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In this work we review some aspects of the semiclassical dipole impact approximation for isolated ion
lines with a view to the questions on Z scaling raised by two recent experimental studies. Some theoreti-
cal and practical aspects of line-shape calculations are discussed. Detailed calculations are performed in
the semiclassical (dipole) impact approximation for the Li isoelectronic 3P-3S line. Particular emphasis
is given to inelasticity effects. In contrast to previous calculations, very good agreement is obtained for
the lighter elements of the isoelectronic series. Ion dynamical corrections are also considered and are

found to be negligible in the dipole approximation.

PACS number(s): 32.70.Jz, 32.30.Jc, 32.60.+1i

I. INTRODUCTION

Recently some experimental studies [1-3] have found
significant deviations from the Z scaling predicted by the
impact theory [4-8] for isolated ion lines. The present
work makes a detailed study of the 3P-3S line in the Li-
isoelectronic series in the semiclassical (dipole) impact
approximation. Quadrupole terms are not considered in
detail, although they are known [8,9] to often be impor-
tant for multiply charged ion emitters. As one can see
from the theoretical calculations presented in Refs. [1,2],
even within the dipole approximation there is significant
disagreement between the different theoretical ap-
proaches as well as with experiment. Before one exam-
ines higher multipoles (whose contribution can change
the Z scaling), it is important to have reached a con-
sensus on the dipole terms. This work stresses the impor-
tance of inelasticity in these calculations by calculating
the relevant broadening operator exactly (within the
semiclassical dipole approximation without resonances).

The paper is organized in four sections. The first sec-
tion introduces some notation and deals with practical
details of a line-shape calculation. The point is not to

compare line-shape codes, but to point out some physics
of the collision operator that should be included in a gen-
eral line-shape code and also to point out that such a cal-
culation, even without a fully optimized code, is usually
fast enough that no ‘“‘shortcuts’ are needed. The second
section applies some of the above results to the case of
the experimental results of Refs. [1-3] and shows that
the predicted Z scaling is a “simplified” impact theory
prediction and valid only under some assumptions. The
third section examines the effects of ions and obtains an
upper bound for their contribution to the width by calcu-
lating ion-dynamical corrections rigorously within the
impact approximation. The last section discusses the re-
sults of a full calculation (with quasistatic or impact ions)
and their implications for the Z scaling.

II. THEORY AND PRACTICAL CONSIDERATIONS

“Conventional” [10—12] line-shape calculations use the
impact (or unified) approximation for electrons and the
quasistatic one for ions. In the impact approximation
[4-8] the line shape L (o) is given by

L(@)= =L [dE W(ERed p{afl[U0—0gl +®] |a'B )ds M

a,a’ are states of the initial level and 8,8’ of the final level involved in the transition in question (in principle they are
complete sets of states), Re denotes real part, W(E) is the ionic electric microfield distribution, which is calculated, for
example, by APEX [13], I is the unit matrix, d is the dipole operator, and ® is a collision operator with matrix elements
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with n the electron density, f(v) the Maxwell-Boltzman distribution, V’(z) the time-dependent (single) plasma-
electron—emitter-electron interaction in the interaction picture, and with o’* and B’ eigenstates of the upper and lower
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levels, respectively (in principle they are complete sets of states). Repeated indices are summed over, of course. The

function assures that the velocity v and impact parameter p satisfy vlp. The limits of p integration are p_;, <p<p_...
The standard values for the two parameters are p_,, =0.68A, with A the Debye length and (with a, the Bohr ra-

dius, Z,,, the emitter charge, and n,,n, the principal quantum numbers of the upper and lower levels, respectively)
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(3)

If n, =n,, the difference of their squares should be replaced by n2.
We now introduce some new notation. First, we use a dipole interaction with E(¢) the electric field,

V(t)=d-E(t)=er-E(2) , 4)

where r is the position vector of the atomic electron. Now we want to separate the purely atomic part (which has the
predicted Z scaling) and the part that depends on the details of the collision process. This is, practically speaking, al-
ways useful, not just because of the Z-scaling questions. We therefore define two quantities:
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in terms of which (after the angular average)
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The question now is the evaluation of ¢, (for “direct”)
and ¢, (for “interference”). Before proceeding, we note
Voslamber’s [14] valid criticism that the impact (in con-
trast to the unified) theory is not generally applicable for
arbitrary o,,w, pairs. We do not discuss this point any
further here. Of course, for isolated lines (which is our
interest here), ;= —w, and the above criticism does not
apply. The evaluation of ¢, has been done in the case of
isolated ion lines, in the nonshielding limit, using hyper-
bolic paths for the perturbing electrons by Sahal-Brechot
[15], extending the results of Alder et al. [16] for a repul-
sive interaction to the attractive case. Feautrier [17] has
further reduced these expressions to integrals over veloci-
ty. Calculations of some relevant functions have been
done by Klarsfeld [18,19] and excellent analytic approxi-
mations for the a function of Eq. (9), valid for all parame-
ter ranges, have been given by Poquerusse [20]. Recently,
Dimitrijevic and Sahal-Brechot [21] have obtained (also
given correctly by Poquerusse’s empirical fits) some im-
portant asymptotics analytically (there is a L factor miss-
ing in their expressions for K' due to a typo). Since the
derivation of these expressions is not widely known, we
outline it in Appendix A.

The net result is that, for isolated lines,
Ointl@1, —@)=2Red (0}, —®;)=;p(w;). Let us em-
phasize again that ¢ is an impact and not a unified theory
operator, and that the o dependence is an inelasticity

=

dependence. Since the word “inelasticity” is also used
with different definitions [22], we define it here to mean
that the energy difference between the states connected
by a collisionally induced transition cannot be taken ap-
proximately equal to 0. With the above relation between
the direct and interference terms in mind, we write the
final result:
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where the function a is given by
a(&e)=e™8|geK ((|Ele)|K (€l )

where K is a modified Bessel function of imaginary or-
der, K’ is its derivative with respect to the argument, €(v)
is the eccentricity, given by

elp,v)=V'1+(p/s)? (10)

with
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where Z=2Z_,+1 is the spectroscopic charge number
(i.e., Z=1 for neutral species, 2 for singly ionized species,
etc.) and p is the impact parameter. Hence €., is the
€(v) corresponding to the minimum impact parameter
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and €,,,(v) corresponds to the maximum impact parame-
ter;

§i=w;s/v (12)

is a measure of inelasticity.

Numerically speaking, the calculation of (1) requires
the calculation of the relevant broadening operator in
some basis, a matrix inversion, and an integration over
electric microfields. As far as the basis is concerned, we
can use a field-independent or a field-dependent basis. A
field-independent basis is normally used, as it has the ad-
vantage that the collision operator will only need to be
evaluated once and for all, and the disadvantage that the
quasistatic plasma-emitter interaction can be evaluated
to—at best—second order in the self-energy (although in
practice only the first order is used), i.e., at most the same
order as the collision operator. In practice the advantage
of the field-independent basis normally outweighs its
disadvantage. As far as the integration goes, excellent re-
sults are obtained using say 19 Gaussian quadrature
points, covering the integration range from O to infinity
(using a transformation for high fields to map them onto
a finite region) rather than 50 or so as reported by Calisti
et al. [23]. We use just 15 Gaussian quadrature points
for the region from 0 to 9 Holtzmark fields, and 4 fields
for the remaining region (with the transformation
E—1/E). This 1is hardly surprising: Writing
L(w)= [dE W(E)J (w,E), although, J(w,E) as a func-
tion of w, for a particular E field may be sharp, as a func-
tion of E, it is quite smooth. We could probably have
used even fewer fields. We want to emphasize that (apart
from using selection rules [12]) the code is not at all slow
for the purposes of calculating a single line. Typical run
times for 45-50 frequency points range from at most (in-
cluding validity checks) a second for a 3P-3S isolated ion
line (such as the transition to be discussed later) to a few
minutes for high principal quantum number overlapping
neutral lines on a Convex computer. The most time con-
suming part for the partially overlapping case, i.e., when
w(,w, are neither opposites nor equal to O (this time
Voslamber’s objections are valid, but we nevertheless
want to give an idea of the difficulty in terms of CPU
time), is typically the inelastic collision integral calcula-
tion, which for a 21X21 (0,,»,) grid takes about 35
seconds for the partially overlapping neutral line case
(and this will be only done once). Further optimization
[such as the diagonalization approach of Calisti et al.
[23,24], which eliminates Ny X N, inversions (N is the
number of microfields for the integration and N is the
number of frequency points where the line shape is
desired) in favor of Ny diagonalizations, plus, if no ap-
proximations are made, Ny inversions of the transforma-
tion matrix] can drastically reduce execution time. How-
ever, some care must be taken in such an approach, as er-
rors in the eigenvectors can sometimes amplify in the cal-
culation of the autocorrelation function.

The main point of the above discussion is that, at least
for lines such as the ones considered in Refs. [1-3] [for
which (dipole) quasistatic broadening is not important
anyway] and for simple applications (excluding opacity

calculations, for example), a fully consistent (dipole)
impact-theory calculation is not much slower than ap-
proaches based on Gaunt factor estimates (as, for exam-
ple, in Refs. [25-27]). Another popular simplified calcu-
lation (for example, Ref. [23]) is along the lines of Ref.
[28]: This introduces a collision operator that incorpo-
rates some of the inelasticity and is also a unified theory
operator, via “Lewis-type” [29] cutoffs.

An important thing to keep in mind in the case of iso-
lated ion lines where the inelasticity must be taken into
account is that, as |w,|— », ¢(w,) (from now on we
denote by ¢ the real part of ¢,) does not, as one might
expect, decay to O (or to the strong collision estimate),
but tends toward a constant value (plus the strong col-
lision term) if the minimum impact parameter is allowed
to go to 0. This is illustrated in Fig. 1. This constant
value comes from the small-e region, where the a(§,¢€)
function approaches the constant value 7/v'3~1.81 as
£—> o and €e—1. Note that this constant value is by no
means negligible. This can be important as far as Z scal-
ing is concerned and is discussed in the next section. In
contrast to this behavior, Griem, Blaha, and Kepple’s
(GBK) [28] method of accounting for inelastic collisions
leads to a ¢ operator that decays to O for large energy
separations. (Let us again emphasize that the energy sep-
arations refer to the energy difference of the upper and
lower levels from the levels that broaden them, not the
separation from the line center.) Another point that is
relevant here is the “spike” for small w. That this feature
must be there is very easy to see from the A-function ex-
pression (Appendix A). It must be mentioned that this
“spike” occurs in a (small-£) region where the semiclassi-
cal Coulomb excitation theory is most valid (large veloci-
ties, small energy spacings). Collision operators that are
monotonically decreasing with increasing energy spacing
are likely to underestimate the width, although how seri-
ous this is depends on a number of factors, including the
energy spacing and the “width” and height of the
“spike.”

For neutral and isolated ion lines, it is easy to generate
a table of collision operators vs frequency separations and
to subsequently interpolate to obtain the actual collision
operator. For energy separations that are large enough
(outside the range of our tabulated values) we can use the
asymptotic collision operator ¢,,, should such a need
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FIG. 1. ¢(w) vs energy separation w, at n =1.8X 10" e/cm’,
T=12.5 eV (as in [1]). Also shown (straight lines) are the
asymptotes. + denotes the 3D-3P and X the 3P-3S energy sep-
aration.
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arise [it need not arise in an actual calculation, but ¢,

may be useful for approximate analytical expressions for

¢(®)]. The asymptotic limit of ¢ is
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where @, is the strong-collision term (Appendix B) and v,
is defined as, for example, in Kepple [22]:

3 172
v, = |= #Z(Z—1) . (14)
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One must keep in mind that this is a hydrogenic esti-
mate. It is, for example, too pessimistic for ions, and nei-
ther is the hydrogenic p.;, unitarity ?utoﬁ especially
good in the nonhydrogenic case (where it can underesti-
mate the real minimum impact parameter by a factor of
5). Figure 2 illustrates this point.

In other words, using this cutoff and estimating the
minimum impact parameter as

(1= (v, /0)?]"?€*Z o Z er

(p)= 15
Pain0) 4megmuv, 1s)

violates unitarity (and this happens for a v region that is
around the peak of the Maxwell-Boltzmann distribution)
and thus overestimates the electron width for C1v at all
plasma parameters considered. This is the reason for not
including C1v in Fig. 1. For the other species, although
the hydrogenic minimum impact parameter is too small,
our semiclassical minimum impact parameters used in
the error analysis are always larger than the above
unitarity-based minimum impact parameter, and thus un-
itarity violation is covered by our error bounds. This is
not true for ion perturbers where unitarity considerations
determine the minimum impact parameter over a large
velocity range.

For all calculations we have used a self-consistent
velocity-dependent minimum impact parameter deter-
J
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FIG. 2. ppia(v) vs v for Nv; n =1.8X10" e/cm?® T=12.5
eV. The solid line is unitarity cutoff, the dashed line is “de Bro-
glie” ppin, and the dotted line is hydrogenic unitarity cutoff.
The “wave-function extent” cutoff is 0.95 A.

mined by solving the equation
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with Aw; and Aw; the absolute energy differences of the
kth upper-level perturbing state from 3P3/? and the jth
lower-level perturbing state from the 3S state and the 4
function is defined in Eq. (A33). We also use the correct
v, (i.e., the maximum velocity below which no unitarity
violation occurs even for p_;. =0) rather than the hydro-
genic of Eq. (14); this is to be understood from now on
whenever we use v,.
The asymptotic limit (13) is “reached” when

TéM 3 w} 0.6(3(v })*8(v, —v;)
s 3 max (32v7, R 17)
em (1, —arctany,) (n,—arctanmn,)
with
771:[62(Pmax,10_501)—1]‘/2 N
(18)

1=V {ppnlv,(1+107%) v} — 1,

and

v;=min(v,,3¢v)) . (19)

Appendix B has some details. In practice w, is very
large, reflecting the slow convergence to the asymptotic
limit. Numerically, however, this introduces few prob-
lems.

This asymptotic behavior, although correct within the

semiclassical impact approximation, may be questioned
on the grounds that for small impact parameters the
semiclassical approximation is questionable. If one then
cuts off the impact-parameter integration at some
minimum impact parameter, one gets instead a ¢(w) that
does decay to 0 as w— o« (but one also gets a strong-
collision term, which may be thought of as an uncertainty
originating from the unknown strong collision contribu-
tion). Within a semiclassical theory, only error bounds
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may be obtained for this strong-collision term. Since the
energy separation between levels increases with increas-
ing charge, questions on the asymptotic behavior of ¢(w)
which is determined by the small-€ region of a(&,€) are
very important for multiply charged ions and these ques-
tions cannot be answered conclusively within a semiclas-
sical formalism. For the calculations that follow (as is
clear from Appendix B) we have used no minimum
impact-parameter cutoff for v <v_, but we have also done
calculations with cutoffs, in order to obtain error bounds.
We want to emphasize that our operator is a reasonable
one in that it does not violate unitarity of the relevant S
matrices and is no less justified than any other semiclassi-
cal operator. Indeed, to use a semiclassical approach, the
errors associated with the cutoffs should be small. We
will therefore use this operator for all calculations, sup-
plemented by an error analysis as outlined in Appendix
C. In Fig. 3 we compare some collision operators for
N v, Ne viil, and O VI for some plasma conditions of the
experiments of Ref. [2]. The hydrogenic limit of GBK is
of course higher, since GBK corresponds to a straight-
line-path formalism and assumes that the minimum
cutoff is due to the finite wave-function extent, both of
which are reasonable assumptions for ICF-type plasmas,
for which this operator was proposed. For the experi-
ments of Refs. [1-3], however, the conditions are far
from ICF-type conditions and the use of the GBK opera-
tor may be problematic. The Dimitrijevic-Konjevic (DK)
operator is also very different from ours for large energy
separations.

Since complete profile calculations for, say, the 3P-3S
lines of Refs. [1-3] are fast for our purposes, we use the
exact semiclassical operator instead of semiempirical for-
mulas. Once one has an impact operator, one can use the
method of GBK to construct an approximate (unified
theory) frequency-dependent collision operator, in the
Lewis cutoff spirit, but without the discontinuities in-
volved in the original Lewis cutoff method.

II1. Z-SCALING PREDICTIONS
OF THE IMPACT THEORY

The impact theory is ‘“‘supposed to” (that is, if we
neglect inelasticity considerations) predict [1,2] a zZ?
scaling. This is easy to understand, since the width and
shift operator in the impact or unified theories that use a
dipole atom-plasma interaction is proportional to d-d,
with d the atomic dipole operator. Since the Bohr radius
goes as 1/Z, we expect the Z % scaling. We have
checked this assumption by graphing the quantity V' fAA
for the 3p-3s and 3p-3d oscillator strengths f vs Z ! for
lithiumlike carbon, nitrogen, oxygen, fluorine, and neon.
Data were taken from Lindgard and Nielsen [30] and
Wiese, Smith, and Glennon [31] and also from Cowan’s
code [32]. To expect Z ~2 scaling, these should be pro-
portional to 1/Z, as these are proportional to the reduced
matrix elements in question. Proportionality to 1/Z was
very well satisfied (to better than 0.6% in all cases).
Quadrupole and higher multipole interactions should be
important only for the more highly charged ions, thus in-
creasing their widths from the simple 1/Z? prediction
and making the overall scaling more like 1/Z. As men-
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FIG. 3. ¢(w) vs energy separation w. (a) Nv: n =2.3X10"®
e/cm?®, T=23.9 eV; (b) Nevur: n=2.8X10"® e/cm’, T=29.7
eV; (c) OVL; n =2.4X10" e/cm®, T=17.5 eV. For (a) and (b)
the solid line is the collision operator without p.,;, cutoff except
for v >v,, the dotted line is with cutoff as in Appendix C, the
dashed line is GBK with the strong-collision term, and the
dash-dotted line is GBK without the strong-collision term. For
(c) the solid line is the collision operator with only the unitarity
cutoff for v >, and the dashed line is the operator of Dimitri-
jevic and Konjevic. The relevant energy separations are marked
by +.
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tioned in the Introduction, however, we will not consider
quadrupole interactions in detail here.

Within the impact theory there is another factor which
can change the simple Z ~2 prediction, namely, inelastici-
ty of collisions. As Fig. 1 shows, it is very important in
which part of the ¢(w) vs w curve the relevant (e.g., 3D-
3P and 3P-3S) energy separations lie. Apart from the
fact that even the hydrogenic (w=0) limit is not exactly
the same due to different Z,, deviations may be expect-
ed since the relevant energy separations are not the same
for different species. If they all fall in the “flat” (.e.,
large-w) region, then we might expect only small devia-
tions from the Z 2 scaling. If, however, for at least one
species these energies fall in the steep part of the curve,
we may expect significant deviations. Referring to the
graphs of Fig. 1, we see that NV gains approximately
5%, 10%, and 14% relative to O VI, Fvil, and Ne VIII,
respectively, as far as the 3D-3P channel is concerned.
For the 3P-3S channel these numbers are approximately
2%, 5%, and 6%, respectively. This, of course, changes
the Z scaling in a direction opposite to the one needed to
explain the observed scaling. So, while the inelasticity
contribution to the Z scaling cannot account for the ob-
served discrepancies, it should be kept in mind that the
Z 2 scaling is a “simplified” and not a rigorous impact-
theory prediction. This effect may also affect the temper-
ature scaling, as different temperatures lead to different
rates of decrease of the ¢(w) operator.

IV. ION BROADENING

Here we address the question of whether broadening
due to ion perturbers may be important in explaining the
results of Refs. [1-3]. The criterion for quasistatic
behavior of the ions is that the combined effect of all oth-
er broadening mechanisms (e.g., electron -collisions,
Doppler, quasistatic ions) is large enough as to have
caused appreciable “memory loss” (i.e., the autocorrela-
tion function has decayed appreciably, for example, well
below the 1/e level) in a time short enough that the ions
have not moved appreciably. In other words (and
neglecting Doppler and quasistatic broadening which are
unimportant in our case), for the ions to be quasistatic,
the density must be high enough or the temperature low
enough that electron collisions are strong enough that
their cumulative effect can cause memory loss in a time
short enough that the ions have not moved appreciably.
Forgetting for the moment any other considerations,
there is therefore reason to expect an increase in the im-
portance of ion-dynamical effects for the more highly ion-
ized ions of the isoelectronic series because they are more
compact (hence less polarizable) due to the extra attrac-
tion on the wave functions, and therefore interact more
weakly with the plasma and lose memory more slowly
(thus giving ions time to move).

First, it is easy to see that the ions are not quasistatic,
since even the necessary although generally insufficient
criterion [33]

w'2>(2kT /u)'"?/p, (20)

with w!/? the half width at half maximum (HWHM), u
the reduced ion-radiator mass, and p, the average in-
terionic spacing is not even close to being fulfilled. This
rules out any thoughts of attributing the observed
discrepancies to quasistatic ion quadrupole broadening
[2]. Second, it is possible to see that ion dynamics will
not be important here. For this reason we have done an
impact calculation with ‘“reduced” protons. In fact
Griem [34] has argued (neglecting the dipole contribution
in the minimum impact parameter) that ions are “im-
pact” for the plasma conditions of interest in Refs. [1-3].
Whether or not the impact approximation is valid for
these protons is irrelevant if it turns out that the proton-
impact width is much smaller than the electron impact
width, since (by virtue of being linear in the density) the
impact width is the largest attainable width at a given
density and temperature (in the impact approximation
each collision contributes to an additive manner to
“memory loss”). The reason for the fact that the ion
broadening is small is a combination of the hyperbolic
path and the inelasticity. Mathematically speaking, the
repulsive (dipole interaction) a (£,€) function is obtained
by multiplying the attractive one by e “2"¢l. When w—0
(hydrogenic or “collisionally degenerate” [14(b)] case)
there is no difference and consequently the velocity in-
tegration gives a much larger ¢ than for electrons. How-
ever, unlike the electron case, the a function decays to 0
rapidly for large  and so does ¢(w). (This decay de-
pends in a very sensitive manner on the temperature.) It
turns out that the ionic ¢ at the frequencies of interest,
i.e., the 3D-3P and 3P-3S energy separations, are smaller
than the electronic ones. In the cases examined here, the
ionic ¢ for the 3P-3S energy separation which gives the
main contribution is always completely negligible com-
pared to the electronic one. The reason for this was ex-
plained above and should be kept in mind: The fact that
ions may not be efficient for broadening ion lines com-
pared to electrons is (as we saw by considering the
©=§=0 result) mainly an inelasticity (i.e., £70) effect; it
may be misleading to attribute it to the Coulomb repul-
sion weakening the effective interaction [9], since the
Coulomb repulsion is not strong enough to prevent the
ions from entering the Debye sphere. It is true that the
Coulomb field deflects the incoming ions, but it also slows
them down (thus making the collision stronger) and these
effects tend to cancel. It is quite possible that for higher
temperatures (since the Maxwell-Boltzmann distribution
is shifted to the right and higher v’s are more probable,
resulting in smaller £’s) or lighter elements (which have
smaller energy spacings), the ionic ¢ will decrease at a
slower rate and thus compete or even dominate the
broadening, as the rate of decrease of the ionic ¢(w) is
critical. Figure 4 and Tables I and II illustrate this point.

One may see that in all cases the ionic ¢ is much less
than the electronic one. Also, the strong-collision contri-
bution from ions is negligible.

Summing up, there are two factors which could make
the results deviate from the 1/Z?2 scaling in the direction
of increasing the relative widths of the higher members:
These factors are higher multipole corrections and ion
dynamics. The present calculations show that while the
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TABLE I. Electron vs proton impact ¢(w) [1].

Species  Transition @, (10°° Hz/m?) ¢, (10°° Hz/m?)
Civ 3D-3P 51 0.28
Civ 3P-3S8 37 1.1x1077
Nv 3D-3P 53 0.13
Nv 3P-38 44 1.9%1077
Ovi 3D-3P 50 0.05
Ovi 3P-3S 43 2X1077

ionic contribution should in general be investigated, the
more so as it is sensitive to temperature (higher tempera-
ture means smaller £), it is not important for the experi-
ments of Refs. [1-3], in agreement with Blaha’s results
[9]. Ionic collisions can only be important at higher tem-
peratures and smaller energy spacings. We emphasize
that we have only shown that the dipole contribution of
ion dynamics is not important; for the quadrupole contri-
bution, the £=0 channel is always available. Since in
that case there is no exponential damping (e.g., exponents
with arguments proportional to —§&) in the relevant func-
tions, the ionic quadrupole contribution could in princi-
ple be larger than the electronic one (see Ref. [18] for the
relation between the attractive and repulsive quadrupole
functions).

400} f | T T
300k -
—~ |
N
e |
o 200H 4
L2}
o) \
~ \
© o0f-\ -
-\\\\
\\
o} ————— p————y——— —-o
| | 2 3 4
w (10" Hz)

FIG. 4. Electronic vs ionic ¢(w). Nv: n=2.3X10'® e/cm?,
T=23.9 eV. Electronic is shown by the solid line and ionic is
shown by the dashed line.

V. RESULTS AND DISCUSSION

We have performed calculations using the full inelastic
calculation for the width functions only. We have not
modeled the shift, partly because it is believed to be small
and partly because it was not considered in Refs. [1-3].
It may be of some importance for the C1v lines. The fol-

TABLE II. Electron vs proton impact ¢(w) [2,3].

Species kT (eV) n, (10" e/cm?) Transition ¢ (10°° Hz/m?) bion (10 Hz/m?)
Civ 7.0 1.5 3D-3P 50.4 0.05
Civ 7.0 1.5 3P-3S 37.7 24X107°
Civ 8.6 2.4 3D-3P 75.8 0.15
Civ 8.6 2.4 3P-3S 56.1 1.5x1078
Nv 14.9 1.2 3D-3P 333 0.145
Nv 14.9 1.2 3P-3S 27.6 3.5%x1077
Nv 18.7 1.6 3D-3P 41.5 0.33
Nv 18.7 1.6 3P-3S 339 1.6X107°
Nv 21.8 2.0 3D-3P 49.6 0.57
Nv 21.8 2.0 3P-3S 40.2 48%X107°
Nv 23.9 2.3 3D-3P 55.6 0.79
Nv 23.9 2.3 3P-3S 44.6 9X107°
Ovi 8.3 1 3D-3P 31.4 0.004
Ov1 8.3 1 3P-3S 27.9 7.0X107°
Ovi 11.5 1.3 3D-3P 37 0.028
Ov1 11.5 1.3 3P-3S 32.23 09x1077
OvI 15.6 2.1 3D-3P 54.8 0.14
Ov1 15.6 2.1 3P-3S 47 9.6X1077
OvI 18.5 2.4 3D-3pP 60.69 0.23
OvI 18.5 2.4 3P-3S 51.58 2.1Xx10°¢
Fvi 14.4 1.57 3D-3P 40 0.035
Fvio 14.4 1.57 3P-3P 34.8 49%x1077
Fvil 16.6 2.1 3D-3P 51 0.085
Fvi 16.6 2.1 3P-3S 443 1.6X107¢
Fvil 18.5 2.92 3D-3P 68.8 0.18
Fvi 18.5 2.92 3P-3S 59.5 421X107°
Ne vl 29.7 2.8 3D-3P 55.86 0.519
Ne viil 29.7 2.8 3P-3S 47.4 3.27X107°
Ne viil 42.5 32 3D-3P 58.36 1.45
Ne Vit 42.5 3.2 3pP-3S 49 2.26X107*




49 COLLISION OPERATOR FOR ISOLATED ION LINES IN THE . . . 113

lowing levels have been included: 3S, 3P'/%, 3P372
3D%/2,3D32,4D%2 and 4D*/2. All of them are allowed
to participate in upper-level broadening, while only the
first three were allowed to participate in lower-level
broadening.

If the collision operator does not vanish in the limit of
large energy separations, these are questions on the appli-
cability of the “no quenching” assumption normally em-
ployed. This is why we have dropped this assumption
and included the 4D-3P channel. For example, the rela-
tive contribution of the 4D-3P transition compared to the
combined contribution of the 3P-3D and 3S-3P transi-
tions is estimated from the ratio of the squares of the re-
duced matrix elements times the ratio of the ¢(w) values
from Fig. 1. For all species considered, this ratio is less
than 10%. It must be mentioned, however, that this con-
tribution is uncertain because the energy transfer in-
volved is of the order of the electron’s kinetic energy for
the 4D-3P energy separation, so a classical path assump-
tion is questionable. The reduced matrix elements for
other channels are too small to be considered.

As for the strong-collision contribution, although
much effort has been put into obtaining better estimates
for it, we still take Baranger’s point of view that if the
strong-collision term is important, the calculation is not
reliable. Consequently we still use the Lorentz-Weisskopf
estimate, divided by 2 in order to bring it closer to
Griem’s estimate. In fact, in the framework of this calcu-
lation which uses no minimum impact-parameter cutoff
other than what is needed (for v >v,) to preserve unitari-
ty, the strong-collision term for the dipole interaction
alone is of the order of 1%. A better treatment of the
strong-collision contribution was done as outlined in Ap-
pendix C and this results in the error bars of Table IIL.

Oscillator strengths taken from Wiese, Smith, and
Glennon [31] have been used to calculate the relevant
N v and O VI reduced matrix elements, i.e., the program
accepts oscillator strengths (it also accepts radial matrix
elements, if they are available) and calculates the reduced
matrix elements. For F viI and Ne VIII energies and os-

cillator strengths have been taken from Cowan’s [32]
code. Generally speaking, calculating reduced matrix
elements from oscillator strengths is incorrect, since the
sign of the reduced matrix elements need not be positive.
In the case of isolated lines, however, this makes no
difference. The results are tabulated below for compar-
ison with experiment. We only compare with Refs. [2]
and [3], as these are the most accurate results, as a result
of a number of improvements [2] over Ref. [1]. The
Doppler effect has been accounted for in the calculations
via the usual convolution procedure (done analytically
after a spline interpolation of the pure Stark spectra), al-
though it makes very little difference. In the rightmost
column we list widths after the convolution and then (in
parentheses) the pure Stark widths with error bars. As
far as these error bars are concerned, they are calculated
with a (velocity-dependent) cutoff at

on rin
mv’ Pu

Z 21

Pmin— Max

as in Appendix C, with b=1 (significantly higher values
for b starting raising doubts about the validity of the
semiclassical approach) and p,(v) is obtained by solving
(16). The lowest bound corresponds to a strong-collision
contribution of 0 and the highest to the replacement of
{S,S, —1} by —1 (—2 would be the absolute maximum).
We must also point out that the error bounds given take
the density and temperature values as certain and do not
incorporate errors from the experimental density-
temperature determination.

For F viI and Ne vIII the calculated widths are smaller
and the discrepancies are particularly serious for Ne vIII.
One might observe that some calculated widths are very
close to the lower bounds. This is not an accident and it
is related to the fact that ¢(w) at the relevant frequencies
with cutoff is not too different from the one with no
cutoff (see also Fig. 3): It is easy to see that for large en-
ergy separations the contribution to ¢(w) comes from the
region

TABLE III. Theory vs experiment [2,3].

FWHM (A)

Species kT, (eV) n, (10" e¢/cm?) Expt. Theor.

Civ 7.0 1.5 6.7 +0.4 7.17(7.17+1.6 or —0.25)
Civ 8.6 2.4 9.7 +0.5 10.6(10.6+2.4 or —0.31)
Nv 14.9 1.2 2.2 +0.1 2.3(2.13£0.1)

Nv 18.7 1.6 2.7 £0.1 2.7(2.62+0.15)

Nv 21.8 2.0 3.4 +0.2 3.2(3.12+0.2)

Nv 239 2.3 3.8 +0.2 3.5(3.47+0.27 or —0.22)
Ovi 8.3 1.0 1.0 £0.1 1.03(1.03+0.035)

OvI 11.5 1.3 1.4 0.1 1.25(1.2+0.05)

Oovl 15.6 2.1 1.8 £0.3 1.8(1.74+0.08 or —0.1)
Ovi 17.5 2.4 2.1 £0.2 1.98(1.91+0.09 or —0.12)
Fvi 14.4 1.57 0.87%+0.1 0.76(0.686+0.05 or —0.026)
Fvil 16.6 2.1 1.11+0.13 0.94(0.87+0.07 or —0.04)
Fvi 18.5 2.92 1.49+0.18 1.23(1.17+0.12 or —0.03)
Ne viit 29.7 2.8 1.2 +0.1 0.66(0.55+0.07 or —0.03)
Ne viin 42.5 3.2 1.2 +£0.1 0.70(0.56+0.09 or —0.04)
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as is clear from Appendix B (§>0.2). The differences be-
tween the calculation with and without cutoff are more
serious for a fixed energy separation the smaller the Z
(since then p_;, is largest). Also the smaller the energy
separation, the less the relative contribution of the small-
€, large-§ region.

For C1v we have two overlapping Lorentzians and the
central portion of the profile is raised more than the
wings of the entire profile (i.e., the wings away from the
overlapping region) and this results in a decrease of the
width. Thus, because of both the overlapping effect and
the fact that strong collisions are more important (which
leads to a reduction of the weak-collision phase space and
therefore ¢), the effect described in Sec. III is “masked.”
The profile produced by the program is narrower than a
hand calculation based on Eq. (20), which is what would
enter into a Z-scaling comparison (and what we give in
Table III). Note that a self-consistent minimum impact
parameter is particularly important here and its neglect
will lead to too large a prediction for the width (which
would be hard to explain, as almost any additional mech-
anism will increase the width).

Summing up, we obtain very good agreement with the
experimental data of Ref. [2] for all lines of the lighter
species (carbon, nitrogen, and oxygen) and even for F viI
the calculated and experimental widths lie within the er-
ror bars, although the calculated widths seem to be sys-
tematically lower. For the lighter species, our results as
well as the experimental results are also in agreement
with the recent calculations of Dimitrijevic and Sahal-
Brechot, where available [35]. For Ne VIiI, agreement is
poorer.

As far as scaling is concerned, and leaving Ne VIII
aside, the good agreement achieved suggests that our cal-
culation would also match the experiment well at the
“comparison” parameters T7=12.5 eV, n,=1.8X10'®
e/cm®. We have thus calculated widths at the “compar-
ison” parameters and compared the quantity ”chZ/?»)2
for the various species, with W the FWHM in A. The
largest discrepancy was obtained between NV and
Ne viir with N v about 6% wider. However, ¢(w) at the
dominant 3P-3S energy separation was also about 6%
larger for Nv. For CIV we obtain a W(Z /A)? which is
about 11% smaller than Ne VIII and 16% smaller than
N v. This is due to the unitarity considerations explained
in Sec. II, namely, that a large part of the available phase
space gives rise to strong collisions that would have
violated unitarity. Still, within the error bars, C1V can in
fact be even larger than N v.

On an ending note, we want to address the question of
approximate quick and easy to use formulas for the col-
lision operator. Consider the 3P!/2—3S line with the
states 3S, 3P, 3D, and 4D. In this case we have the fol-
lowing explicit formula for the linewidth (FWHM):

W=¢(w,;)R?+¢(w,)(2R3+R3)+d(w;)RZ , (23)

where
R, =(3D3||r||3P?) , (24)
R,=(3P'?||r|3812) , 25)
3 =(3P*?||r||35'%) , (26)
R,=(3P'?||r||4D3"?) , 27)

and w, is the 3D-3P, w, the 3P-3S, and w; the 4D-3P ener-
gy separations. (The reduced matrix elements R, —R,
used may differ by a factor of 47 /3 from the convention-
al ones and are defined as [3#f (2J, +1)/2m Aw]'/? with
f the oscillator strength, J; the lower level J, and Aw the
frequency separation.) Calculations with the above for-
mulas give the same results as Table III. For example,
for the highest density OVI results, R,=1.028 A,
R,=0.8855 A, R;=125 A, R,=0717 A,
é(w,)~60.7X10* Hz/m? é(w,)=51.6X10° Hz/m?
and ¢(w,)~42.5X10°° Hz/m?. This gives a (pure Stark)
FWHM of 1.9 A in agreement with the results of Table
ITI, which are also in fair agreement with Ref. [2].

As far as simple formulas are concerned, we believe
that the collision operator ¢(w) could be better represent-
ed. If we know the high-frequency asymptotics and the
hydrogenic limit, it is not hard to approximate ¢(w) by a
function of the form

¢(w):¢as+[¢(w:O)_¢as]f(w) ’ (28)

where f is a function that is unity at ®=0 and vanishes
for large w. The simplest approximation to f, e.g.,
f(x)=e ™™ with appropriately chosen T, may be a
reasonable choice. Of course this is a rough approxima-
tion, missing the “spike” at small o, and better choices of
f are possible. Such analytic approximations may be
valuable in cases where speed is essential as, for example,
in opacity calculations.

Of course one must keep in mind that the operator
used here does not account for higher multipoles and res-
onances, which can be important. Work on the calcula-
tion of quadrupole contributions along the lines of Ap-
pendix A is in progress.
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APPENDIX A: OUTLINE OF THE DERIVATION
OF THE INELASTIC COLLISION OPERATOR

Initially we work on the collision plane (x and y axes)
and parametrize the trajectory:

with s defined in (11). It may be easily verified that this
parametrization correctly describes the trajectory.

The coordinates in the collision frame (primed) are re-
lated to the coordinates in this reference frame
(unprimed) by the Euler angles; i.e., by the transforma-
tion

x =s(e—coshu) , (A1)

y =sV'e—lsinhu , (A2) x(2)

R =s(ecoshu —1), (A3) R'(t)y=AR(t)=A4 |y(t) |, (A5)

0
=3 (cqi —

r= v (€sinhu —u), (A4) where A is the rotation matrix

J
cosy cosdp —cosOsing singy  cosy sing+cosO cosg siny  sini sind
A = | —siny cos¢ —cosOsingd cosyy —siny sing +cosb cosé cosy cosy sinf (A6)
sinf sing —sinf cos¢ cosf
with ¢ in (0,27), 0 in (0,7), and ¢ in (0,27).

We thus have

(cosy cosd — cosO sing siny)x (t) + (cosy sing +cosO cosé siny)y (1)

R'(1)=

—(siny cos@ +cosO sing cosy)x (¢)+ ( —siny sing +cos O cosd cosy)y (¢) | . (A7)

sin@ singx (¢) —sinf cosdy (¢)

Thus when we evaluate ® with { } denoting plasma average, we get a @ of the form
R,(t;) R, (1)
IR ()P R |,

e
41eph

o=—

2
[, [dr,e e n [vf (v)dv [pdp 3 d,d, (A8)
®,v

When we do the angular average { },, we get a factor of 27 from the fact that if we take a trajectory in the collision
frame and rotate it by any angle, we should get the same contribution and another factor of

6
uv
3 (A9)

[x(t;)x (t,)+y (¢,)y(t,)]

where x and y are the axes in the collision plane; hence

275,
{R,(t)R (1))} = 3 [x (2))x (£)+y(t))y(2,)] . (A10)
Thus we get a ® of the form
2
=__21rn e . ot sztzX(tl)x(12)+y(t1)y(t2)
O=—" e d-d [of (v [pdp [dr, [dr,e" e FETRTETR (A11)

From now on we replace x, y, t, and R by their parametrizations in terms of % and obtain (note that dt =R du /v)

2
m ) Pmax wos(esinhu, —u,)/v tw,s(esinhu,—u,)/v
d-df0 v3f(v)dvfp pdpfdulfduze ! b e 2 2
min

ehZ.

(e—coshu )(e—coshu,)+(e*—1)sinhu sinhu,

3 3 (A12)
(ecoshu;—1)“(ecoshu, —1)
The quantities we want to evaluate are thus of the form
2mn e? 2 2 m 2 2 €max(V)
= —_— = _ bt —mv“/2kT max
Hovo) == |\ redi | |7 ar | o v ffmin(v) decGlEene), (A1)
where for the direct terms we have
w u W& (esinhu, —u ) & (esinhu, —u,) (€—coshu)(e—coshu,)~+(e*—1)sinhu sinhu

G(£,E€)= f du, f~l due & (esinhu | l)e & (€esinhu, —u,) 1 2 1 ) Al

(ecoshu; —1)*(ecoshu, —1)>

and for the interference terms we have
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) (e—coshu | )(e—coshu, )+ (€ —1)sinhu sinhu,

G(§1,§2,6)= f_wwdu, f_comduzeLgl(ssiﬂhul—ul)eté'z(esinhuz—u2 (A15)

Numerically it is hard to obtain G from its definition be-
cause there is a singularity at e=1.

1. Interference terms

For the interference terms, G is purely real and may be
written as

G(§1,§2,e)=é G,(£,,€)G,(Err€)
e2—1
+55-6,(6,60G, (&) | (A16)
€
with
eLé(esinhuAu) ll_ coshu
- €
G (&e)=[7 du (A17)
16 f*w (coshu —1/€)?
and
© i&(esinhu —u)
G,(&e)= [ 7 dusinhu———— . (A18)
8 f—w St (coshu —1/¢)?

We now evaluate these two functions. Two tricks are
involved (as in Alder et al. [16]): (a) to avoid violent os-
cillations in the exponential, we deform the contour so
that we have a decaying exponential; and (b) we do a par-
tial integration to make the integrand less singular. In
fact, when €e—1 we get a singularity from u,=0 and
u, =0 if we try to do the integral as it is.

Symmetry properties of G; and G,

For G,, since everything else is even (only the cosine
will contribute),
G\(&e)=G (e, (A19)
and for G,, since only the sine will contribute,
G,(§,€)=—G,(—E&,€)=sgn(£)G,(|&l,¢€) . (A20)

We thus only need to deal with positive &.

Evaluation of G,
G, may be evaluated simply. First note that

4
du

1
coshu —1/€

_ sinhu
(coshu —1/€)? ~

(A21)

Hence, when we do a partial integration, the surface term
vanishes and we get

G, (& €)=1fe [ 7 du etdlesinhu—w) (A22)

[Observe that (A20) is satisfied.] We now consider only
positive £ and evaluate

I= ﬁ dz eté’(esinhz—z)zo (A23)
C

(€ coshu, —1)Xecoshu, —1)?

[

since there are no singularities inside the contour C,
which consists of the rectangular piece (traversed coun-
terclockwise) —R <x <R, y=0, x=R, 0Zy=w/2,
—R<x=R, y=w/2, and x=—R, 05y =7/2, with
z=x +1y. Eventually we take the limit R — . The
vertical sides do not contribute and we get

G,(&,€)=2&ee ‘ﬂﬂzfowdu e~ [Elecoshucogey

=2kee 172K . (|£e) . (A24)
Equation (A24) may be written as
Gy(& €)=2kee {7k (([Ele) (A25)

where K, is a modified Bessel function of imaginary or-
der. From its definition we observe that G,(0,e)=0 (the
integrand is odd). It is simple to see (for example, by

bounding  the hyperbolic  cosine by coshu
>14u?/2!+ - - - ) that, as £—0,
G, (§,€)| S2lglee!d72 [ “du e~ IElet+«2/2
: 172
<2fglee!s72mO ?I% (A26)

which vanishes with £—0, as it should in the hydrogenic
limit. In fact, from (A16) we readily see (qualitatively)
why the collision operator ¢(w) has the “spike’ seen in
Fig. 1: For small, nonzero w, ¢ rises from its hydrogenic
value due to the extra contribution of G3 in (A16). Later
on, it will start decreasing due to inelasticity, of course.

Calculation of G,

For G, we must first interchange our order of partial
integration and contour deformation because the surface
term from partial integration does not have a definite lim-
it (we get 2limg_, cos[£(esinhR —R)]).

Then the contour deformation technique applied by
Alder et al. [16] still gets no contribution from the sides,
but now we have a double pole at z =(0,arcos(1/¢€)). In
contrast to our case, where we have (coshu —1/¢), Alder
et al. had (coshu +1/€) in the denominator and thus no
singularity. The net result is that the residue from this
double pole turns out to be 0 and it is as if we only had to
change the sign of the exponent in the final expression.
This point has been discussed by Klarsfeld [18]. For our
purposes, it is clear that this difference is equivalent to re-
placing e I€17/2 by ¢ ~I€17/2 if we are interested in calculat-
ing the repulsive functions (as in the ion-dynamics
check). So consider the same contour as before and the
contour integral

o télesinhz —2) [1 __coshz
€

=2mb =0, (A27)

¢ dz ;
c (coshz —1/¢€)

where b is the residue. As far as the other line integrals
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go, the vertical integrals again vanish (even more so now
due to the denominator) and we obtain

. sinhu

e —-Lgue —|€lecoshu 1—
€

Gi(Ee)=e2 [* au (sinhu — 1/€)?

(A28)

The integral may be evaluated by parts and we get the
final formula for G:

G1(6€)=2lEle ™7 [ " cos|lu coshue 8« igy .

(A29)

The integral is, of course, the derivative of —K .

Limiting behavior as §— 0

Since for vanishing & the integrand in (A17) is an exact
derivative [sinhu /(coshu —e~')], integration gives
G,(0,e)=2. It can be easily shown that we get this result
from (A29): coshu =sinhu +e ™%, so

f wCOs]é‘lu coshue "‘§|€Coshudu
0

=fwcos|§|ue—ue—]§\ecoshudu
0
1 o — |€lecoshu
——— | “cos|&lude . (A30)
€|l fo §

When we take the limit £—0, the term involving e ™ *

will give 1, which will vanish when multiplied by the fac-
tor involving |£| in front of the integral. The second
term, when integrated by parts (in the surface term first
u — o, then £—0) gives a total contribution of

2ell - [1—|§lfo“sinlglue—lf‘“"sh“du (A31)

|€le

The integral can be bound as before; i.e., drop the sine
term, bound the cosh term by 1+u2/2, and evaluate the
resulting Gaussian integral. The Gaussian integral will
produce |£] 172, which is “killed” by the |£| multiplying
the integral. The net result is that (A29) reproduces the
correct £=0 result.

172 372
eZ

477'60ﬁ

8mn
3

2
T

m
kT

i@y, —0))=

2. Direct terms

~ As far as the real parts so, we can split the real part of
the direct term into four integrals, each of the type

I auy [ dusf upf(uy)
=7f_wwd”1f_wwduzf(uﬂf(uz) (A32)

in the isolated line case §;=&=—§&,. Hence the direct
term in our case should reduce to one-half our interfer-
ence term for §;=§£=—¢,. We get in this case from the
above results

ReG (£, —£,€)= % A(£,6)=1G (£, —E€) . (A33)
€

3. Integration over €
The € integration gives

fdeeG(§,—§,e)

2__
=4e™¢g2 [dee [K:§(|§|E)+e—2—1—Kf§(|§|€)] .
€

(A34)
With the transformation x = |£|e we get
2_g2
[deeG g, —g =4 [ dx E—ch—ng(x)
+xK }(x) (A35)
The integrand is just
d ’ ’ n
ExKLE(x)Klg(x)=xKL§(x)+xKL§(x)KL§(x)
K (x)K (x) (A36)
since
K.

(x)
[x%K ¢(x)+xK ¢ (x) = (x2—E))K £(x)]=0 ,
x
(A37)
as may be verified by substituting the expressions for K

and K’ in the modified Bessel equation in brackets. With
this we obtain

X fowdv ve ~mv2/2kTeﬂ-l§| |§| [EmaxKLg( |§|.6max)|K:§( Iglemax)‘ _eminth( Iglemin)lKll.g( Iglemin)l ] . (A38)

APPENDIX B: ASYMPTOTIC EXPRESSION
FOR THE COLLISION OPERATOR

Defining the constant factor

31172

> (B1)

2 2

e

4mn | _e”
477'60ﬁ

3

_m_

kT

2
qg= £
T

[
the total collision operator is

¢=q (¢, +¢,td), (B2)
where
1= [ “dvve ™ M e o) —a (& 1], (B

2= [ "dv ve ™ T [4(£, €py(0))—a(£, Eqin(0))]  (BY)
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[compared to Eq. (13) there is a factor of g missing here.]
¢, is the strong-collision term, which in the hydrogenic
case is

p,=—1[ “dv[1—(v, Jv)?Jve ~mvP /2T (B5)

In the nonhydrogenic case, only ®; may be calculated, as
in Appendix C. ¢, and ¢, are the contributions from
v <v, and v >v,, respectively. In the limit 0— o, ¢,
vanishes. ¢, does not, however, vanish, but becomes

— T Y% mulsukT
dlo— 0)= Ve fo ve "™ dv
__T/%%(l—e_’"vz/zu) . (B6)

observe that this is by no means negligible compared to
the =0 (hydrogenic) contribution.

The next question is for what value of  can we set ¢,
equal to its asymptotic limit. Recalling the Poquerusse
[20] approximation to the a(&,e) function, valid for
£2>0.2 and 7<0.15 (it is easy to show that +=>0.15 con-
tributes negligibly in the large energy separation limit),
with the adiabaticity parameter

r=§(np—arctan(7n)) , (B7)
where
n=Vea=1, (BS)

a (§,e)———~;—§ +0.402 156723 —1.72527%/3—0.0364& 4/*

+0.0020362—0.86123£ 723723 —1.94171%/3

+0.6744£ 723142 +2.83472+0.040 23§ 43743
(B9)

(there is an obvious typo in the Poquerusse formulas, as
the m=2, n=1 coefficient is given twice and the first one
corresponds to m=2, n=0), we can keep only the first
term provided that the remaining terms are much small-
er. In fact we want to keep only the first term from the
¢, contribution of p_;, =0 which gives (B6) and to be able
to neglect the p_., contribution to ¢, as well as the entire
¢, term. It is most important to consider only the second
and third terms in (B9), as all others are higher order in
the smaller parameters 72/ and £ %/3. The first require-
ment is satisfied if the second term is small compared to
the first, say 0.1, and for this we need £23>4=—£>8
(not just 0.2). Thus for £ > 8, » must satisfy
32mwegmu}
[ —n . (B10)
eZ .
With this bound for &, even for the p,,, contribution,
all terms are less than 3% of the first term, except for the
third term (27%) and the seventh term (8.5%). Of course
these are certainly overestimates as far as the total contri-
bution to the width goes. For better accuracy, the
(second) value used in (17) was obtained by demanding
that the third term in (B9) be less than 0.1 for v > 10~ %v,.
Also, in order for ¢, to be safely neglected, we need

T(Pmin(v)) 2 0.15, and this is satisfied with the last term in
(17). The 6 function means that ¢, is nothing to worry
about unless there is some significant part of the
Maxwell-Boltzmann (MB) distribution for v > v,. It was
(rather generously) assumed that the MB distribution has
“died” at 3{v). Of course the above analysis aims at
only safe estimates for w,,.

APPENDIX C: ERROR ANALYSIS FOR THE
COLLISION OPERATOR

We limit ourselves to a discussion within the frame-
work of the impact approximation. We will use the semi-
classical dipole collision operator for p>p,... The col-
lisions with p <p_., produce the strong-collision contri-
bution to :

) Pmin
@, =2mn fo dv vf(v)fo dpp{S,S,—1}, (CI)

where { } is an angular average over the v angles and
where S, and S, are the upper- and lower-level (diagonal)

S-matrix elements. Clearly
0z{ }j=—a=2—-2. (C2)

The total strong-collision contribution is then, in terms of
the unknown a,
172
2
d

© 2
- k
Xfo dv vde M /2KTR2 . (p) .

372
m

® m
kT

str— Tha

(C3)

The validity of the semiclassical approximation is
guaranteed provided p.;, is much larger than the max-
imum of the de Broglie wavelength #/muv, the extent of
the relevant atomic wave functions n2a,/Z and the uni-
tarity of the S matrix is not violated. We introduce a pa-
rameter b, such that for p > b#/mv the semiclassical pic-
ture is acceptable; i.e., the impact parameter is large
enough compared to the de Broglie wavelength so that no
problems arise on this front. We expect b to be between 1
and 10. There are then the following velocity scales.

(1) vo=bfi/mp,,,. Collisions with v <v, have no
semiclassical weak-collision contribution. No matter
what the impact parameter, collisions cannot be treated
semiclassically and as a result we can obtain a bound for
their effect:

) 172 372 v
m 0 3, —mu2/2kT,
Pgo=—mna | — -0 o f vie M /2Ty
T kT maxJdo
|kt ;
m —mvg /2kT
=—Tmha kT I | (1—e 0 )
m

2 —mv%/ZkT
o€

(c4)

(2) v,=min(v,,b#AZ /nlaym). For collisions with
v <v; the minimum impact parameter is py;, =b#/mv
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and the strong-collision contribution from v <v is

172 m 3/2 bh 2 .
bg=—mna |— *T Tn_] f"o ve dv
_ 2m 12 ﬂ 2 —mv(z)/ZkT
=—7na kT " (e
_e—mv%/ZkT) . (C5)

Note that as long as p .. >>Pmin V1 >>Vg.

(3) If v, #v,, for v >v,, the minimum impact parame-
ter is determined by the relevant wave-function extent,
nla,/Z, unless questions of violations of the unitarity of
the S matrix arise. For electron broadening, in all cases
considered except the CIV lines and with b=1,
Pmin=nl2a,/Z for v >v,=b#Z /nlaym; i.e., the semiclas-
sical cutoff was always larger than the unitarity cutoff.
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