
The term is, however, qualitatively important in that it
violates the symmetry p~ —p, which is obeyed by the
second term.

In order to calculate the first correction M"' we start
from expression (3.20) and insert the eigenfunction ex-
pansion (2.3) for the propagator Go. Due to inversion
symmetry its bound-state part does not contribute. We
obtain

&2

MI,"=—f dt f dt'4~(t') f d p'exp i p t exp i p +IEol
2m 2m
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The two matrix elements can be readily evaluated. Obvi-
ously, the second matrix element is proportional to
p'-E(t')f(p' ). As for the first, integrating by parts with
respect to p = —i V, one can convince oneself that it may
depend on A, p'. A, p. A, and p', but not on p'. E or on
p-p'. For circular polarization we have A-E=O. Hence,
upon the transformation p' E(t')~ —p' E(t'), we can
conclude that

M'"=0 (circ. pol. ) . (4.17}

For any polarization other than circular, M'" is nonzero.
The calculation of the higher-order terms M~&"' becomes
increasingly cumbersome. We will be satisfied with a dis-
cussion of M' ' for the circularly polarized field (4.13).
We expect M' ' to introduce, among other contribu-
tions, the ac Stark shift of the ground state

2
m (caco)

8.
1 co

16 IEQ
(4.18)

Indeed, after a lengthy but straightforward calculation,
we obtain to lowest order in

U
(4.19}

that

2

g M'"'=
n=0 m „"mao

cap&

x5(Ep+ IEpI+ U~+b, ne)—
~ 3

x 1+i'
I I

f(P, ~)
0

(4.20}

with

f(p, a)= — (p +a )
1

64~

X
25]c +29)c ip —15' —3ip

(a+ip)
(4.21)

Hence the significance of corrections to the lowest-order
result is governed by the parameter

'3 T

IEp I

(4.22)V —2g
Ep I ACKNOWLEDGMENTS

atoms in the presence of intense laser fields. Our method
is based on a semiclassical description of the ionized elec-
trons in the spirit of Keldysh s original approach. How-
ever, in contrast to the former, it fully allows for the role
of intermediate states, and, in particular, of intermediate
resonances. Hence it can be applied, e.g., to the calcula-
tion of resonantly enhanced multiphoton ionization. Be-
cause our expansion, as well as Keldysh's, is built on the
Volkov solution as a vital ingredient, each term contains
terms of arbitrarily high order in the atom-field interac-
tion. Therefore each term displays an ATI series of
peaks. The lowest-order term in the expansion yields the
usual Keldysh approximation, expressed as in Keldysh's
original paper [8] in the length gauge, provided the final
state is replaced by a plane wave. The higher-order terms
lead to successive approximations. The physical phe-
nomena covered by these terms include transitions to ex-
cited states, resonances, and intensity-dependent level
shifts. The optimal term in the expansion is likely to be
given by the multiphoton order of the ionization process.
For higher orders, the expansion is more and more re-
placed by ordinary perturbation theory in the atom-field
interaction.

We hope that this method may allow for a more sys-
tematic study of the validity of Keldysh-like approxima-
tions, since in our case an exact prescription is given to
calculate the successive corrections. We have exemplified
this procedure with the three-dimensional 5-function po-
tential, for which exact analytical expressions have been
obtained not only for the first Keldysh-like term, but also
for the first nonvanishing correction, thus allowing for
the precise analytic characterization of the conditions un-
der which the approximation is valid in this case. We
also hope that the method may be useful for the calcula-
tion of resonantly enhanced multiphoton ionization, at
least for not too high order. It can also conveniently be
applied to the calculation of quantum corrections to
free-free transitions.

Of course, our method seers also from some of the
limitations of the usual perturbation theory. Even
though we are able to account, as in the conventional
perturbation approach, for intermediate resonances
through partial summations, our expansion should break
down if the field becomes too intense. This fact does not
preclude its usefulness, however, due to the explicit incor-
poration of the ATI peaks.

The same parameter occurs in estimates of the
multiphoton-ionization rate in intense fields in the
asymptotic regime such that colIEpI « V«1 (see Refs.
[16,24]).

V. CONCLUSIONS

We have proposed a systematic expansion of the exact
matrix element that governs multiphoton ionization of
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by the Once of Naval Research and the Sonder-
forschungsbereich SFB 338 of the Deutsche
Forschungsgemeinschaft.
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