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Relativistic many-body perturbation theory is applied to study the elastic scattering of electrons
from xenon and from the xenonlike ions Cst and Ba®t, below their respective inelastic thresh-
olds. The quasiparticle equation for the electron scattering wave function is solved in second-order
perturbation theory starting from the Hartree-Fock approximation. Phase shifts for partial waves
with £ = 0-5 are determined as functions of electron momentum for each ion. The theoretical
elastic scattering cross section for xenon is found to be in agreement with experiment, showing a
Ramsauer-Townsend minimum below 1 eV. Agreement with experiment is also found for differen-
tial cross sections and scattering asymmetry functions for xenon. Differential cross sections and
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scattering asymmetry functions for Cs* and Ba®* are predicted at 10 eV.

PACS number(s): 34.80.Bm, 34.80.Nz, 31.20.Tz, 11.80.—m

I. INTRODUCTION

Although low-energy scattering of electrons from
closed-shell atoms has been a subject for experimental
[1-3] and theoretical [4,5] investigation for more than
60 years, relatively little work has been done on the re-
lated problem of low-energy elastic scattering from ions.
A characteristic feature of low-energy scattering of elec-
trons from noble-gas atoms is the existence of a sharp
minimum in the cross section at electron energies < 1
eV; the Ramsauer-Townsend minimum. This feature
of the cross section is a manifestation of the polariza-
tion of the atomic core by the scattered electron; to
account for it theoretically, one must include effects of
electron correlation. In recent years a number of more
or less sophisticated calculations describing low-energy
scattering from xenon have appeared. These include the
calculations of McEachran and Stauffer [6-8], who ac-
count for correlation using an optical potential; the cal-
culations of Yuan and Zhang [9], who use the polariza-
tion potential of Padial and Norcross [10]; and those of
Sienkiewicz and Baylis [11], who include correlation using
a two-parameter polarization potential with exchange.
All of these recent calculations account for the Ramsauer-
Townsend minimum in the observed spectrum and for the
observed low-energy differential cross sections.

The present work starts with yet another calculation
of low-energy electron-xenon scattering. This calculation
can be considered as a kind of theoretical benchmark
for our treatment of correlation in ions. The electron-
xenon scattering calculation is followed by calculations
for xenonlike ions made using identical methods. These
calculations are carried out relativistically, since xenon
and the xenonlike ions under consideration have high nu-
clear charge, leading to observable fine-structure effects.
We employ many-body perturbation theory to account

1050-2947/94/49(2)/1041(8)/$06.00 49

for the effects of electron correlation. In lowest order, we
approximate the scattering wave function by a contin-
uum Hartree-Fock (HF) wave function in the spherically
symmetrical V(¥=1) potential of the atomic (or ionic)
core. The scattered electron polarizes the core, thereby
modifying the HF potential. The correction to the HF
potential induced by the scattered electron is the electron
self-energy; the sum of the HF potential and the electron
self-energy defines an optical potential. The interaction
of the electron with the optical potential is governed by
a single-particle equation, the quasiparticle equation. In
the present work, we calculate the electron self-energy
and solve the quasiparticle equation in second-order per-
turbation theory. Our treatment of correlation is similar
to that of Pindzola and Kelly [12], who carried out cal-
culations of low-energy electron-argon elastic scattering
in an optical potential determined from nonrelativistic
many-body perturbation theory. It is also closely related
to the many-body calculations of Amusia et al. [13,14]
on elastic scattering of electrons from helium, argon, and
xenon.

For xenon, the Hartree-Fock phase shifts, as well as
the quasiparticle phase shifts, agree with the predictions
of Levinson’s theorem: the zero-momentum phase shifts
for angular momentum x are related to n., the num-
ber of occupied bound states with angular momentum
K, by the equation 6,(0) = nym. The slope of the s-
wave phase shift for xenon predicted by HF calculations
is negative at p = 0; however, after adding correlation
corrections, the slope becomes positive. The phase shift
increases from its threshold value to a maximum near
0.15 eV and then decreases, passing through its thresh-
old value again at about 0.7 eV, leading to the observed
Ramsauer-Townsand minimum in the cross section near
that energy.

The cross section evaluated with correlated phase shifts
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is found to be in good agreement with experimental mea-
surements. Differential cross sections for xenon are also
calculated and compared with experiment; again, the cor-
related values agree well with observations. Compari-
son of theory with experiment is, however, less satisfac-
tory for the Sherman asymmetry function. Generally, the
comparison between theory and experiment for xenon is
good, encouraging us to use the same many-body tech-
niques to study scattering from xenonlike ions.

For xenonlike ions, the phase shifts near zero momen-
tum are the sum of the ionic Coulomb phase shifts and
short-range phase shifts caused by the interaction of the
scattering electron with the core electrons. At zero mo-
mentum, these later phase shifts are related to p., the
quantum defects determined from the bound-state spec-
tra, by 8.(0) = mu,.. The correlated phase shifts for Cs™
and Ba?™ at p = 0 agree very well with values from quan-
tum defect analyses, except for the f-wave phase shifts in
Ba?*, where penetration of the 4f orbital into the core
leads to a breakdown of perturbation theory. For this
particular partial wave, a phenomenological method for
evaluating the phase shifts is adopted.

Differential cross sections and Sherman asymmetry
functions are given at 10 eV for both ions. To our knowl-
edge, no measurements of these quantities at low energies
are available; however, we hope that the present calcula-
tions will encourage low-energy electron-ion elastic scat-
tering experiments.

II. DESCRIPTION OF METHOD

The scattering of a relativistic electron from a central
potential is governed by two amplitudes: the no spin-flip
amplitude f(#), and the spin-flip amplitude g(6) [15].
These amplitudes are given in terms of scattering phase
shifts é,.(p), where & is the relativistic angular momen-
tum quantum number (k = —¢ — 1 for j = £+ 1/2 and
k = £ for j = £ — 1/2), by the formulas

£0) = 5 Sl + (e — 1)
£=0
+£(e2t — 1)]Py(cos 6) (2.1)
and
9(0) = 5 S (H5 - MORNE). (22)
=1

The differential scattering cross section is expressed in
terms of f(@) and g(8) by

do |

aQ
and the left-right scattering asymmetry function (Sher-
man function) is given by [16]

 2Im{f ()" (6)
SO = @+ FoF

The problem of describing low-energy scattering is thus
reduced to the problem of determining the elastic scatter-

O +19(0)1*, (2.3)

(2.4)

ing phase shifts 6,.(p) as functions of electron momentum.

Our point of departure for determining these phase
shifts is the relativistic quasiparticle equation for the
scattered electron,

(h + VHF + Ee)¢5n = 5¢>sn ) (25)
which is obtained from Dyson’s equation for the one-
particle Green’s function [17]. In Eq. (2.5), h is the
single-particle Dirac Hamiltonian

tz
h=coa-p+ mc® — S——,
”

(2.6)
Viur is the (Dirac) Hartree-Fock potential for the closed-
shell atom or ion, and %, is the electron self-energy (or
polarization) operator.

In lowest order, we neglect . in Eq. (2.5) and solve
the resulting continuum HF equation to find an approx-
imate scattering wave function ¢!F (r). The correspond-
ing phase shift is designated by 61 (p). The lowest non-
vanishing correlation correction to this wave function,
A¢er, is found by solving the inhomogeneous equation
obtained from Eq. (2.5), treating . as a perturbation:

(b + Vi — €)Ader = —S o1 (2.7)

The corresponding correction to the phase shift Ad,(p)
is shown to be

sin Adx(p) = —7(dzs |Zelgei ) (2.8)

in the Appendix. The resulting wave function, normal-
ized on the energy scale, is ¢ = Amd)gf + A, where
the normalization factor is A.. = cos Ad.(p). The corre-
lated phase shift is, of course, &, (p) = 65F (p) + Ad.(p)-

In our calculations, we approximate ¥, by the second-
order self-energy Eiz), which is given in matrix form by
the expression

giamn(gmn'a - gmna')
[Egz)]’j: Z e+e —_]s — € ’

m,n,a
_ Z gimab(gjmab - g‘mjab) (2 9)
EatEb—Em—€ ’
m,a,b

and which is illustrated in the Brueckner-Goldstone di-
agrams of Fig. 1. In Eq. (2.9), the states a,b,... are
single-particle states determined in the HF potential of
the closed atomic or ionic core. The quantities €4, €p, . . .
are the corresponding HF energies. The quantities g;jx
are two-electron Coulomb matrix elements

=

FIG. 1. The four Brueckner-Goldstone diagrams giving the
second-order self-energy in Eq. (2.9).
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| e?
Gijkl = <1J — kl>-

The indices a and b in Eq. (2.9) range over the occupied
core states, while the indices m and n range over states
not occupied in the core. The present relativistic cal-
culations are based on the no-pair Hamiltonian [18-20];
therefore negative energy (positron) states are excluded
from the sums in Eq. (2.9).

In lowest approximation, the electron scattering wave

(2.10)

12

J

(50) -

where o, is the Coulomb phase shift in the ionic core and
0. is the short-range atomic phase shift. The Coulomb
phase shift is known analytically; it is given by

k—w' T(y+1—w)

2i0. —im(y—£) 2.13
€ vy —iv I‘('y+1+i1/)e ’ (2.13)
where v = /K2 —-0%(?, a = 1/137.0359895... is

Sommerfeld’s fine-structure constant, and ¢ is the ionic
charge. In Eq. (2.13), v = ae/cp and v/ = alme/p. For
xenon, { = 0; consequently o, = 0.

In our numerical calculations, we first solve the
Hartree-Fock equations and determine the correspond-
ing phase shift 61F (p). Next, we evaluate the self-energy
operator ¥.. For this purpose, we introduce a finite ba-
sis for the HF equation constructed from B splines [21].
The infinite sums and integrals in Eq. (2.9) are thereby
reduced to finite sums. Once we have determined ., we
find the second-order correction to the phase shift Ad,(p)
using Eq. (2.8). In evaluating self-energy from Eq. (2.9),
we restrict the sums over occupied states a and b to 5s
and 5p states only. Moreover, we limit the sums over ex-
cited states to those having orbital angular momentum
£<T.

III. RESULTS FOR XENON

In Fig. 2, we show the HF and optical-potential phase
shifts determined for neutral xenon. As mentioned in
the Introduction, both HF and correlated phase shifts at
p = 0 are multiples of m, in harmony with Levinson’s
theorem. In the first panel of the figure, the correlated s-
wave phase shift is seen to increase from 57 at threshold
to a maximum at p = 0.12 a.u., and then to pass through
57 again at about p = 0.23 a.u., leading to a minimum
in the cross section at the corresponding energy, =~ 0.7
eV. The corrections to s-wave and p-wave phase shifts
are seen to be relatively small; ~ 0.2-0.4 rad. For the d
waves and higher partial waves, on the other hand, the

11516"2‘;2 cos [pr + vIn2pr + 6. + 0. — (£ +1)F
1/%ESin[pr+1/ln2pr-}—¢5N +o.—(L+1)5

function for a given energy ¢ and angular momentum x is
found by solving the continuum HF equations in the fixed
potential of the core. The wave functions are decomposed
as products of radial and angular functions,

_ 1 [ P (r)Qem(T)
Genlr) = 7 (Qm(r)n_m(f) )
where the functions ., (£) are two-component spherical

spinors. The continuum wave functions are normalized
on the energy scale. Asymptotically, they are given by

(2.11)

]] , (2.12)

[

phase shifts at low energies are seen to be dominated by
the correlation corrections. This is a consequence of the
long range of the electron self-energy operator, which has
the asymptotic form X, (r,r') = —agé(r—r1')/2r%, where
agq is the dipole polarizability of the core.

In Fig. 3, we show the HF and optical-potential pre-
dictions for the cross section as functions of energy. The
essential role of correlation in the low-energy cross sec-
tion is evident from this figure. The HF calculation se-
riously overestimates the cross section below 3 eV and
seriously underestimates it above 5 eV. The cross sec-
tion is also compared with various experimental mea-
surements [22-24] in the figure. Generally, the agreement
between the correlated calculation and experiment is ex-
cellent. There are, however, obvious differences below the
Ramsauer-Townsend minimum. These differences could
be the result of the approximate treatment of correlation
here.
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FIG. 2. Optical-potential (solid line) and HF (dashed line)
phase shifts for partial waves with £ = 0-5 in xenon given as
functions of electron momentum. Whenever distinguishable,
the upper curve corresponds to the positive value of the rela-
tivistic angular momentum x and the lower curve to x < 0.
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FIG. 3. Optical-potential (solid line) and HF (dashed line)
elastic scattering cross sections in xenon as functions of elec-
tron energy compared with experiments: full squares [22];
open squares [23]; and open triangles [24].

We compare the differential scattering cross sections at
5 eV and 10 eV calculated using both HF and correlated
phase shifts with experiment [25] in Fig. 4. At these
energies both the HF and optical-potential cross sections
agree qualitatively, but the optical-potential cross section
is seen to be in much closer agreement with the measured
cross section.

In Fig. 5, a comparison of theory with experiment [26]
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FIG. 4. Optical-potential (solid line) and HF (dashed line)
differential scattering cross sections at 5 eV and 10 eV are
compared with experiment [25].
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FIG. 5. Sherman asymmetry functions for xenon deter-
mined using optical-potential (solid line) and HF (dashed line)
phase shifts at 5.5 eV and 10 eV are compared with experi-
ment [26].

is given for the Sherman asymmetry function S(6) at 5.5
eV and 10 eV. Again there is qualitative agreement be-
tween the HF and correlated calculations, but neither
calculation is in good quantitative agreement with the
measurements, possibly because of experimental inaccu-
racies [27].

To summarize, the optical-potential calculations for
xenon lead to total elastic scattering cross sections and
differential cross sections in good agreement with exper-
iment below the first inelastic threshold; however, the
agreement between the correlated values and experiment
for the Sherman asymmetry function is only fair. It is
found that the present technique gives a satisfactory ac-
count of correlation corrections in low-energy electron-
atom scattering. In the next section, we apply this
method to electron-ion scattering.

IV. RESULTS FOR Cst AND Ba?t

As discussed in Sec. II, the phase shift for a partial
wave with angular momentum x is the sum of a Coulomb
phase shift o.(p) and a short-range electron-ion phase
shift é,(p). The short-range phase shift, at electron mo-
mentum p = 0, is related to the quantum defect u, from
bound states with angular momentum & by 8,(0) = mpu,
[28]. For Cs™, the quantum defects are determined from
the observed spectrum of neutral cesium, while for Ba?*,
the quantum defects are obtained from the Ba* spectrum
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[29]. We list the threshold phase shifts obtained from ex-
perimental quantum defects for Cs* and Ba?* in Table L.

We show the optical-potential phase shifts for Cs™ in
Fig. 6 and those for Ba?* in Fig. 7. The threshold phase
shifts mu, from Table I are indicated by the marks on the
left-hand axes of the figures. It is apparent that inclu-
sion of correlation substantially improves the agreement
between the calculated phase shifts and those inferred
from the quantum defects. The higher partial-wave phase
shifts are again dominated by the correlation corrections,
as was the case for xenon.

The f-wave phase shift for Ba?*, which is pathologi-
cal, requires special attention. The continuum f waves
for Ba%* experience a double-well potential, shown in the
upper panel of Fig. 8, where we plot the direct part of
the HF effective potential and the large components of
the f-wave functions at electron momenta p = 0.02,0.04,
and 0.08 a.u. Low-energy f waves are resonantly trapped
in the inner well of this potential, leading to the excep-
tionally large wave function amplitude in the inner well
which is shown in the upper panel of this figure. By
contrast, the f-wave effective potentials for Cs™ and Xe,
shown in the lower two panels of Fig. 8, are seen to have
a much shallower inner well and a large centrifugal bar-
rier. The corresponding low-energy f waves are kept well
away from the core by the barrier. The resonant trap-
ping of f waves is well known and has been thoroughly
investigated in studies of Ba?* photoionization [30,31].

As a consequence of the large overlap of the wave func-
tions with the ionic core, the expression in Eq. (2.8) leads
to the result sin Ad, > 1 for f states in Ba?*. It follows
that the treatment of the quasiparticle equation using
perturbation theory is no longer valid for these states. If
we were solving the quasiparticle equation (2.5) exactly,
we would obtain the expression

tan A(sn(p) = —W(¢£{~F|Esl¢sn>7 (41)

rather than Eq. (2.8) for the correlation correction to
the phase shift, where cos Ad, ¢er(r) is assumed to be
a solution to Eq. (2.5) normalized on the energy scale.
Using Eq. (4.1) with ¢., replaced by its lowest approxi-
mation, ¢1F, leads to the f-wave phase shifts shown in
the solid curve in Fig. 7. Although the corrections to the
HF phase shifts obtained in this way account partially for
the difference between the HF phase shifts at threshold
and the Ba’ quantum defects, the agreement is unsat-
isfactory from a quantitative point of view. In the ab-
sence of an exact solution to the quasiparticle equation,
it is more realistic to treat the correlation corrections

TABLE I. Quantum defects mu. for Cst and Ba®*.

State K Cs* BaZt
S1/2 -1 0.18 -1.32
P1/2 1 -1.26 -2.40
p3/2 -2 -1.36 -2.54
ds/2 2 1.46 1.24
ds/2 -3 1.50 1.19
fs)2 3 0.10 2.72
fr/2 -4 0.10 2.60
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FIG. 6. Optical-potential (solid lines) and HF (dashed
lines) phase shifts for partial waves with £ = 0-5 in Cs™.
The open diamonds on the left vertical axes mark the values
of the quantum defects. Whenever distinguishable, the up-
per curve corresponds to the positive value of the relativistic
angular momentum « and the lower curve to x < 0.

for f waves phenomenologically. We do this by adopting
a two-parameter model potential for f waves similar to
that used in Ref. [11],

Otd'l‘2

V= Vap —
HF 2(7‘3+7‘3)2’

(4.2)

where ag = 10.61a3 and ry = 1.6a9. The value of ay
is taken from a relativistic random-phase approximation
(RPA) calculation [32] and the value of 7 is adjusted to
give the observed quantum defects. The resulting phe-
nomenological f-wave phase shifts are plotted in Fig. 9,
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FIG. 7. Optical-potential (solid lines) and HF (dashed
lines) phase shifts for partial waves with £ = 0-5 in Ba?*.
The open diamonds on the left vertical axes mark the values
of the quantum defects. Whenever distinguishable, the up-
per curve corresponds to the positive value of the relativistic
angular momentum « and the lower curve to x < 0.
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FIG. 8. Effective potential Veg(r) (solid lines) and large
components of radial and wave functions P(r) (dashed lines)
at p = 0.02, 0.04, and 0/08 a.u. for f-wave scattering in Ba?t,

Cs*, and Xe.

and are used in our subsequent calculations.

Differential cross sections for Cs* and Ba?* at 10 eV
are calculated in the HF approximation and with cor-
relation corrections; these cross sections are shown in
Fig. 10. Except for forward angles, the correlation correc-
tions lead to marked differences with the HF angular dis-
tribution, and both HF and correlated cross sections are

3.5 T T T T T

05 s " L " L
0.0 0.2 0.4 0.6 0.8 1.0

p(a.u.)

FIG. 9. Phenomenological (solid line), HF (dashed line),
and optical-potential (dot-dashed line) f-wave phase shifts
for Ba?t. The open diamonds on the left vertical axis give
the values of the phase shifts predicted from quantum defects.
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FIG. 10. Differential cross sections for Cs* and Ba®" at
10 eV. Optical-potential (solid line), HF (dashed lines), and
Rutherford (dotted lines).

substantially different from the Rutherford cross section.
The corresponding results for the Sherman asymmetry
function are shown in Fig. 11. Correlation corrections
are also seen to be important for this quantity.

In evaluating these cross sections, the amplitudes f(0)
and g(0) must be treated delicately because of the dom-
inant contributions of the Coulomb field at forward an-
gles. We write f(8) = f°(0) + Af(6) and g(f) =
g°(0) + Ag(6), where f°(0) and g°(6) are Coulomb am-
plitudes, and where

oC

AF(0) = %p SO[(€ + 1) (B0 — 1)etio-con
£=0
+0(e2%¢ — 1)e?9]Py(cos ),  (4.3)
8g(0) = 5 Yol(EH0-c — Detio
£=1
— (% —1)e* 1P} (6). (4.4)

The sums in the expressions for Af(6) and Ag(f) con-
verge rapidly, and the Coulomb amplitudes can be re-
placed by their nonrelativistic limiting forms:

i (1 —1%) ;uinsin? (0
<(9) = zunsm(/Z)’
F6) = pen? (@/2) TA + i) ©
g°(6) =0,

(4.5)
(4.6)

because of the small value of the ionic charge (.
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FIG. 11. Sherman asymmetry function for Cs* and Ba®*
at 10 eV. Optical-potential (solid line), HF (dashed lines).

In view of the relative simplicity of the predicted low-
energy angular distributions and scattering asymmetry
functions for ions (which is due to the absence of res-
onances at low energies), and because of the relatively
large size of correlation corrections, we believe that mea-
surements of low-energy elastic electron-ion scattering
will provide interesting tests of atomic many-body the-
ory. We strongly encourage such experiments.
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APPENDIX: PHASE SHIFTS

The quasiparticle equation (2.5) can be reduced to the
following pair of radial Dirac equations:

Vi — € + mc? c(g=1%) )(P,.;(r)>
—c (j'l; 4 5) —&,, — mc?® + Vur Qx(r)

_ [ Bx(r)

- ( o ) , (A1)
where [R(r), Sk(r)] = —Z¢ [Pe(r), Qx(r)]. With the aid
of this equation, one readily establishes the identity

lim ¢[PHF(r)Q,(r) — QEF (r)Px(r)

™—00

-/ “[PEF (1) Ru(r) + QEF (r) Sr(r)] dr . (A2)

Let us distinguish two cases.

Case 1. We solve Eq. (Al) in perturbation theory,
replacing the right-hand side by its value in the HF ap-
proximation. Assuming that the resulting orbital is nor-
malized on the energy scale as in Eq. (2.12), we obtain
from (A2)

sin A8, = — (67 |Sel¢T) (A3)
where 6, = 68F + A4,..

Case 2. We seek a solution to Eq. (A1) having the
form

bu(r) = ¢§F(T) + Adi(r),

where ¢HF (r) is normalized using (2.12). To normalize
the resulting function ¢,(r) on the energy scale, it is
necessary to multiply the right-hand side of Eq. (A4) by
the factor cos Ad.. Again, using the identity (A2) leads
to

(A4)

tan Ad, = —7 (AEF |S.|px) - (A5)
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