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We extend the convergent close-coupling method for the calculation of electron-hydrogen scat-
tering to hydrogenlike targets, atoms, or ions. These include H, Li, Na, and K atoms, as well as the
multitude of ions which have the same isoelectronic sequence as any of these atoms. The reliabil-
ity of the method is independent of the projectile energy, and we demonstrate its applicability by
achieving excellent agreement with a large set of measurements for electron scattering on sodium
at projectile energies ranging from 1 to 54.4 eV. These measurements include spin asymmetries,
singlet and triplet L, reduced Stokes parameters, differential, integrated, and total cross sections,
as well as the total ionization spin asymmetry. The method is found to give better agreement with
experiment than any other over this entire energy range.

PACS number(s): 34.80.Bm, 34.80.Dp, 34.80.Kw, 34.80.Nz

I. INTRODUCTION

Calculation of electron-atom or electron-ion scattering
is of both fundamental and practical interest to physi-
cists. The simplest system, electron scattering on atomic
hydrogen, is difficult to calculate and there still exist dis-
crepancies between theory and experiment; see Bray and
Stelbovics [1], for example. 1t is for this reason that
this system has attracted so much attention. The dis-
crepancies with the angular correlation parameters in
the intermediate energy range have resulted in the de-
velopment of some of the most sophisticated electron-
atom scattering theories such as the intermediate-energy
R-matrix method of Scholz et al. [2], the pseudo-state
methods of Callaway [3] and van Wyngaarden and Wal-
ters [4], the second-order distorted-wave theory of Madi-
son, Bray, and McCarthy [5], the coupled-channel opti-
cal (CCO) method of Bray, Konovalov, and McCarthy
[6], and the convergent close-coupling (CCC) method of
Bray and Stelbovics [1]. These methods all tend to agree
much more with each other than with experiment.

The development of the CCC method for hydrogen has
taken the close-coupling formalism to completeness. The
method is without approximation, but relies on being
able to achieve convergence in the observable of interest
as a function of the number of states in the multichannel
expansion. These states are obtained by diagonalizing
the target Hamiltonian in a large Laguerre basis. The
use of this orthogonal basis ensures that all of the neg-
ative and positive energy states are square integrable,
which allows for the application of the standard close-
coupling (CC) techniques, and convergence being able to
be tested by simply increasing the basis size. It is our
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belief that any calculations larger than those reported
in [1] will not yield substantially different results. It is
therefore our hope that the discrepancies between theory
and experiment are primarily due to the great difficulties
in the experiment associated with working with atomic
hydrogen. Nevertheless, a nagging doubt on the valid-
ity of theory must remain while there is still discrepancy
with experiment for the angular correlation parameters
for this simplest electron-atom scattering system.

Even though the CCC method for electron scattering
on atomic hydrogen has been unable to resolve the above-
mentioned problems, its development has brought con-
siderable success. One way of testing scattering theory is
by comparison with model problems. Application of the
CCC method to the Poet-Temkin [7,8] model problem
of electron-hydrogen scattering, which considers states
with only zero orbital angular momentum, and has been
solved to a high accuracy, showed that the method yields
correct results at all available energies [9]. Furthermore,
it demonstrated that the pseudoresonances, which are of-
ten associated with square-integrable expansions of the
continuum, diminish rapidly and disappear with increas-
ing basis size. We consider these results to be extremely
important. This model problem contains most of the dif-
ficulties associated with treating exchange as well as the
continuum and may be readily used to test the validity of
any general scattering theory. To this end we have pro-
vided a large set of quantitative results for a number of
transitions at an energy range of 1-400 eV for this model
problem [10].

Another most important success of the CCC method
has been the application to the calculation of the total
ionization cross section and spin asymmetry of atomic hy-
drogen by electron impact [11]. Excellent agreement with
experiment indicated that the use of square-integrable
representation of the continuum was practical in gener-
ating observables involving the true continuum. Once
again, due to the large number of states used, no pseu-
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doresonance behavior was evident even though the same
set of states was used across a large energy range.

In this work we generalize the CCC method to incorpo-
rate hydrogenlike neutral targets Li, Na, and K, as well
as ions such as He™t, Li?t, Be™, and Ar"t, i.e., those tar-
gets whose structure is well modeled by the frozen-core
Hartree-Fock approximation. We do this for two reasons.
The first is that we wish to provide a general and reliable
scattering theory that is applicable at all energies and for
all transitions, in the hope that it may be useful to others.
The second is that we wish to test the method against
the many more detailed experiments that are available
for these systems in order to perhaps be able to gain
some insight as to the problems with atomic hydrogen.

Unfortunately, from the theorist’s point of view, com-
parison of theory with experiment can never validate
the theoretical approach, but may certainly invalidate it.
The closest a scattering theory can get to being validated
is by achieving agreement with a “complete” scattering
experiment as envisioned by Bederson [12]. In such ex-
periments all of the quantum observables in a particular
transition of interest would be measured, allowing for the
most detailed possible check of the calculated scattering
amplitudes. Though as yet we are unaware of any such
individual experiments, from the point of view of testing
theory, it is clear that combining a number of different
sets of measurements for various parameters is another
way of achieving this goal. Similarly, but more generally,
it is our aim to provide a complete scattering theory, i.e.,
one where all of the individual scattering amplitudes are
reliable, irrespective of the projectile energy or transi-
tion of interest. In other words, from our point of view,
a complete scattering theory is one which is able to pro-
vide accurate results not just for a single transition, but
all transitions of practical interest at an energy range
where the Born approximation is invalid.

The hydrogenlike neutral target for which there exists
a large variety of reliable measurements is sodium. In our
view, the most important collection of these is that due
to McClelland et al. [13,14], Scholten et al. [15], Kelley
et al. [16], and Lorentz et al. [17]. At an energy range of
1-54.4 eV they measured the ratio of triplet to singlet dif-
ferential cross sections (35S and 3P channels) and also the
angular momentum transferred to the atom perpendicu-
lar to the scattering plane for both singlet and triplet
spin states (3P channel only). Apart from an overall
normalization factor, the absolute differential cross sec-
tion, these measurements are able to test the magnitudes
of the spin- and magnetic-sublevel-dependent scattering
amplitudes. The resolution of spin is of particular impor-
tance to the theorist as the treatment of exchange is one
of the more difficult aspects of the calculation. On their
own, these measurements have the potential to invalidate
many methods of calculation, at least in the projectile
energy range considered. We will show that the CCC
method for hydrogenlike targets is the only method to
date that is not invalidated by these measurements.

It may be considered surprising that the sodium atom
would be such a difficult target for theory. As most of the
polarization of the atom is due to the 3P state it is often
believed that scattering should be readily described by a

multichannel expansion that treats only the first few dis-
crete states, i.e., higher discrete states as well as the con-
tinuum may be readily truncated. Indeed the early 1970s
low-energy four-state calculations of Moores and Nor-
cross [18] have not yet been invalidated by experiment to
our knowledge. Furthermore, similar calculations above
the ionization threshold (see Mitroy, McCarthy, and Stel-
bovics [19], for example) and perturbative methods such
as that of Madison, Bartschat, and McEachran [20] yield
quite satisfactory differential cross sections. This is par-
ticularly the case for the forward angles, which for the
elastic channel are dominated by the polarization of the
target due to the 3P state. However, application of these
methods to the spin resolved data yields quite poor agree-
ment. McCarthy, Mitroy, and Nicholson [21] showed that
even a rough treatment of the continuum had a large ef-
fect on the results, which generally improved agreement
with experiment. A similar observation was made in the
work of Madison, Bartschat, and McEachran [20], where
the effects of the continuum come in at the second or-
der level. A more accurate treatment of the continuum
by Bray [22] also found that its effect was very large
and brought about excellent agreement with experiment.
Subsequently, we showed [23] that the effect of the con-
tinuum came primarily from an allowance for electron
flux in the open ionization channels. In a preliminary
report of this work [24] we showed that the most accu-
rate treatment of the continuum is provided by the CCC
method. It is because the effect of the continuum is so
large on even the elastic spin-dependent scattering am-
plitudes at energies above the ionization threshold, that
the treatment of electron-sodium scattering is so difficult.

Much of the CCC theory presented in this work is
based on a number of previous publications. The first
of these is that of McCarthy and Stelbovics [25], who
showed how to formulate and solve the momentum-space
coupled Lippmann-Schwinger equations in electron-atom
scattering. This partial-wave formalism expanded the
projectile using plane waves and so was unsuitable for
charged targets. A distorted-wave formalism that was
also suitable for charged targets, and generally improved
efficiency in the solution of the Lippmann-Schwinger
equations, was given by Bray et al. [26]. Both of these pa-
pers assumed that the potential matrix elements would
be complex, due to the inclusion of Q-space states via
a polarization (optical) potential. These early applica-
tions of the CCO method had rather restrictive approx-
imations for the complex nonlocal polarization poten-
tial. A less restrictive form, given by Bray, Konovalov,
and McCarthy [27], that utilized symmetric P- and Q-
space operators enabled the CCO method to be applica-
ble to the entire range of projectile energies of interest in
atomic physics. This method was generalized further by
Bray and McCarthy (28] to incorporate a large number
of states in P space, as well as showing that the electron—
alkali-metal scattering system may be readily treated as a
“three-body” problem. The CCC formalism for electron-
hydrogen scattering has been given by Bray and Stel-
bovics [1]. This utilized plane waves for the projectile,
but had real potentials. This fact was used to reduce the
computational resources necessary to solve the very large
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number of coupled integral equations. We combine the
ideas of these papers here to present the CCC formalism
for hydrogenlike targets that utilizes real potentials and
distorted (Coulomb for ions) waves, thus making it ap-
plicable to atomic as well as ionic “one-electron” targets.

II. THEORY

We start by assuming that for the purpose of scattering
calculations the hydrogenlike target, atom or ion, may be
well described by the model of an inert Hartree-Fock core
together with a single valence electron. We also allow for
an addition of a small phenomenological core polariza-
tion potential used to slightly improve the one-electron
energies. Under this assumption we first generate the
core target states 1; by performing a self-consistent-field
Hartree-Fock (SCFHF) calculation [29] for the ground
state of the target T':

(K +VHE —e)y;(r) =0, Y; €T, (1)

where

| 2

‘/HF}bj(r) — I +,2 j{: J/‘dB l| db r,| ¢U(T)
Y1 €T
3 I (1.,) (P
—-Z:/H e )

€T

It is worth noting that the core states may also be ob-
tained by performing the SCFHF calculation for the ionic
core; see McEachran and Cohen [30], for example. In this
way the core states would be optimized for the higher
excited states, whereas we have them optimized for the
ground state. Since the higher excited states are predom-
inantly hydrogenic they mostly feel the residual charge
rather than the core states. For this reason we prefer the
optimization for the ground state.

Having defined the core target states ¢; € C' we can
write the frozen-core Hartree-Fock potential VFC as

VECoh.i(m) = [ == —0—2 Z /d3 Ly _'r’)’ * @;(r)
Y €C r ‘
_ 3,0 V3 ()65 ()
Zj/d BOBD e, @

IEC

where the notation C indicates the set of frozen core
states. The one-electron target Hamiltonian H, (index
indicates target space) is then given by

Hy =K+ VFC 4 vro, (4)

where we take the often used form for the phenomeno-
logical polarization potential (see Zhou et al. [31], for
example) to be

veln) = S5 [~(r/p)°]}- (5)

Here a4 is the static dipole polarizability of the core and
may be obtained for all of the targets of interest to us
from McEachran, Stauffer, and Greita [32], for example.
The value of p is then chosen empirically to fit the one-
electron ionization energies.

We are happy to use the form of the polarization po-
tential above only if it has a small effect in the scattering
calculation. We do not wish to present a scattering for-
malism that is significantly affected by phenomenology.
Fortunately, we find that most of the interesting effects in
the scattering come from the treatment of the dynamics
of the interaction rather than that of the structure. The
effect of VP°!(r) in electron-sodium scattering has been
discussed by Bray and McCarthy [28] using the CCO
model and has been found to be sufficiently small. For
the heavier targets, such as potassium, VP°(r) becomes
more important [33] and forms other than (5) may be
more suitable. For example, McEachran and Cohen [30]
give a nonempirical method for calculating this potential
to first order from the core orbitals. It is also worth not-
ing that the above approximations for the structure ex-
plicitly exclude real core excitation or ionization, and this
places a limitation on the scattering formalism presented.
We assume that most of the current measurements are
primarily influenced by the interaction of the projectile
with the valence electron, though exchange with the core
electrons is allowed. This can only be tested by compar-
ison with experiment.

We write the full Hamiltonian of the scattering prob-
lem as

H=H, + H,+ Vy,
=K, +Vi+ Ky + Va4 Vi, (6)

where V, = VFC 4+ VPol with o = 1,2 denoting projec-
tile or target space, respectively. The electron-electron
potential is V75. The Schrodinger equation is then

(E® — H)[2;y =0, (7)

10ko

where E is the total energy, (+) = +¢0 denotes incom-
ing plane- or Coulomb-wave and outgoing spherical-wave
boundary conditions, S is the total spin, and g, ko de-
note the initial target state and projectile momentum,
respectively. The assumption of negligible spin-orbit in-
teraction is implicit in the formalism.

A. Target states

The problem with the standard close-coupling expan-
sions that utilize true discrete and continuum eigenstates
is that full inclusion of these states in the close-coupling
equations leads to “free-free” V-matrix elements which
are computationally too difficult to handle. We avoid
this problem by ensuring that at least one of the elec-
trons is represented by a square-integrable function, and
so all matrix elements are readily treatable computation-
ally. We allow for one electron to be treated by true
continuum functions, unlike in the interaction region of
R-matrix methods, and so have no difficulty in the tran-
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sition from low to intermediate and high partial waves.
In the CCC formalism we expand |¥; (+)) in a set of

square-integrable states |i2Y) which are obtained by per-
forming a diagonalization of the target Hamiltonian (4)
in a large truncated Laguerre basis of size N. Thus |iY)
satisfy

(iN|Ha|iY) = €N 6, (8)
where, expanding the notation |i2)

_1¢ (T))/lm(r)a (9)

(rli) = (rlintm) =

we have
N;
= Cribu(r). (10)
k=1

The coefficients C!, are obtained upon the diagonaliza-
tion, and the Laguerre basis () we use is

A (k )' 1/2
Sua(r) = ((2ll+ 1+ k)')
x (Ar)! L exp(—Air /2) D242 (M), (11)

where the Lilflz()qr) are the associated Laguerre poly-
nomials and k ranges from 1 to the basis size N;. Thus,
for a particular orbital angular momentum ! the states
¢£’,‘ (r) and corresponding energies ef:’l‘ depend on two pa-
rameters A\; and N;. These parameters may be varied and
are typically different for each I. We use N to indicate
the full set of states generated for all [ in the target state
expansion.

The main advantage of the Laguerre basis is that it is
orthogonal, unlike the Slater basis, for example, and so
we are able to perform the diagonalization with an arbi-
trarily large V; without encountering linear dependence
problems. This makes our basis ideal for convergence
studies. After the diagonalization we have NV, square-
integrable states for each . We order them in ascendlng
values of energy. The negative energy states d) }(r) con-
verge pointwise to the true discrete eigenstates ¢n1 (r) of
the target Hamiltonian as the basis size N; is increased.
Apart from a normalization factor, the positive energy
states resemble the true continuum states until the expo-
nential falloff dominates.

In Table I we show the one-electron energies for the
four lowest-lying sodium s states arising from the diag-
onalization of the target Hamiltonian (8) at a range of
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basis sizes. A difficulty in the CCC method is that since
the exponential falloff A; in the Laguerre basis is fixed to
be the same for each ¢,;(r), n = 1, Nj, the generation of
the target states is inefficient as a function of basis size.
This is indeed evident in Table I, where we see that for
A, = 2 a basis size of 30 states is necessary to adequately
describe the first four s states. This problem diminishes
rapidly with increasing ! as the resulting states become
more hydrogenic in this case. Fortunately, we often find
that convergence in the scattering observable of inter-
est is obtained by using a truncated expansion [24]. By
this we mean that even if we obtain say N, states upon
diagonalization, we may use only a subset of these, typi-
cally consisting of those states which would lead to open
channels. This works very well for the sodium target at
the most difficult, intermediate projectile energy range,
above the ionization threshold. It may be that we will
not be so fortunate for heavier targets. If necessary, we
may readily modify the method by replacing the negative
energy states with the true eigenstates, and orthogonal-
ize the positive energy states to the eigenstates, together
with a suitable modification of the target state energies.
This may be helpful for the potassium atom, and ions
which have this same isoelectronic sequence.

The full set of N states [¢') form a quadrature rule for
the sum and integral over the complete set I of the true
target discrete and continuous states |7), i.e.,

S S
w3 = Y maei) =

el

= lim Z [iN) N wS )y,

ioko

(12)

The nature of the quadrature rule has been discussed in
detail by Yamani and Reinhart [34], as well as Stelbovics
[35]. This expansion gives rise to the multichannel func-
tions defined by

£S5y = N ey, (13)

%0 kO

where the zero subscript in |f5{') indicates the pair ig,ko.
For brevity of notation we write

S(+ . .
T = A Dl fa)

= hm llIIloko) (14)

TABLE I. One-electron energies (e€V) of the first four s states of sodium calculated by diagonal-
izing the target Hamiltonian (8) in a Laguerre basis (11) of varying size N, and A, = 2.0. The
values of a4 and p in (5) are 0.99 and 1.44, respectively. See text for more detail. The experimental

values are due to Moore [51].

N, 10 15 20 25 30 Expt.

State
3s -4.842 -5.077 -5.129 -5.137 -5.139 -5.139
4s -1.881 -1.932 -1.945 -1.946 -1.947 -1.948
5s -0.339 -0.984 -1.019 -1.022 -1.022 -1.024
6s 1.828 -1.125 -0.539 -0.614 -0.628 -0.630
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B. Coupled equations

In the following we assume that the projectile is an
electron, and so exchange must be considered by sat-
isfying antisymmetrization properties of the total wave
function. For positron scattering we do not as yet con-
sider positronium formation, and so, by dropping ex-
change and changing the sign of the relevant potentials,
the method is only valid at an energy range where this
cross section is negligible. Interestingly, for energies be-
low the Ps formation threshold of atomic hydrogen, con-
vergence in the single-center expansion employed in the
CCC formalism is only obtained by inclusion of target
states with [ < 15 [36].

Taking the origin to be the center of mass, the total
wave function for electron scattering | ¥ (+)) of the three-
body problem satisfies the symmetry property

(rara W20 = (-

ioko

1)5 (rory |5, (15)

where S = 0,1 for singlet and triplet scattering, respec-
tively. Thus the multichannel expansion functions (13)
are not arbitrary, but satisfy

@GN FENY = N e
= (-1 ) SENIFSN). (16)

Using the limit notation a little loosely, the total wave
function satisfies the boundary condition

lim L (rara|Uo)) = (ralkGT) (rlio). (17)
To explicitly symmetrize this numerically, we introduce

the space exchange operator P, and write (14) as

s 1
W) = 5L+ (-

DR Jim (SN (18)
The correct boundary conditions are then automatically
imposed if we ensure that |¥7} ) satisfies (17). Note
that even without the condition (16) the form (18) satis-
fies (15). However, such an expansion on its own is too
general and leads to nonunique solutions off the energy
shell [1].

We are now in a position to derive the coupled equa-
tions. Substituting (18) in (7), with N — oo limit being
implicit, we have

(B® —H) [e5Y) = (-1)° (B - B®)) P|wsN,).

(19)
Expanding H on the left-hand side, and subtracting an

arbitrary distorting potential U; from both sides, this
becomes
(B®) — K — Uy — H) [U5Y,) = VEN ISR, (20)

where

Nl\Dzolm) = VSN U1)|q’lok0>

(
= [V1 - Ui+ Vi2
+(-1)%(H - EM)PJ¥IY).  (21)

Suitable choices for U; will be considered at a later stage.

We now project by (k(7)iY|, where we use (—) so that
E + 10 — (e —i0) = E + 10 — €, to get
— ey [N, = (k!

(ROITIED) — ¢ iy VPV REL),

(22)

and where the use of (8) is implicit, and the distorted-
wave states |k(¥)), discrete and continuous, are solutions
of

() — Ky — Uy)[®)) = 0. (23)

In coordinate-space representation

(r|kE)y = (2/m) 2 (kr)~ Z berior o)y, (k,r)

XY (#) Y (k), (24)

where o, is the Coulomb phase shift, ur(k,r) is real and
has the asymptotic form

ur(k,7) = Fr(kr)cosdy, + Gr(kr)sinéy, (25)

and Fr(kr) and Gr(kr) are the regular and irregu-
lar Coulomb functions, respectively. For plane waves
(U1 = 0) both o, = 0 and é6; = 0. The introduction
of the complex phase factor e**(?2+9) does not destroy
our capacity to solve the coupled equations using primar-
ily real arithmetic.

From (22) we can write

W3R,) = liok( )
G A
0Ro 26
> i —y -
where |i0kg )} satisfy
0= (E(+> — Ky —Up — € ) S (27)
= (E — €k, — €n ) [iN k), (28)

and ensure that the boundary condition (17) is satisfied.

The symmetry condition (16) is implemented by con-
sidering the matrix element of V;7V in (26) which is pro-
portional to E in (21), via

(~1) Bk VY|P Y fin fd)
= (D) E Y (ki) @ 150
=B (Kl (iml fa)
= EkOFIR Y ik fag), (29)
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“identity” operator
= 3| (30)

acts in projectile space. A more general way to imple-
ment condition (16) is to introduce an arbitrary nonzero

where the

(RO VN EER,) = (RO Vi~

Uy + Viz — 6EIN +

constant 6 such that

(X 1fm0) = (L= 0)(i|f50) +0(=1)%(im|fag")- (31)

Then, using (29) and (31) we rewrite (21), dropping the
(4+) notation, to give

(-1)°[H — (1 — )E] ,|\Illoko) (32)

We find the interesting result that any nonzero 6 in our Vg” matrix elements leads to a unique solution, and so for

simplicity we suppress explicit # dependence of V3V

, and take @ = 1. A value of zero still leads to a unique solution

on the energy shell, but off the energy shell the results are not unique, which causes numerical instability. For a

detailed discussion of these issues see Ref. [37].

Finally, to get a coupled set of Lippmann-Schwinger equations we premultiply (26) by (szv kf,—)|V[f N

(KN TSN iok$ D) = (ki |V5‘N|zok(+’>+2;§]f

where the T3V matrix, for potential VEN = VSN _ Uy,

is defined in the usual way
(KNITEN |iok$D) = (N VEN N, (34)

In order to extract physical observables we need to re-
late the distorted-wave T3 matrix to the physical TSN
matrix. Following the work of Gell-Mann and Goldberger
for eigenstates [38], we rewrite (26) for U; = 0 as

1

ks)dso+ BT — Ky — e

<1f |‘I’zgko> = (Zf |VSN|‘I’zoko>

(35)

and using (27) relate the plane waves |ky) to the distorted
()
waves |k ) by

1

(F)y ;¥ _
I'Lfk ) =lifks) + E® _ K, __ejfv

Ui ES). (36)

The physical T5" matrix may then be extracted from
the distorted-wave 777" matrix by the relation

(ki | TN ligko) = (kgif [V WY )
= (ki IT5 lioky")
+(k$ U1 ko)d 10. (37)

We now look at suitable choices for the distorting po-
tential Uy (r). For asymptotically neutral targets we may
take Ui(r) = 0, i.e., take the plane wave representation
of the projectile; see Eq. (23). In this case there are no
bound states of the projectile and the sum and integral
in (33) becomes simply an integral from zero to infinity
over the energies €, = k?/2. In performing this integral
we wish to ensure that most of the detailed structure
in the integrand lies at small ¢,. We find that due to

and obtain

(ki [VEN [N k) (RO TSN ok D)
EM —eN — ¢ ’

(33)

[

the —Z/r factor in (3) the V-matrix elements in (33) go
out further with increasing Z, which makes the numeri-
cal analysis more difficult. This problem is minimized by
taking

7z | ¥ (r') |2
pol 2 d31 J'
PR Z/ Ir—r’l

IGC
/ d3r' |¢’ (38)

where we typically take ¢; to be the ground state. This
form of the potential removes the —Z/r factor in (32) due
to V7 and so ensures shortest-ranged V-matrix elements.
For neutral targets this potential is asymptotically zero,
but for charged targets it is the Coulomb potential due
to the residual charge. Therefore, the required bound-
ary conditions are satisfied by this form of the potential
for both neutral and charged targets. This form of the
distorting potential usually leads to a number of bound
states, in fact an infinite set in the case of ionic targets.
We include as many of these as necessary for convergence
n (33), typically around five per partial wave.

Note that apart from the asymptotic part, the choice of
the potential in the inner region is arbitrary. The results
for 75N must be independent of the choice of Uy (r) for
small r, which we check by varying ¢; in (38). The choice
above is purely a numerical technique in order to simplify
the solution of the integral equations (33).

UI(T)

C. Solving the coupled Lippmann-Schwinger
equations

We solve the coupled Lippmann-Schwinger equations
for the distorted-wave T matrix by expanding (33) in
partial waves J of the total orbital angular momentum.
The reduced V' (or T') matrix elements are defined by
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(LEOn || VIY || n' I L) > CMmM; oM m M’/dk/dk Y ar (R)Ypap (B Y (il | VSN | k()Y
M,m

M om!

(39)

where I = (—1)!*% = (=1)"+L" is parity and C denotes a Clebsch-Gordan coefficient. For scattering on a nS state
we require matrix elements corresponding only to the “natural” parity II = (—1)7. If scattering on target states
with nonzero orbital angular momentum then the separate set of equations corresponding to the “unnatural” parity
IT = (—1)7*! also arises. The reduced matrix elements may be evaluated with the use of Eqs. (9), (24), and (32).

All radial integrals are calculated to a specified accuracy, typically 0.01%, which is varied to ensure stability of the
results. This is achieved by integrating out to around 200 or 300 a.u. on a sufficiently fine radial mesh. Variation of
the cutoff radius and the spacing in the radial mesh is used to control the precision of the calculation. For the most
long-ranged integrals, which fall off as 1/r?, we can also complete the integration to r = co by employing analytical
techniques, though this is rarely necessary.

We now proceed in the same way as in Ref. [1], which we incorporate here for completeness and ease of reference. In
order to reduce the problem of solving the coupled equations using primarily real arithmetic we define the K matrix

in terms of the T" matrix by

N{
(Lkaln || K3 || nolokoLo) = > > (Lkniln || TSR || n'Uknu L)
ll LI /7
((sll[OOL Loén no T ik Ill<L k :pl'n' || K H nolokQL())) (40)
where ky; is defined for 1 < n < NP < N, for which
kni = V2(E — €n) (41)

is real. In this case we say that the channel nlL is open, and if F < €,; we say that this channel is closed. For a
particular [ the number of states which lead to open channels is Ny.
With this definition, substitution into the partial-wave expansion of (33) results in

(Lknin || KSN
Ny

H nglokoL()) = <Lknlln || VJ SN H TlolokoLo)

| UKL

(Lkpln || V£
+ZZ7’2 ln_en,l,_ek,

1" L'n'=1 o

This is solved for the K matrix using real arithmetic, and
the T matrix is obtained by solving the much smaller set
of equations (40). Note that the K and V matrices are
actually complex due to the phase factors in (24), but
as these factors occur as complex conjugates in the inte-
grand above, they are trivially factored out. The nota-
tion P is used to denote a principle-value-type integral
for k' € [0,00) with corresponding energy in the denom-
inator € = k'2/2. The introduction of the potential
U, requires the summation over all of the bound states
(exr < 0) of this potential. Note that the sum over n’
in (42) may be truncated to include fewer states than
those generated by the Laguerre basis size N;.. For ener-
gies above the ionization threshold, we typically obtain
convergence by truncating this sum at Np, i.e., use only
those states which generate open channels.

We solve the coupled integral equations (42) for each
partial wave J, parity II, and total spin S by replacing
the integral with a quadrature rule. The bound states
then become like extra quadrature points with unity for
the weight function. There are many possible choices for
quadrature rules; see Bransden, Noble, and Hewitt [39]
and references therein, for example. There does not ap-

<L k l/ ! H K H ’ﬂolokoLo) (42)

[

pear to be one choice that is superior to all others, and
so a little flexibility is required. The major problem to
overcome is that due to the singularity whose position
is dependent on the intermediate energy E — €,p. We
address this by splitting the integral into a number of
intervals, one of which is symmetric about the singular-
ity. We treat the singularity by taking an even number
of Gaussian points in this interval. Convergence, with
respect to the integration over k' in (42), is established
by variation in the number of points in each interval; see
[1] for a little more detail.

On replacement of the integral by a quadrature rule,
(42) may be written in shortened notation as

KN =ViN +> w VENKEY, (43)
n

where the single sum over n contains all of the sums in
(42). The weights w, contain the integration weights
divided by the energy term. To solve this equation we
form a closed set of linear equations by letting f run over
the same range as n. Replacing f by n’ to indicate this,
we have
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Vns;,fv = z ((sn’n - wnvns’;{) KSlN

= Z (bnin/wn — Vi k) wK3N. (44)

As both 8, /w,, and V5V are symmetric on interchange
of n and n/ we need to solve the linear system of the form
AX = B, where A is a real symmetric matrix.

In the earlier work [1] this was done by storing the ma-
trix A in compact (one-dimensional) form. However, this
requires further computational storage, on top of the V'
matrix elements. Here we avoid extra storage for A by
using V for both storing the potential matrix elements
and in solving the resultant linear equations. To do this
we store the singlet (S = 0) V,3¥ matrix elements in the
top half of A/, and the triplet (S = 1) elements in the
bottom half, taking care that both the singlet and triplet
diagonals are stored correctly. Invoking the LAPACK rou-
tine ssysv [40] first for the singlet case solves the lin-
ear symmetric system AX = B without destroying the
bottom half of A, which contains the triplet potential
matrix elements. A subsequent call to SSYSV solves the
triplet linear equations. The size of the calculation is
then dependent primarily on the storage required for the
V-matrix elements. For example, a typical large calcula-
tion that treats 100 channels with 50 quadrature points
in each results in a 5000 x 5000 single-precision real ma-
trix which takes 100M of core memory storage. On our
SUN SS10/512 two-processor workstation with 256M of
memory we may readily run two such large calculations
simultaneously.

We find this nonperturbative method to be the most
efficient way of solving the linear equations for the lower
partial waves. However, we can also employ an iterative
procedure such as given by Schneider and Collins [41],
which is guaranteed to converge, and does so rapidly for
the higher partial waves.

The number of partial waves J for which (42) is solved
varies as a function of energy. In the calculations consid-
ered we progressively increase from maximum J = 10 at
1.0 eV to J = 80 at 54.4 eV. Upon solution of (42) for
the K matrix, the T-matrix elements are found by solving
(40) which are then used directly to generate the scat-
tering amplitudes. There are no averaging procedures of
any kind.

ITI. RESULTS

In this section we test the CCC method for elec-
tron scattering on hydrogenlike targets by application
to electron-sodium scattering. It is for this electron-
hydrogenlike target scattering system that there exists
arguably the most wide range of detailed experimental
data. The existence of spin resolved measurements at a
range of projectile energies of 1-54 eV allows for an un-
precedented test of the theoretical approaches. We apply
the CCC theory at every energy where these data are
available, as well as at a few other energies where there
is some other detailed experimental data.

A. Some definitions

From the partial T-matrix elements of (40) we gen-
erate the magnetic-sublevel and spin-dependent scatter-
ing amplitudes f3 ;m,(0) in the collision frame (z axis is
parallel to the projectile) for the transition n;l; to nyly,
where —I; < m; < I; and —ly < my < ly. These have
the symmetry properties

ey (0) = (1) T (6). (45)

For scattering from s states it is convenient to drop all
reference to the pair /;m; and drop the index on my,
which we will do as in this work we are interested in
scattering from the ground state of sodium.

For elastic scattering we also drop reference to the pair
lym¢ and write the differential cross section as

a35(0) = [IF°(0)1* + 3£ (8)[°] /4. (46)
The ratio of triplet to singlet scattering is given by
r3s(0) = |F1(0)1%/1£°(6)I%, (47)
which is related to the (up-down) spin asymmetry
1-— T3s (0)
A = ——=.
0 = 153r.00) )

For the purpose of presentation of results we prefer the
use of the spin asymmetry rather than the ratio as the
for