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Convergent close-coupling method for the calculation of electron scattering
on hydrogenlike targets
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We extend the convergent close-coupling method for the calculation of electron-hydrogen scat-
tering to hydrogenlike targets, atoms, or ions. These include H, Li, Na, and K atoms, as well as the
multitude of ions which have the same isoelectronic sequence as any of these atoms. The reliabil-
ity of the method is independent of the projectile energy, and we demonstrate its applicability by
achieving excellent agreement with a large set of measurements for electron scattering on sodium
at projectile energies ranging from 1 to 54.4 eV. These measurements include spin asymmetries,
singlet and triplet I~, reduced Stokes parameters, differential, integrated, and total cross sections,
as well as the total ionization spin asymmetry. The method is found to give better agreement with
experiment than any other over this entire energy range.

PACS number(s): 34.80.Bm, 34.80.Dp, 34.80.Kw, 34.80.Nz

I. INTRODUCTION

Calculation of electron-atom or electron-ion scattering
is of both fundamental and practical interest to physi-
cists. The simplest system, electron scattering on atomic
hydrogen, is difBcult to calculate and there still exist dis-
crepancies between theory and experiment; see Bray and
Stelbovics [1], for example. It is for this reason that
this system has attracted so much attention. The dis-
crepancies with the angular correlation parameters in
the intermediate energy range have resulted in the de-
velopment of some of the most sophisticated electron-
atom scattering theories such as the intermediate-energy
R-matrix method of Scholz et al. [2], the pseudo-state
methods of Callaway [3] and van Wyngaarden and Wal-
ters [4], the second-order distorted-wave theory of Madi-
son, Bray, and McCarthy [5], the coupled-channel opti-
cal (CCO) method of Bray, Konovalov, and McCarthy
[6], and the convergent close-coupling (CCC) method of
Bray and Stelbovics [1]. These methods all tend to agree
much more with each other than with experiment.

The development of the CCC method for hydrogen has
taken the close-coupling formalism to completeness. The
method is without approximation, but relies on being
able to achieve convergence in the observable of interest
as a function of the number of states in the multichannel
expansion. These states are obtained by diagonalizing
the target Hamiltonian in a large Laguerre basis. The
use of this orthogonal basis ensures that all of the neg-
ative and positive energy states are square integrable,
which allows for the application of the standard close-
coupling (CC) techniques, and convergence being able to
be tested by simply increasing the basis size. It is our
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belief that any calculations larger than those reported
in [1] will not yield substantially different results. It is
therefore our hope that the discrepancies between theory
and experiment are primarily due to the great diKculties
in the experiment associated with working with atomic
hydrogen. Nevertheless, a nagging doubt on the valid-
ity of theory must remain while there is still discrepancy
with experiment for the angular correlation parameters
for this simplest electron-atom scattering system.

Even though the CCC method for electron scattering
on atomic hydrogen has been unable to resolve the above-
mentioned problems, its development has brought con-
siderable success. One way of testing scattering theory is
by comparison with model problems. Application of the
CCC method to the Poet-Temkin [7,8] model problem
of electron-hydrogen scattering, which considers states
with only zero orbital angular momentum, and has been
solved to a high accuracy, showed that the method yields
correct results at all available energies [9]. Furthermore,
it demonstrated that the pseudoresonances, which are of-
ten associated with square-integrable expansions of the
continuum, diminish rapidly and disappear with increas-
ing basis size. We consider these results to be extremely
important. This model problem contains most of the dif-
ficulties associated with treating exchange as well as the
continuum and may be readily used to test the validity of
any general scattering theory. To this end we have pro-
vided a large set of quantitative results for a number of
transitions at an energy range of 1—400 eV for this model
problem [10].

Another most important success of the CCC method
has been the application to the calculation of the total
ionization cross section and spin asymmetry of atomic hy-
drogen by electron impact [11].Excellent agreement with
experiment indicated that the use of square-integrable
representation of the continuum was practical in gener-
ating observables involving the true continuum. Once
again, due to the large number of states used, no pseu-
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doresonance behavior was evident even though the same
set of states was used across a large energy range.

In this work we generalize the CCC method to incorpo-
rate hydrogenlike neutral targets Li, Na, and K, as well

as ions such as He+, Li +, Be+, and Ar +, i.e., those tar-
gets whose structure is well modeled by the frozen-core
Hartree-Fock approximation. We do this for two reasons.
The 6rst is that we wish to provide a general and reliable
scattering theory that is applicable at all energies and for
all transitions, in the hope that it may be useful to others.
The second is that we wish to test the method against
the many more detailed experiments that are available
for these systems in order to perhaps be able to gain
some insight as to the problems with atomic hydrogen.

Unfortunately, from the theorist's point of view, com-
parison of theory with experiment can never validate
the theoretical approach, but may certainly invalidate it.
The closest a scattering theory can get to being validated
is by achieving agreement with a "complete" scattering
experiment as envisioned by Bederson [12]. In such ex-
periments all of the quantum observables in a particular
transition of interest would be measured, allowing for the
most detailed possible check of the calculated scattering
amplitudes. Though as yet we are unaware of any such
individual experiments, &om the point of view of testing
theory, it is clear that combining a number of different
sets of measurements for various parameters is another
way of achieving this goal. Similarly, but more generally,
it is our aim to provide a complete scattering theory, i.e.,
one where all of the individual scattering amplitudes are
reliable, irrespective of the projectile energy or transi-
tion of interest. In other words, from our point of view,
a complete scattering theory is one which is able to pro-
vide accurate results not just for a single transition, but
all transitions of practical interest at an energy range
where the Born approximation is invalid.

The hydrogenlike neutral target for which there exists
a large variety of reliable measurements is sodium. In our
view, the most important collection of these is that due
to McClelland et aL [13,14], Scholten et al. [15], Kelley
et al. [16], and Lorentz et al. [17]. At an energy range of
1—54.4 eV they measured the ratio of triplet to singlet dif-
ferential cross sections (3S and 3P channels) and also the
angular momentum transferred to the atom perpendicu-
lar to the scattering plane for both singlet and triplet
spin states (3P channel only). Apart from an overall
normalization factor, the absolute differential cross sec-
tion, these measurements are able to test the magnitudes
of the spin- and magnetic-sublevel-dependent scattering
amplitudes. The resolution of spin is of particular impor-
tance to the theorist as the treatment of exchange is one
of the more difficult aspects of the calculation. On their
own, these measurements have the potential to invalidate
many methods of calculation, at least in the projectile
energy range considered. We will show that the CCC
method for hydrogenlike targets is the only method to
date that is not invalidated by these measurements.

It may be considered surprising that the sodium atom
would be such a difficult target for theory. As most of the
polarization of the atom is due to the 3P state it is often
believed that scattering should be readily described by a

multichannel expansion that treats only the Erst few dis-
crete states, i.e., higher discrete states as well as the con-
tinuum may be readily truncated. Indeed the early 1970s
low-energy four-state calculations of Moores and Nor-
cross [18] have not yet been invalidated by experiment to
our knowledge. Furthermore, similar calculations above
the ionization threshold (see Mitroy, McCarthy, and Stel-
bovics [19],for example) and perturbative methods such
as that of Madison, Bartschat, and McEachran [20] yield
quite satisfactory differential cross sections. This is par-
ticularly the case for the forward angles, which for the
elastic channel are dominated by the polarization of the
target due to the 3P state. However, application of these
methods to the spin resolved data yields quite poor agree-
ment. McCarthy, Mitroy, and Nicholson [21] showed that
even a rough treatment of the continuum had a large ef-
fect on the results, which generally improved agreement
with experiment. A similar observation was made in the
work of Madison, Bartschat, and McEachran [20], where
the effects of the continuum come in at the second or-
der level. A more accurate treatment of the continuum
by Bray [22] also found that its effect was very large
and brought about excellent agreement with experiment.
Subsequently, we showed [23] that the efFect of the con-
tinuum came primarily from an allowance for electron
flux in the open ionization channels. In a preliminary
report of this work [24] we showed that the most accu-
rate treatment of the continuum is provided by the CCC
method. It is because the effect of the continuum is so
large on even the elastic spin-dependent scattering am-
plitudes at energies above the ionization threshold, that
the treatment of electron-sodium scattering is so difficult.

Much of the CCC theory presented in this work is
based on a number of previous publications. The Grst
of these is that of McCarthy and Stelbovics [25], who
showed how to formulate and solve the momentum-space
coupled Lippmann-Schwinger equations in electron-atom
scattering. This partial-wave formalism expanded the
projectile using plane waves and so was unsuitable for
charged targets. A distorted-wave formalism that was
also suitable for charged targets, and generally improved
efficiency in the solution of the Lippmann-Schwinger
equations, was given by Bray et al. [26]. Both of these pa-
pers assumed that the potential matrix elements would
be complex, due to the inclusion of Q-space states via
a polarization (optical) potential. These early applica-
tions of the CCO method had rather restrictive approx-
imations for the complex nonlocal polarization poten-
tial. A less restrictive form, given by Bray, Konovalov,
and McCarthy [27], that utilized symmetric P and Q--
space operators enabled the CCO method to be applica-
ble to the entire range of projectile energies of interest in
atomic physics. This method was generalized further by
Bray and McCarthy [28] to incorporate a large number
of states in P space, as well as showing that the electron—
alkali-metal scattering system may be readily treated as a
"three-body" problem. The CCC formalism for electron-
hydrogen scattering has been given by Bray and Stel-
bovics [1]. This utilized plane waves for the projectile,
but had real potentials. This fact was used to reduce the
computational resources necessary to solve the very large



1068 IGOR BRAY 49

number of coupled integral equations. We combine the
ideas of these papers here to present the CCC formalism
for hydrogenlike targets that utilizes real potentials and
distorted (Coulomb for ions) waves, thus making it ap-
plicable to atomic as well as ionic "one-electron" targets.

II. THEORY

We start by assuming that for the purpose of scattering
calculations the hydrogenlike target, atom or ion, may be
well described by the model of an inert Hartree-Fock core
together with a single valence electron. We also allow for
an addition of a small phenomenological core polariza-
tion potential used to slightly improve the one-electron
energies. Under this assumption we first generate the
core target states g~ by performing a self-consistent-field
Hartree-Fock (SCFHF) calculation [29] for the ground
state of the target T:

(K+ V —s~) g~(v) = 0,

where

(2)

Here np is the static dipole polarizability of the core and
may be obtained for all of the targets of interest to us
from McEachran, Stauffer, and Greita [32], for example.
The value of p is then chosen empirically to fit the one-
electron ionization energies.

We are happy to use the form of the polarization po-
tential above only if it has a small effect in the scattering
calculation. We do not wish to present a scattering for-
malism that is significantly affected by phenomenology.
Fortunately, we find that most of the interesting effects in
the scattering come from the treatment of the dynamics
of the interaction rather than that of the structure. The
effect of Vi"i(r) in electron-sodium scattering has been
discussed by Bray and McCarthy [28] using the CCO
model and has been found to be suKciently small. For
the heavier targets, such as potassium, Vp'(r) becomes
more important [33] and forms other than (5) may be
more suitable. For example, McEachran and Cohen [30]
give a nonempirical method for calculating this potential
to first order from the core orbitals. It is also worth not-
ing that the above approximations for the structure ex-
plicitly exclude real core excitation or ionization, and this
places a limitation on the scattering formalism presented.
We assume that most of the current measurements are
primarily inHuenced by the interaction of the projectile
with the valence electron, though exchange with the core
electrons is allowed. This can only be tested by compar-
ison with experiment.

We write the full Hamiltonian of the scattering prob-
lem as

It is worth noting that the core states may also be ob-
tained by performing the SCFHF calculation for the ionic
core; see McEachran and Cohen [30], for example. In this
way the core states would be optimized for the higher
excited states, whereas we have them optimized for the
ground state. Since the higher excited states are predom-
inantly hydrogenic they mostly feel the residual charge
rather than the core states. For this reason we prefer the
optimization for the ground state.

Having defined the core target states g~ C C we can
write the frozen-core Hartree-Fock potential V as

H = Hj. + H2+ Vj2

= Kj + Vj + K2 + V2 + Vj 2, (6)

where E is the total energy, (+)—:+i0 denotes incom-
ing plane- or Coulomb-wave and outgoing spherical-wave
boundary conditions, S is the total spin, and io, ko de-
note the initial target state and projectile momentum,
respectively. The assumption of negligible spin-orbit in-
teraction is implicit in the formalism.

where V~ = V + V ', with o, = 1, 2 denoting projec-
tile or target space, respectively. The electron-electron
potential is Vj2. The Schrodinger equation is then

(3)
A. Target states

where the notation C indicates the set of frozen core
states. The one-electron target Hamiltonian H2 (index
indicates target space) is then given by

a, = Z+ VFc+ V&' (4)

(5)

where we take the often used form for the phenomeno-
logical polarization potential (see Zhou et al. [31], for
example) to be

The problem with the standard close-coupling expan-
sions that utilize true discrete and continuum eigenstates
is that full inclusion of these states in the close-coupling
equations leads to "free-free" V-matrix elements which
are computationally too difBcult to handle. We avoid
this problem by ensuring that at least one of the elec-
trons is represented by a square-integrable function, and
so all matrix elements are readily treatable computation-
ally. We allow for one electron to be treated by true
continuum functions, unlike in the interaction region of
B-matrix methods, and so have no diKculty in the tran-
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sition from low to intermediate and high partial waves.

In the CCC formalism we expand I4', ~& )) in a set ofs(+)

square-integrable states Ii„) which are obtained by per-
forming a diagonalization of the target Hamiltonian (4)
in a large truncated Laguerre basis of size N. Thus Ii~)
satis

( NIII
I

.
N) Ng (8)

where, expanding the notation Ii„)

we have

The coeKcients | & are obtained upon the diagonaliza-
tion, and the Laguerre basis (I,i(r) we use is

Ai (k —1)!
I (2)+1+k)))I

x (Air)'+' exp( A(r/2)L—„'+i (A(r),

where the L&+z (Air) are the associated Laguerre poly-
nomials and k ranges &om 1 to the basis size Ni. Thus,
for a particular orbital angular momentum t the states
P„&' (r) and corresponding energies e„&' depend on two pa-
rameters Ai and Ni. These parameters may be varied and
are typically different for each l. We use N to indicate
the full set of states generated for all l in the target state
expansion.

The main advantage of the Laguerre basis is that it is
orthogonal, unlike the Slater basis, for example, and so
we are able to perform the diagonalization with an arbi-
trarily large N~ without encountering linear dependence
problems. This makes our basis ideal for convergence
studies. After the diagonalization we have Ni square-
integrable states for each l. We order them in ascending
values of energy. The negative energy states P„&'(r) con-
verge pointwise to the true discrete eigenstates P„~(r) of
the target Hamiltonian as the basis size Ni is increased.
Apart from a normalization factor, the positive energy
states resemble the true continuum states until the expo-
nential falloff dominates.

In Table I we show the one-electron energies for the
four lowest-lying sodium 8 states arising &om the diag-
onalization of the target Hamiltonian (8) at a range of

basis sizes. A difhculty in the CCC method is that since
the exponential falloff Ai in the Laguerre basis is fixed to
be the same for each $„1(z ), n = 1, N~, the generation of
the target states is ineKcient as a function of basis size.
This is indeed evident in Table I, where we see that for
A, = 2 a basis size of 30 states is necessary to adequately
describe the first four 8 states. This problem diminishes
rapidly with increasing l as the resulting states become
more hydrogenic in this case. Fortunately, we often find
that convergence in the scattering observable of inter-
est is obtained by using a truncated expansion [24]. By
this we mean that even if we obtain say Ni states upon
diagonalization, we may use only a subset of these, typi-
cally consisting of those states which would lead to open
channels. This works very well for the sodium target at
the most diKcult, intermediate projectile energy range,
above the ionization threshold. It may be that we will
not be so fortunate for heavier targets. If necessary, we

may readily modify the method by replacing the negative
energy states with the true eigenstates, and orthogonal-
ize the positive energy states to the eigenstates, together
with a suitable modification of the target state energies.
This may be helpful for the potassium atom, and ions
which have this same isoelectronic sequence.

The full set of N states Ii„) form a quadrature rule for
the sum and integral over the complete set I of the true
target discrete and continuous states Ii), i.e. ,

The nature of the quadrature rule has been discussed in
detail by Yamani and Reinhart [34], as well as Stelbovics
[35]. This expansion gives rise to the multichannel func-
tions defined by

where the zero subscript in
I f„o ) indicates the pair io, ko.

For brevity of notation we write

(14)

TABLE I. One-electron energies (eV) of the first four s states of sodium calculated by diagonal-
izing the target Hamiltonian (8) in a Laguerre basis (11) of varying size N, and A, = 2.0. The
values of ns and p in (5) are 0.99 and 1.44, respectively. See text for more detail. The experimental
values are due to Moore [517.

Stat
3s
4s
5s
6s

N, 10

-4.842
-1.881
-0.339
1.828

-5.077
-1.932
-0.984
-1.125

20

-5.129
-1.945
-1.019
-0.539

-5.137
-1.946
-1.022
-0.614

30

-5.139
-1.947
-1.022
-0.628

Expt.

-5.139
-1.948
-1.024
-0.630
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B. Coupled equations

(r»2I@;.'g", ) = (-1)'(r2»l@;.'g", ) (is)

where S = 0, 1 for singlet and triplet scattering, respec-
tively. Thus the multichannel expansion functions (13)
are not arbitrary, but satisfy

In the following we assume that the projectile is an
electron, and so exchange must be considered by sat-
isfying antisymmetrization properties of the total wave
function. For positron scattering we do not as yet con-
sider positronium formation, and so, by dropping ex-
change and changing the sign of the relevant potentials,
the method is only valid at an energy range where this
cross section is negligible. Interestingly, for energies be-
low the Ps formation threshold of atomic hydrogen, con-
vergence in the single-center expansion employed in the
CCC formalism is only obtained by inclusion of target
states with t ( 15 [36].

Taking the origin to be the center of mass, the total
wave function for electron scattering I@, & ) of the three-s(+)

body problem satis6es the symmetry property

psNI@sN ) (psN p )I@sN )

Vj —Ug + Vj2

+(—1)'(II —E(+))P„]le,'."„.). (21)

(@(
—) IE(+) NI@sN ) (k( —) NIgsNI@sN )

(22)

and where the use of (8) is implicit, and the distorted-
wave states lk( )), discrete and continuous, are solutions
of

('„"—z, —V, )la(')) = 0.

In coordinate-space representation

(rlk(+ ) = (2/7r) ~ (kr) ) i e+'( + )uL, (k, r)
L,M

»I,M (r) YL*,M (k), (24)

Suitable choices for Uq will be considered at a later stage.
We now project by (k( )i I, where we use (

—
) so that

E + i 0 —(ey —i0) = E + i0 —eg, to get

( NlfsN) (
N N @Is(+))

1)s( NlfsN) (i6)

where 01. is the Coulomb phase shift, uL, (k, r) is real and
has the asymptotic form

lim (rir2I@,. („+)) = (rilk0(+))(r2li0).
r 1 ~OO

To explicitly symmetrize this numerically, we introduce
the space exchange operator P„and write (14) as

Iili,. (,+)) = —[1+(—1) P,] lim IilsN„. ). (18)

Using the limit notation a little loosely, the total wave
function satisfies the boundary condition

uL, (k, r) m FI, (kr) cos bl, + GL, (kr) sin hL„ (2s)

and FL, (kr) and Gl, (kr) are the regular and irregu-
lar Coulomb functions, respectively. For plane waves

(Ui ——0) both o'I, = 0 and bL, = 0. The introduction
of the complex phase factor e+'~ + ~ does not destroy
our capacity to solve the coupled equations using primar-
ily real arithmetic.

From (22) we can write

The correct boundary conditions are then automatically
imposed if we ensure that I@, I, ) satisfies (17). Note
that even without the condition (16) the form (18) satis-
fies (1S). However, such an expansion on its own is too
general and leads to nonunique solutions off the energy
shell [1].

We are now in a position to derive the coupled equa-
tions. Substituting (18) in (7), with K ~ oo limit being
implicit, we have

~ I'"a(-))(k(-)i"lv'"le'" )) i )f~ E(+) N

where li0Ic0( )) satisfy

0 E + K U N .NI (+)

= (E —.,„—.N) liNa(+)),

(26)

(27)

E~+& —H +~N = —S H —E~+~ I' esN

(19)

and ensure that the boundary condition (17) is satisfied.
The symmetry condition (16) is implemented by con-

sidering the matrix element of V& in (26) which is pro-
portional to E in (21), via

Expanding H on the left-hand side, and subtracting an
arbitrary distorting potential Uq from both sides, this
becomes

E+ —Ky —Uy —H2 4. I, ——VU 4 k, 20

1)sE(k(—) NIP ) I

NfsN)-.
m

= (-1)'E).(&' 'li")(i. If'0)
m

= E).(k' 'li")(i"If.'0 )
m

E(k(—)iNIIN ) I&N fsN) (29)
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where the "identity" operator

IN ) I
N)( Nl. (30)

constant 0 such that

(i. If'o ) = (1 —0)(2."lf'o ) + ~(—I)'(i"If.'o"). (»)

acts in projectile space. A more general way to imple-
ment condition (16) is to introduce an arbitrary nonzero

]

Then, using (29) and (31) we rewrite (21), dropping the

(+) notation, to give

(k& &iNIVUNI@, ,„,) = (k& &i„lV, —U, + V» —HEI, + (
—1) [II —(1 —8)E]P„IC, „). (32)

We find the interesting result that any nonzero 8 in our VU matrix elements leads to a unique solution, and so for
simplicity we suppress explicit 8 dependence of VU, and take 0 = 1. A value of zero still leads to a unique solution
on the energy shell, but off the energy shell the results are not unique, which causes numerical instability. For a
detailed discussion of these issues see Ref. [37].

Finally, to get a coupled set of Lippmann-Schwinger equations we premultiply (26) by (i,fNkf IV& and obtain

k( )iN1VSN1iNk( —)y/k( —)iN1TSN1i k(+))
(k' 'i"IT'"Iioko'") = (k' 'x"IV'"look'")+) y'

E~+i (33)

(k IT look,+') = (k 'i IV (34)

where the TU matrix, for potential VU = V —U],
is defined in the usual way

the Z/r factor i—n (3) the V-matrix elements in (33) go
out further with increasing Z, which makes the numeri-
cal analysis more dificult. This problem is minimized by
taking

In order to extract physical observables we need to re-
late the distorted-wave TU matrix to the physical T~
matrix. Following the work of Gell-Mann and Goldberger
for eigenstates [38], we rewrite (26) for Ui ——0 as

( f I@,'.a. ) = lkf)~fo + E(+) N ( f IV'"I@,'.~. )E~+~ —K~ —ef

and using (27) relate the plane waves lkf ) to the distorted

waves Ikfi l) by

Ii'f kf ) —Iif kf) + ~ NUilif kf ') (36)E~ ~-Z, —.,
The physical T matrix may then be extracted &om
the distorted-wave TU matrix by the relation

(I NITsNI I )
.

(I NIVsNI@sN ).
= (k&-& NITsNI k~+&)

+(kf 'IUilko)hf' (37)

We now look at suitable choices for the distorting po-
tential Ui(r). For asymptotically neutral targets we may
take Ui(r) = 0, i.e., take the plane wave representation
of the projectile; see Eq. (23}. In this case there are no
bound states of the projectile and the sum and integral
in (33) becomes simply an integral from zero to infinity
over the energies ei, = k2/2. In performing this integral
we wish to ensure that most of the detailed structure
in the integrand lies at small eI, . We find that due to

~l 2

Ui(r) + Vpol( ) + 2 ) ds„~ I ~ (& )
p

Q i&C

~f ds„14'i("')I'
(38)

C. Solving the coupled Lippmann-Schwinger
equations

We solve the coupled Lippmann-Schwinger equations
for the distorted-wave T matrix by expanding (33) in
partial waves J of the total orbital angular momentum.
The reduced V (or T) matrix elements are defined by

where we typically take pf to be the ground state. This
form of the potential removes the Z/r fact—or in (32) due
to Vj and so ensures shortest-ranged V-matrix elements.
For neutral targets this potential is asymptotically zero,
but for charged targets it is the Coulomb potential due
to the residual charge. Therefore, the required bound-
ary conditions are satisfied by this form of the potential
for both neutral and charged targets. This form of the
distorting potential usually leads to a number of bound
states, in fact an infinite set in the case of ionic targets.
We include as many of these as necessary for convergence
in (33), typically around five per partial wave.

Note that apart from the asymptotic part, the choice of
the potential in the inner region is arbitrary. The results
for T N must be independent of the choice of Ui(r) for
small r, which we check by varying Pf in (38). The choice
above is purely a numerical technique in order to simplify
the solution of the integral equations (33).
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(Lkl lln
II vjn II

n'1'k'+iL') = Q c~(q™cq,, l ' dk dk Yg'M(k)YL, M (k )(kl lz„('
I

v
I

i.„,", k'l+l),
M, m

M', ml

I LIwhere II = (
—1)'+ = (—1) + is parity and C denotes a Clebsch-Gordan coefficient. For scattering on a nS state

we require matrix elements corresponding only to the "natural" parity II = (
—1) . If scattering on target states

with nonzero orbital angular momentum then the separate set of equations corresponding to the "unnatural" parity
II = (—1) + also arises. The reduced matrix elements may be evaluated with the use of Eqs. (9), (24), and (32).

All radial integrals are calculated to a speciffed accuracy, typically 0.01%, which is varied to ensure stability of the
results. This is achieved by integrating out to around 200 or 300 a.u. on a suKciently fine radial mesh. Variation of
the cutoK radius and the spacing in the radial mesh is used to control the precision of the calculation. For the most
long-ranged integrals, which fall off as 1/r, we can also complete the integration to r = oo by employing analytical
techniques, though this is rarely necessary.

We now proceed in the same way as in Ref. [1], which we incorporate here for completeness and ease of reference. In
order to reduce the problem of solving the coupled equations using primarily real arithmetic we define the K matrix
in terms of the T matrix by

N ll

(Lk lln
I I KJii I I

nolokoLo) = ) ) (Lk„tin
I I TJii I I

n'l'k„~&~ L')
l' L' n'=1

x (b~ l, 81, L„b„„„+ink„ l (L'k„ t
I' n'

II K&& II nolokoLo)j, (40)

where kn~ is defined for 1 ~ n & Nt & N~ for which

k„( = /2(E —e„() (41)

is real. In this case we say that the channel nlL is open, and if E ( e„t we say that this channel is closed. For a
particular l the number of states which lead to open channels is Nt .

With this definition, substitution into the partial-wave expansion of (33) results in

(Iknlln II Kiri II nolokoLo) = (Lkn(ln II V~zi I
nolokoIo)

+)- )-~)("-( - II ~V II
'' '

')(Lkl„]I Kslv
II „l k L ) (42)

This is solved for the K matrix using real arithmetic, and
the T matrix is obtained by solving the much smaller set
of equations (40). Note that the K and V matrices are
actually complex due to the phase factors in (24), but
as these factors occur as complex conjugates in the inte-
grand above, they are trivially factored out. The nota-
tion P is used to denote a principle-value-type integral
for k' 6 [0, oo) with corresponding energy in the denom-
inator ei, = k' /2. The introduction of the potential
Uq requires the summation over all of the bound states( 0) of this potential. Note that the sum over n'
in (42) may be truncated to include fewer states than
those generated by the Laguerre basis size N~ . For ener-
gies above the ionization threshold, we typically obtain
convergence by truncating this sum at N&, , i.e. , use only
those states which generate open channels.

We solve the coupled integral equations (42) for each
partial wave J, parity II, and total spin S by replacing
the integral with a quadrature rule. The bound states
then become like extra quadrature points with unity for
the weight function. There are many possible choices for
quadra, ture rules; see Bransden, Noble, and Hewitt [39]
and references therein, for example. There does not ap-

KSN gSN + X gSN KSN
fi fi / n fn ni (43)

where the single sum over n contains all of the sums in
(42). The weights ur„contain the integration weights
divided by the energy term. To solve this equation we
form a closed set of linear equations by letting f run over
the same range as n Replacing f b. y n' to indicate this,
we have

pear to be one choice that is superior to all others, and
so a little flexibility is required. The major problem to
overcome is that due to the singularity whose position
is dependent on the intermediate energy E —~„1. We
address this by splitting the integral into a number of
intervals, one of which is symmetric about the singular-
ity. We treat the singularity by taking an even number
of Gaussian points in this interval. Convergence, with
respect to the integration over k' in (42), is established
by variation in the number of points in each interval; see

[1.] for a little more detail.
On replacement of the integral by a quadrature rule,

(42) may be written in shortened notation as
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A. Some de6nitions

= ) (b„„/~„—v„~~) m„z„',". (44)

As both b„ /w„and V„, are symmetric on interchange
of n and n' we need to solve the linear system of the form
AX = B, where A is a real symmetric matrix.

In the earlier work [1] this was done by storing the ma-
trix A in compact (one-dimensional) form. However, this
requires further computational storage, on top of the V
matrix elements. Here we avoid extra storage for A by
using V for both storing the potential matrix elements
and in solving the resultant linear equations. To do this
we store the singlet (S = 0) V~~ matrix elements in the
top half of A„„and the triplet (S = 1) elements in the
bottom half, taking care that both the singlet and triplet
diagonals are stored correctly. Invoking the j.ApAcK rou-
tine ssYsv [40] first for the singlet case solves the lin-
ear symmetric system AX = B without destroying the
bottom half of A, which contains the triplet potential
matrix elements. A subsequent call to SSYSV solves the
triplet linear equations. The size of the calculation is
then dependent primarily on the storage required for the
V-matrix elements. For example, a typical large calcula-
tion that treats 100 channels with 50 quadrature points
in each results in a 5000 x 5000 single-precision real ma-
trix which takes 100M of core memory storage. On our
SUN SS10/512 two-processor workstation with 256M of
memory we may readily run two such large calculations
simultaneously.

We And this nonperturbative method to be the most
efBcient way of solving the linear equations for the lower
partial waves. However, we can also employ an iterative
procedure such as given by Schneider and Collins [41],
which is guaranteed to converge, and does so rapidly for
the higher partial waves.

The number of partial waves J for which (42) is solved
varies as a function of energy. In the calculations consid-
ered we progressively increase from maximum J = 10 at
1.0 eV to J = 80 at 54.4 eV. Upon solution of (42) for
the K matrix, the T-matrix elements are found by solving
(40) which are then used directly to generate the scat-
tering amplitudes. There are no averaging procedures of
any kind.

From the partial T-matrix elements of (40) we gen-
erate the magnetic-sublevel and spin-dependent scatter-
ing amplitudes f (0) in the collision frame (z axis is
parallel to the projectile) for the transition n;I; to nfl f,
where —l; & m,. & l; and —ly & my & ly. These have
the symmetry properties

(45)

For scattering from s states it is convenient to drop all
reference to the pair l;m; and drop the index on my,
which we will do as in this work we are interested in
scattering from the ground state of sodium.

For elastic scattering we also drop reference to the pair
lyme and write the differential cross section as

~"(~) = [If'(~) I'+ 3lf'(0) I']/4.

The ratio of triplet to singlet scattering is given by

r" (~) = If'(0) I'/If'(0) I'

which is related to the (up-down) spin asymmetry

(46)

(47)

(4S)

For the purpose of presentation of results we prefer the
use of the spin asymmetry rather than the ratio as the
former always stays finite, ranging between —1/3 when
triplet scattering is dominant (r = oo) and +1 when
singlet scattering is dominant (r = 0). An additional de-
termination of the phase between the singlet and triplet
scattering amplitudes would complete the determination
of observables for elastic scattering.

For excitation of the 3P state the characterization of
the scattering is more complicated and has attracted a
considerable amount of attention. For a comprehensive
review of the subject see Anderson, Gallagher, and Her-
tel [42]. Here the charge cloud is conveniently described
in the more physical so-called natural frame, where the
z axis is perpendicular to the scattering plane. The
collision-frame amplitudes may be transformed to this
frame by

"f+' (~) = +f'(~)/~~ —f'(~) (49)

III. R.ESUI TS

In this section we test the CCC method for elec-
tron scattering on hydrogenlike targets by application
to electron-sodium scattering. It is for this electron-
hydrogenlike target scattering system that there exists
arguably the most wide range of detailed experimental
data. The existence of spin resolved measurements at a
range of projectile energies of 1—54 eV allows for an un-
precedented test of the theoretical approaches. We apply
the CCC theory at every energy where these data are
available, as well as at a few other energies where there
is some other detailed experimental data. ~s, (~) = If'(~)l'+ 2lf'(0)l' (50)

A set of seven independent parameters that are sufB-
cient to complete the determination of this scattering
process have been proposed by Anderson and Bartschat
[43]. However, for the purpose of testing theory with
experiment, it is most convenient to compare the theo-
retical results with data that are as close as possible to
the direct measurements. This is particularly so when
there is a variety of complimentary data, but which are
at different projectile energies, a point noted in [43].

For the transition between the 3S' and 3P states of
sodium we may de6ne the spin-dependent differential
cross section by
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The spin-averaged differential cross section, ratio of
triplet to singlet scattering, and the equivalent spin
asymmetry are respectively given by

We now define the spin-dependent angular correla-
tion parameters [A~(0), 8 (8), Is(0)] in terms of reduced
Stokes parameters P& (8), k = 1, 2, 3, which may be com-
bined to give the spin-averaged parameters using the re-
lation

Pq (0) + 3r»(0)Pk (8)
1+3r»(0)

(52)

where

Pi'(0) = [lfo'(0) )' —2lfi'(0) I')/~»(0)
["f'( )"f-'i( ))/ ', ( )

= 2A'(0) —1,

P,'(0) = -2y 2 Re[f,'(8)f,'*(0)]/0,', (0)

["f'( )"f-'i( )1/ ', ( )

= —2v 2B (0),

:( ) = v -[f,'( )f.'( )]/-.'.( )

=
[ "f-'i(0) I' —

I
"fi'(0) ']/&ap(0)

= 2v 2I (0).

(53)

(54)

(55)

Having defined these parameters explicitly in terms of
the scattering amplitudes we relate these to the physical
charge cloud orientation, alignment, and total coherence
parameters [42] by

L~(0) = —Ps(0) Pt(0) e»[»~(0)) = Pi(0) + Pz(0)

P+(8) = QP, (0)'+ P, (0)'+ P, (0)'. (56)

Finally, we give the relation for the (left-right) spin asym-
metry function SA measured by Nickich et al. [44] as

L~~(0) —rap(0) L~i(0)
1+3r»(8)

We do not wish to discuss the physical significance of
the parameters defined above. This has been adequately
covered in the literature, in particular in Ref. [42]. We
present their definitions here for completeness and ease
of reference.

B. Comparison with experiment

It must be remembered that we treat electron scatter-
ing on sodium by the model of two electrons and a frozen
Hartree-Pock core. Though we allow for core exchange
and virtual excitation of the core by means of a small
phenomenological polarization potential, we have no al-
lowance for real core excitation or ionization. We there-

"(0) = [ '.(0)+3 ', (0)]/4 ",(0) = '.(0)/:, (0)

(»)
&»(0) = [~»(0) —~s, (0)]/~»(0)

fore cannot necessarily expect a priori complete quanti-
tative agreement with experiment. This is unfortunate
because if we do find discrepancy with experiment it may
be diKcult to establish whether the problem is due to
theory or experiment. Having said this, the excellent
agreement with various measurements we find below in-

dicates that this model of treating electron scattering on
sodium as a three-body problem is very good.

The utility of the CCC formalism is only achieved pro-
vided that convergence in the observables of interest is
obtained as a function of ever increasing number of states
in the multichannel expansion. By convergence we mean
that any larger calculation would not alter the presented
results significantly. The rate of convergence depends on
the observable and projectile energy. Detailed angular
measurements typically require more states for accuracy
at each angle than say the integrated result. At low and
high energies convergence is more rapid and is often ob-
tained by expansion in just the first few discrete states. It
is for this reason that in the calculations presented below
there is a large variation in the basis sizes and number
of states used. For example, at the lower projectile ener-
gies we take rather large basis sizes in order to generate
more open channels. In these cases calculations are rela-
tively insensitive to the exponential falloff parameter A~.

This is due to the fact that with large basis sizes the true
low-lying discrete eigenstates are readily reproduced; see
Table I ~ However, at higher energies we use smaller ba-
sis sizes so as to limit the number of open channels to a
number that may be readily handled with our computa-
tional facilities. In these cases the values of A~ are more
carefully chosen so as to reproduce the ground and first
few excited eigenstates. Interestingly, we find that ex-
cept at the very low and very high energies, convergent
results are obtained coupling roughly the same number
of states. At all of the projectile energies presented below
we have performed many calculations with varying basis
sizes .V~, number of states used within a particular basis,
A~, and maximum L & 3. At most energies in excess of ten
calculations were performed checking convergence. For
simplicity of presentation in the figures below we present
only the largest of these at each projectile energy. We
believe that any calculation larger than those presented
will not yield significantly different results.

We begin by looking at projectile energies of 1, 1.6, and
54.4 eV in Fig. 1. At these energies there exist very ac-
curate measurements of the elastic spin asymmetry [Eq.
(48)] summarized in Kelley et al. [16] as well as spin-
averaged L~ [Eqs. (52), (55), and (56)] at the largest
energy by McClelland, Kelley, and Celotta [13). We com-
bined these together in order to show that very large cal-
culations that treat the same number of states can be
applied at both low and high energies. At the very low
energies excellent agreement with experiment is achieved
by oiily including the first few (typically 3S, 3P, 4S) dis-
crete states in the close-coupling formalism. It is a very
important test of the method that it yield the same result
with a very much larger set of states. It may seem trivial
that this should be the case. A careful investigation of
the term containing Ii in (32) shows that as the num-
ber of states is increased all of the diagonal V-matrix
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FIG. l. Elastic spin asymmetries A3& at 1.0, 1.6, and 54.4
eV, as well as L~ at 54.4 eV, for electron scattering on the
ground state of sodium. The convergent close-coupling (CCC)
calculation couples 12s, 11p, 10d, and 9f Laguerre basis states
(see text for detail). The coupled-channel optical (CCO)
method [28] couples the first 15 (3 & n & 6 and 0 & l & 3)
discrete eigenstates, with the erat'ect of continuum states with
l & 5 included via a complex polarization potential. The CC
calculation denotes a standard close-coupling calculation that
truncates the multichannel expansion after convergence in the
use of just the discrete target eigenstates has been obtained.
These are the same 15 states used in the CCO calculation
[28]. The measurements are due to McClelland, Kelley, and
Celotta [13] and Kelley et al. [16], with the error bars only
shown if they are larger than the size of the symbol denot-
ing the experiment. Quantitative results may be obtained by
correspondence with the author.

elements change. The larger basis sizes also introduce
greater complexity to the V-matrix elements requiring a
much larger quadrature mesh in order to solve the lin-

ear equations accurately. The subsequent solutions of
the linear equations must and do yield the same single
elastic result.

The calculation denoted by CCC was generated by
taking the lowest in energy (excluding core) 12s (N, =
20, A, = 2.6), lip (Np ——14, A~ = 1.8), 10d (Ng
12, Ag = 1.5), and 9f (Nf = 10, Af = 1.5) states. The
reason some of the higher-energy states were omitted is
that at 54.4 eV they lead to closed channels. In partic-
ular, at 54.4 eV the sum over n' in both (40) and (42)
ranges up to N&, where N, = 12, N„= 11, N& ——10,
and Nf = 9 At 10 and 16 ev we used the same val-

ues in (42), but in (40) only N, = 1 is nonzero. For
all of the observables considered in this work, at projec-
tile energies above the ionization threshold, we find that
convergence is obtained in the use of just open channels.
This confirms our earlier finding [23] that the effect of
the continuum on the scattering phenomena between the
lowest-lying states comes in primarily due to allowance

0.9

0.6
]g

0.3
N
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0.0

CCC

cco
3'P

-0.3
0.9 single
0.6

I

-0.3 Cl
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FIG. 2. Elastic A3& and inelastic A3& spin asymmetry, sin-

glet and triplet L~ for electron scattering on sodium at 4.1
eV. The CCC calculation couples 13s, 12p, lid, and 6f La-
guerre basis states (see text for detail). The CCO and CC
theories, as well as experiment, are as in Fig. 1.

of flux in the ionization channels. For comparison we

also present the results of our CCO and CC methods
[28]. The latter treats the first 15 discrete eigenstates,
which are sufBcient to obtain convergence in just the dis-
crete spectrum. The former also adds the efFect of the
continuum via a complex nonlocal polarization (optical)
potential generated from true continuum states, but sub-
ject to approximation. Comparison of the CC calculation
with either the CCC or CCO directly indicates the ef-
fect of the continuum. Though the CCC method treats
the continuum more accurately, the size of our compu-
tational facilities do not allow us to have simultaneously
large basis sizes N~ and many l. In all of the CCC calcula-
tions below we have l & 3, whereas the CCO method has
l & 5. We typically find that the CCC and CCO results
are very similar, with CCC being in better agreement
with experiment, indicating that it is more important to
treat smaller I accurately than t & 3. All three calcula-
tions give a good reproduction of the experiment in Fig.
1, with CCC being the best for the elastic spin asymme-
try at 54.4 eV. It is worthwhile noting the remarkable
agreement with the L~ parameter. This is directly re-
lated to angular correlation parameter I, see Eq. (55),
with which agreement at this energy in atomic hydrogen
is considerably worse [1].

In Fig. 2 we look at a single projectile energy of 4.1
eV. Here we have both the elastic 3S and inelastic 3P
channels open. The measurements of spin asymmetries
[Eqs. (48) and (51)] and spin-resolved I,f [Eqs. (55) and
(56)] may be found in Kelley et al. [16]. We see that
there is little difference between the CCC, CCO, and CC
theories, which are in good agreement with experiment.
The CCC calculation used 13s (N, = 30, A, = 2.6), 12p
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(N„= 29, A„= 1.8), lid (Nd, = 28, A~ = 1.5), and 6f
(Nf = 27, Af = 1.5) states. Note that the basis sizes
are very large, which was done in order to make sure
that all of the above states lead to open channels. The
discrepancy with experiment around 40 with the sin-
glet L~ and around 120' with the triplet L~ is a little
disappointing. The same features are also found in the
11 state R-matrix calculations of Zhou, Norcross, and
Whitten [45]. As mentioned earlier, for targets whose
structure is treated subject to approximation, it is very
difIicult to state with any confidence as to the source of
discrepancy with experiment. Generally, we find agree-
ment at this energy is very good, and we will see that at
other energies agreement with experiment is even better.

The results at a projectile energy of 10 eV are pre-
sented in Fig. 3. Here we see that the CC calculation is
at times significantly different from both the CCC and
CCO, indicating that continuum is important. For the
singlet L~ we see that it is only the CCC theory that
is able to reproduce the experiment. In fact we have re-
marked in our earlier CCO work [28] that this parameter
may serve as a test case of accurate treatment of the
effects of the continuum. It is particularly pleasing that
this has proved to be the case. The CCC calculation cou-
ples 14s (N, = 30, A, = 2.0), 13p (N„= 29, A„= 2.0),
12d (Nz = 20, Ad = 1.5), and Sf (Nf = 14, Af = 1.5)
states. All except the last two s, p, d, and one f states
lead to open channels. We added the seven extra states
in order to verify that they have little effect. Until the
advent of CCC for sodium it was the CCO theory which
best described the observables of interest here. Com-
parison with the second-order calculations of Madison,
Bartschat, and McEachran [20] may be found in our ear-

lier work. It is interesting to note that by contrast to
the singlet L~, the triplet L~ is readily described by just
the CC theory. In fact, we generally find that the singlet
observables are more sensitive to the details of the theory
than triplet ones. It is difFicult to specify why this may
be the case, perhaps, as suggested to us by Norcross, it
is due to a greater electron-electron correlation in singlet
states. The lack of sensitivity of the triplet observables,
as well as their statistical weight being three times that of
the singlet [see Eq. (52)], may explain why more approx-
imate methods of calculation often do much better for
the spin-averaged observables than for the singlet ones

[2o]
The energy where the effects of the continuum are

most evident is that of 20 eV. The results are presented
in Fig. 4. Both the elastic and inelastic spin asymme-
tries are not even qualitatively described by the CC the-
ory, which is convergent in the use of just the discrete
eigenstates. The similarity of the CCO and CCC cal-
culations indicates convergence in the CCC calculation
which was obtained by coupling 13s (N, = 20, A, = 2.4),
12p (N„= 17, A„= 2.0), 9d (N~ = 13, A~ = 1.7), and
8f (Nf = 12, Af = 1.5) states. Note that we are de-

creasing the basis sizes with increasing projectile energy
so as to limit the number of open channels. As at 10
eV, to check our hypothesis that only open channels are
necessary above the ionization threshold six of the high-
est energy states included in the calculation resulted in
closed channels. Again we found that they have mini-
mal effect, and we only present the results of the largest
calculation performed. By looking at the larger angles
we see that the CCC method is in better agreement with
experiment than the CCO results, indicating once more
the importance of treating the lower target partial waves
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FIG. 3. Elastic A3& and inelastic A3& spin asymmetry, sin-

glet and triplet L~ for electron scattering on sodium at 10 eV.
The CCC results have been generated using 14s, 13p, 12d, and

8f Laguerre basis states (see text for detail). The CCO and
CC theories, as well as experiment, are as in Fig. 1.

FIG. 4. Elastic A3& and inelastic A3& spin asymmetry, sin-

glet and triplet L~ for electron scattering on sodium at 20 eV.
The CCC results have been generated using 13s, 12p, 9d, and

8f Laguerre basis states (see text for detail). The CCO and
CC theories, as well as experiment, are as in Fig. 1.
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more accurately than treating the higher partial waves.
This is also evident at 40 eV shown in Fig. 5. Here

all three theories adequately describe both of the L ~ pa-
rameters, but it is the CCC theory which yields best
agreement with the inelastic spin asymmetries. These
results were generated with 9s (N, = 16, A, = 2.6), 10p
(N„= 15, A„= 2.0), 9d (Ng = 11,Ag = 1.5), and 6f
(Ny = 8, Ay = 1.0) states, all of which generate open
channels.

It is also interesting to note the behavior of some of
these parameters as a function of projectile energy. For
example, we can look at the elastic spin asymmetry at
projectile energies of 1, 1.6, 4.1, 10, 20, 40, and 54.4 eV
and observe the variation in the structure. In doing this
we see how the peak that starts at around 120' moves to
smaller angles, then rapidly diminishes between 10 and
20 eV, so that it is only just visible at 20 eV, and then
becomes a trough.

This completes the application of the CCC theory to
the spin-resolved data &om Refs. [13—17]. We now look
at spin-averaged reduced Stokes parameters [Eqs. (52)—
(55)] measured by Scholten, Shen, and Teubner [46] and
Sang et al. [47]. The comparison of the measurements
and the CC, CCO, and CCC theories at projectile en-

ergy of 12.1 eV is presented in Fig. 6. For interest we

also relate the measurements to the physical orienta-
tion, alignment, and coherence parameters, as discussed
in Sec. III A [Eq. (56)]. The CCC results were generated
using 13s (N, = 30, A, = 2.0), 12p (N„= 26, A„= 1.8),
12d (N~ = 23, Ag = 1.5), and 8f (Nf = 15 Af = 1.5)
states, all of which generate open channels. We see that
there is very little to separate the theories. All three
can be said to be in excellent agreement with both sets

ol 40 eV
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FIG. 5. Elastic A3& and inelastic A3& spin asymmetry, sin-

glet and triplet L~ for electron scattering on sodium at 40 eV.
The CCC results have been generated using 98, 10p, 9d, and
6f Laguerre basis states (see text for detail). The CCO and
CC theories, as well as experiment, are as in Fig. 1.

of measurements. However, a more detailed observation
shows that given the very small error bars in the two sets
of measurements, the theory favors the measurements of
Scholten, Shen, and Teubner.

A similar situation occurs at 22.1 eV, presented in
Fig. 7, where the CCC results were generated using 12s
(N, = 24, A, = 2.4), 12p (Np ——21, A~ = 2.0), lid
(Ng = 18, Ag = 2.0), and 9f (Ny = 12, Af = 1.5) states,
all of which lead to open channels. Once again there is
not much difference between the theories, though it is
clear that the CCO and CCC theories are better. The
small error bars of the two sets of measurements of the
Stokes parameters allows us to diHerentiate between the
two experiments. What is remarkable is the apparent
sensitivity of the derived parameters, particularly P~ and
P+. These differentiate between the two experiments
much more so than the Stokes parameters. Similarly,
the dip around 60' for the P+ parameter is considerably
lower in the experiment than theory due to the very small
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FIG. 6. 3 P reduced Stokes parameters P&, P2, and P3,
and derived orientation, alignment, and coherence parameters
L~, PI, , p, and P+ at projectile energy of 12.1 eV incident on
the ground state of sodium. The CCC results have been gen-
erated using 13s, 12p, 12d, and 6f Laguerre basis states (see
text for detail). The CCO and CC theories are as in Fig. 1.
The measurements due to Scholten, Shen, and Teubner [46],
and Sang et aL [47] are denoted by o and, respectively. Er-
ror bars shown only if larger than the symbol denoting the
experiment.
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FIG. 9. Elastic electron-sodium differential cross sections
at projectile energies of 10, 20, 22.1, and 54.4 eV. The CCC
results were generated using the same sets as speci6ed in Figs.
1, 3, 4, and 7. The CCO and CC theories are as in Fig. 1.
The experiments of Lorentz and Miller [57] are denoted by o.
Those of Srivastava and Vuskovic [52] are denoted by . The
measurements of Allen et aL [58] are denoted by Q. The most
recent results of Marinkovic et at. [59] are denoted by D. All
measurements have been normalized to the theory. Error bars
are only plotted if they are larger than the size of the symbol
denoting the experiment.

detail of theory and are not as useful for the testing of
theory as are the accurate spin-resolved "ratio" measure-
ments presented in Figs. 1—8.

Having presented most of our results in pictorial form,
we now look quantitatively at the resulting various inte-
grated and total cross sections. It is these types of quan-
tities that are of practical importance in many fields of
research. It is of primary motivation to us to be able
to calculate these accurately. We use the detailed data
above to test the theory which in turn gives us confidence
in the claim that we are able to present reliable integrated
results. In Table II we present integrated cross sections
for electron scattering on the ground state of sodium for
states with principle quantum number n & 4 and orbital
angular momentum l & 3. We do not expect the level
of accuracy to be the same for each state. For example,
given that we do not include l = 4 states in the CCC
calculation the 4f has not been checked for convergence
with increasing l. Total and total ionization cross sec-
tions, as well as total ionization spin asymmetry, are also
presented and compared with experiment wherever pos-
sible.

Though there is quite a good deal of experimental data
for the integrated cross sections, most of it has rather
large error bars and is in good agreement with our results.
On occasion when two conQicting experiments are avail-
able, the theory agrees with one better than the other.
However, there is a particular systematic exception that
is worth discussing. Our result for the total ionization
cross section, which is essentially derived by summing the
integrated cross sections for states with positive energies
[11],is consistently almost a factor of 2 less than the ex-
periments, performed in the 1960s, of Zapesochnyi and
Aleksakhin [48] and McFarland and Kinney [49]. Yet the
corresponding spin asymmetry is in excellent agreement
with the much more recent measurements of Baum et at.
[50]. Given this fact, as well as the excellent quantitative
agreement with experiment for both of these observables
in e-H scattering [11], it is our hope that our total ion-
ization cross section results for sodium are equally good.
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FIG. 10. Inelastic (3 S—3 P) electron-sodium differential
cross sections at projectile energies of 10, 20, 22.1, and 54.4
eV. The theoretical and experimental results are as in Fig. 9.
The measurements denoted by Q are from Refs. [60) and [61].

IV. CONCLUSIONS

We have generalized the convergent close-coupling for-
malism for e-H scattering of Bray and Stelbovics [1]to hy-
drogenlike atoms Li, Na, K, and ions such as He+, Li +,
Be+, Ar +, etc. This was achieved by treating the scat-
tering system on these targets as a three-body problem
of two electrons moving in the Hartree-Fock potential of
the frozen core. The target states are obtained by diago-
nalizing the target Hamiltonian in a large Laguerre basis.
The projectile is expanded in a set of distorted (distorted
Coulomb for ions) waves with allowance for an arbitrary
number of bound states arising from the distorting poten-
tial. Correct symmetrization is ensured throughout. In
the two-electron potential matrix elements at least one
electron is represented by a square-integrable function,
and so at most one of these may be a true continuum
function, ensuring that all potential matrix elements ex-
ist. This allows for the application of the method to
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TABLE II. Integrated (cr ~), total ionization (n, ), and total (oq) cross sections in units of 7rao, as
well as total ionization spin asymmetry (A, ), for electron scattering on the ground state of sodium
at a range of energies calculated using the CCC method. The experimental data of Srivastava and
Vuskovic [52] are denoted by cr„„ those of Enemark and Gallagher [53] by o.t, those of Phelps
and Lin [54] by o„'„ those of Kwan et al. [55] by of, and those of Kasdan, Miller, and Bederson
[56] by O', . The total ionization cross section measurements by Zapesochnyi and Aleksakhin [48]
and McFarland and Kinney [49] are denoted by o, . The measurements of the total ionization spin
asymmetry by Baum et al. [50] are denoted by A;. Cubic spline interpolation has been used when

required. Spin and magnetic sublevel dependent quantities may be obtained by correspondence
with the author.
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0.84
1.14+0.34
1.10+0.44
1.00
0.66+0.27
0.78
0.96+0.19
0.42
4.42
7.16
0.41
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70.9
65.3+13.7
85.2+10.2

20.0
11.9
15.9+4.8
32.2
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36.1+4.3

2.81
2.67+0.40
0.76
0.59+0.18
0.93+0.37
0.85
0.66+0.27
0.74
0.63+0.13
0.23
4.65
7.39
0.28
0.30+0.02

55.0
50.1+10.5
73.9+8.9

40.0
7.62
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24.6
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1.55+0.23
0.53
0.66+0.20
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1.25
1.13+0.17
0.43
0.34+0.10
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0.55
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0.34
0.28+0.06
0.06
2.54
5.34
0.14
0.16+0.02

32.8
28.2+5.9

all partial waves and projectile energies, and reduces the
problem of calculating electron-hydrogenlike target scat-
tering to being able to achieve convergence as a function
of increasing the number of states in the close-coupling
formalism.

We have demonstrated the utility of the method by
applying it to electron scattering on the ground state of
atomic sodium. The method has been applied to the ex-
tensive set of measurements available at an energy range
of 1—54.4 eV with which we generally And excellent quan-
titative agreement. It is particularly pleasing to have
found excellent agreement with the same parameters for
which agreement is quite poor in the simpler electron-
hydrogen scattering system.

We have been able to establish convergence for the
transitions involving the ground state and the erst ex-
cited state at projectile energies above the ionization
threshold by the use of just those target states that lead
to open channels. This conclusion must be seen as transi-
tion and target dependent. In general, we establish con-
vergence by performing a number of calculations with
ever increasing number of states, until convergence is ob-
tained. This does make the assumption that any further
increase, no matter how large, in the number of states
used will not result in a signi6cant change in the observ-

ables of interest.
The only other theory, that we are aware of, which

is able to perform almost as well over the entire energy
range of 1—54.4 eV is the CCO method of Bray and Mc-
Carthy [28j. Though this method is able to treat more
target partial waves using our computational facilities
than does the CCC method, we have found that it is
more important to treat the lower partial waves of the
continuum states more accurately than to treat a larger
number of them. The singlet L~ parameter at 10 eV in-
dicates that it is very important to treat the continuum
very accurately in order to be always sure that the full
set of scattering amplitudes is calculated reliably. Only
the CCC method is able to do this.

It now remains to apply the method to scattering from
excited states, e.g. , look at nP-nD transitions where ini-
tial investigations show that convergence may be con-
siderably more difBcult to obtain. This, however, would
be a reHection on the complexity of the problem rather
than the utility of the CCC method. Initial application
of the method to the 28, 2p, and total ionization cross
sections in e-He+ scattering is yielding very promising
results. We also intend to expand the method further to
apply it to e-2e processes and the "four-body" problem
of e-He scattering. This work is currently under way.
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