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Asymmetric two-electron excitations in atomic strontium and barium

Robert P. Wood and Chris H. Greene
Department of Physics and Joint Institute for Laboratory Astrophysics,

University of Colorado, Boulder, Colorado 80809 0$$0-
(Received 18 August 1993)

We present a general nonperturbative calculation of the photoionization cross section for highly
asymmetrical two-electron systems. The calculations were performed using the eigenchannel R-
matrix procedure together with multichannel quantum-defect theory (MQDT), including the ef-

fects of long-range multipole interactions. The isolated-core approximation is extended to treat
two-photon absorption. The calculations permit a detailed interpretation of recent experimental
measurements in atomic strontium and barium.
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I. INTRODUCTION

Theoretical and experimental methods for understand-
ing the high doubly excited states of two-electron systems
have lately advanced rapidly. On the experimental side,
a synchrotron radiation experiment has uncovered strik-
ing simplicity in the P states of helium up to about the
N 7 ionization threshold, indicating the operation of
strong propensity rules that severely limit the number of
such states that can be excited from the ground state [1).
At the same time, the propensity-favored states at the
highest energies exhibit strong, nonperturbative channel
interactions, reBected by a complicated pattern of pertur-
bations in the photoabsorption spectrum that has been
fully understood theoretically only recently [2]. These
same propensity rules were found [3] to apply to laser
excitation of H doubly excited states &om the ground
state in an experiment conducted at Clinton P. Anderson
Meson Physics Facility at Los Alamos (LAMPF) [4].

The extent to which these findings for He and H ap-
ply to doubly excited states of the alkaline-earth atoms
remains unknown. Stepwise laser excitation of high dou-
bly excited states has recently been carried out for Sr
[5] and for Ba [6]. These experiments probe states in
an energy range comparable to that studied in helium
[1], but the excitation scheme is qualitatively difFerent.
References [5,6] excite the doubly excited states from
high-8 Rydberg levels, which were themselves populated
by a Stark-switching technique. Because these experi-
ments begin from such a highly asymmetrical configura-
tion, such as 6snS in Ba, the approximate selection rules
of He are believed [5] not to apply. Instead the appro-
priate selection rules are derived more from the fact that
the "inner" valence electron is predominantly excited, as
in the familiar "isolated-core excitation" (ICE) scheme.

In this paper we extend the isolated-core approxima-
tion to treat high-lying core states excited by multistep
multiphoton absorption. We present the first nonpertur-
bative calculations of the photoionization cross section
as measured for Sr in Ref. [5] and for Ba in Ref. [6]. In
addition to providing a confirmation of the experimental
measurements, analysis of our intermediate results per-

mits us to test the qualitative interpretations of Refs. [5]
and [6] at a far more detailed level than would be possi-
ble based on the experiments alone. We find agreement
with much of the interpretation presented by Eichmann
et al. [5] and by Camus et al. [6], but some significant
differences have also emerged, as will be apparent &om
Secs. III and IV below.

The theoretical description of such highly excited two-
electron configurations is far from a routine task at
present. A series of small-scale eigenchannel R-matrix
calculations conducted in recent years [7] has demon-
strated that the spectrum of all alkaline-earth atoms is
well understood in the energy range near the lower ionic
thresholds. At final state energies no higher than about
—0.2 a.u. relative to the double-ionization threshold of
each atom, reliable spectra have been obtained by solving
the Schrodinger equation for both valence electrons varia-
tionally. This nonperturbative description of the electron
correlation physics is typically conducted within a finite
volume whose radius is in the range ro 20 —50 a.u. Es-
cape of a single electron beyond this volume is described
entirely within the framework of multichannel quantum
defect theory, neglecting all channel interactions occur-
ring at r ) ro.

As currently implemented, such eigenchannel R-matrix
calculations would have difficulty reaching the substan-
tially higher energies probed by the experiments of
Refs. [5,6]. One reason is simply the fact that the reac-
tion volume needs to be larger to accommodate the more
diffuse ionic radial wave functions involved, leading to
much larger basis sets in the variational calculation. An-
other limitation of those calculations [7) is more serious,
however: the increasing occurrence of long-range nonper-
turbative channel interactions at distances far beyond the
radii where exchange is important. These channel inter-
actions derive &om the near degeneracies of ionic levels.
The lower ionic levels of the singly charged alkaline-earth
ions have no near degeneracies between states of differ-
ent orbital momenta I, because the ionic quantum de-
fects vary strongly with l. (An exception to this state-
ment is worth noting, namely, the fact that small ionic
fine-structure splittings are present in the lighter alkaline-

1050-2947/94/49(2)/1029(12)/$06. 00 49 1029 1994 The American Physical Society



1030 ROBERT P. WOOD AND CHRIS H. GREENE 49

earth ions. However, the channel interaction physics as-
sociated with such fine-structure splittings can be de-
scribed relatively simply using routine frame transfor-
mation methods [8].) Higher-l states, on the other hand,
have small quantum defects and consequently close de-
generacies, which leads to strong multipole interactions
out to relatively large distances that require an accurate
solution of the multichannel problem beyond the size of
a plausible R-matrix reaction volume. In the limit that
such ionic states are truly degenerate in energy, which
is approximately true for He+, the "Gailitis-Damburg"
transformation [9] to a "permanent dipole representa-
tion" describes the exchange of angular momenta be-
tween the two electrons out to very large distances, ef-
ficiently and analytically [10]. But the situation in the
alkaline-earth atoms at higher energies is more difficult
to describe, as there are near degeneracies rather than
(virtually) exact ones. Physically, this implies that for
low Rydberg states sufficiently below two nearly degen-
erate opposite-parity ionic levels, the spectrum will re-
flect the formation of a "permanent" electric dipole mo-
ment —that is, it looks permanent on the time scale of
the Rydberg electron motion. However, for higher Ryd-
berg levels a transition occurs such that eventually Ry-
dberg levels are observed converging separately to each
not-quite-degenerate ionic level having a large "induced"
dipole moment (i.e. , a large dipole polarizability). The
transition between these two regimes of permanent versus
induced dipole moments is critical for an understanding
of the Sr spectra measured by Ref. [5] in particular.

In short, there is little alternative to direct solution of
the close-coupling equations without exchange in the re-
gion beyond the R-matrix reaction volume, when faced
with such strong long-range couplings. Various standard
techniques are known to satisfactorily accomplish this
direct solution, including finite difference methods and
R-matrix propagation schemes. A major result of the
present study is the marriage of such methods for in-

corporating the effects of long-range channel interactions
with the eigenchannel R-matrix approach. Besides devel-

oping a numerical technique capable of accurately solv-

ing the relevant coupled differential equations at r & ro,
we also pursue an adiabatic representation of the long-
range couplings that shows the critical ranges of energy
and of radius where the channel interactions occur. The
adiabatic picture is further useful in visualizing at a
glance the strongest interacting channels and in spotting
qualitative differences among the different alkaline-earth
atoms and helium.

II. THEORETICAL PROCEDURE

The method we use is the eigenchannel R-matrix pro-
cedure together with the multichannel quantum-defect
theory (MQDT). The combination of these approaches
has been widely used for calculation of the photoabsorp-
tion spectra of atoms with two valence electrons Ref. [7]
and more recently for carbon group atoms Ref. [11] and
transition metals Ref. [12]. Although these techniques

have been widely used in recent years, they have re-
mained limited to energies near the first few ionic thresh-
olds. The extension to higher energies has not been ac-
complished in earlier work, owing to the rapid increase
in the number of accessible channels, and to the increas-
ing importance of long-range multipole interactions. In
alkaline-earth-metal atoms the quantum defect of the
core electron will be small for high angular momenta.
The outer electron can then mix these nearly degenerate
orbital angular momentum states to create a "perma-
nent" dipole moment of the core electron, and the inter-
action of this dipole moment with the outer electron adds
a term to the Hamiltonian proportional to 1/r2. When
the outer electron is excited to high enough Rydberg lev-
els such that the splitting between the orbital angular
momentum states is large compared to the interaction
between the states the outer electron will be subjected
to a new effective potential proportional to 1/r4.

In this section we discuss the details of the calcula-
tion. In Sec. IIA we will brieQy discuss the eigenchan-
nel R-matrix approach and we will give details of our
method for propagation of the wave function and its ra-
dial derivative (which is equivalent to propagation of the
8 matrix) through the coupling region outside of the re-
action zone. The connection between the R matrix and
the "smooth" short-range reaction matrix of multichan-
nel quantum-defect theory is well known and will be given
explicitly in Sec. II B. In Sec. II B, we will also discuss the
calculation of transition amplitudes in the isolated-core
approximation, which together with the reaction matrix
comprises all of the information required to calculate the
total and partial photoionization cross sections.

A. Calculation of the R matrix

We begin by describing aspects of the eigenchannel
R-matrix procedure relevant to the present calculations.
This method has proven to be an efficient and accurate
method for calculating scattering parameters when com-
bined with MQDT as discussed in [7].

The goal of the eigenchannel R-matrix procedure is
to variationally determine a set of solutions of the time-
independent Schrodinger equation. These solutions are
chosen to have a constant normal logarithmic derivative
everywhere on a reaction surface. For a system with two
valence electrons the reaction surface is usually defined
to be ro ——max(rq, r2), where rq and r2 are the radial dis-

tances for electron one and electron two, respectively, and
ro is a constant box radius chosen in advance. In previous
applications of the eigenchannel R-matrix procedure, the
reaction volume radius ro was chosen large enough such
that for max(rq, rz) ) ro the electrons could be consid-
ered to be distinguishable, and only the isotropic part of
the Coulomb attraction between the escaping photoelec-
tron and the residual ion was retained in the potential
interaction. This implies that, when one of the electrons
moves beyond ro, the two electrons can no longer ex-
change energy or angular momentum through the 1/rq 2

interaction.
Inside the reaction volume the Hamiltonian for the
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two-electron system is taken to have the same form as
in [8]:

form:

lni(liai) ji, ng(a2l2) j2)
Ti + T2 + V(ri) + V(r2) + V . .(ri) + V . .(r2)

+ , (1)
1

~12

where T; is the kinetic energy operator for electron i.
The one-electron potential V(r;) is the effective electron-
core potential for electron i, which models the screening
of the nuclear charge Z by the core electrons and the
polarizability of the core electrons. The form of the po-
tential V(r;) is chosen to be the same as in [7]. However,
it has been pointed out that the 6nal spectra are gener-
ally insensitive to the actual form of the potential chosen
[13]. The most important point is that the one-electron
energy levels of the positive ion must agree with the ex-
perimental levels. In the present calculations we have
used the experimental ionic energy positions in the R-
matrix calculation as well as in the MQDT calculation.
The spin-orbit interaction between the nucleus and elec-
tron i is given by V, (r;) and is given explicitly by Eq.
(3) of Ref. [7]. The electron-electron repulsion b'etween

the two valence electrons is 1/ri2.
The one-electron orbitals we used in constructing our

two-electron basis functions were chosen to be eigenfunc-
tions of the one-electron Hamiltonian, speci6cally

[T; + V(r;) + V, (r, )]ln;(al;) j) = E„~~ln;(al, )j). (2)

Here the quantum numbers s, l;, and j; are respectively
the one-electron spin, orbital and total angular momenta,
while the principal quantum number n; is an index that
labels the one-electron eigenfunctions with the same li
and j;. Each one-electron orbital that is nonzero on the
reaction surface r = ro is called an "open-type" orbital,
while each that vanishes at ro is called "closed-type. "
The majority of the two-electron basis functions included
in the R-matrix calculation are composed of two "closed-
type" one-electron radial functions. Open-type orbitals
are included in every channel to be treated as either open
or weakly closed in the MQDT calculation.

The eigenchannel R-matrix procedure requires the so-
lution to a generalized eigenvalue equation I'Z = bAZ at
each desired energy E. The matrices I' and A are de6ned
in Ref. [7], Eqs. (7) and (8), and b is the normal logarith-
mic derivative constant over the reaction surface. The
matrix I' involves the energy, the Hamiltonian, and the
Bloch operator, while the matrix A contains surface am-
plitudes of the basis. In Ref. [14] a streamlined method
for solving the generalized eigenvalue equation was devel-
oped which greatly increased the efBciency of the eigen-
channel R-matrix method. The number of nontrivial so-
lutions to the generalized eigensystem is N, the number
of open or weakly closed channels. We are guaranteed to
have N solutions by including an open-type orbital in
all open or weakly closed channels. The Pth eigenstate
of the Hamiltonian lpga) is constructed from the eigen-
vectors Zgp as lpga) = g& ly~)Zgp. Here the lyi, ) are
two-electron basis functions, and the label k represents
the set of quantum numbers (nili jin2l2 j2). The unsym-
metrized two-electron basis functions have the following

in jj coupling. At this point the normal procedure is
to match the projection of the Pth independent solution
on the ith channel function and its radial derivative to
a linear combination of regular and irregular Coulomb
functions (f;,g;). From this matching procedure the
"smooth" reaction matrix K;; of MQDT is determined.
This procedure neglects the effects of all higher long-
range multipoles beyond the matching radius ro. How-
ever, for the highly excited core states we are considering
the electrons are able to exchange energy and angular
momentum to large radial distances, approximately 100—
300 a.u. This will be taken into account by numerically
propagating the R matrix through this exterior region of
channel coupling.

After completing the eigenchannel R-matrix calcula-
tion, we now have N solutions gp and N normal radial
derivatives g& on the reaction surface. Outside this sur-
face, r2 ) ro, the Pth independent solution at an energy
E is given by a close-coupling-type expansion, with coef-
ficients F;p(r2) which depend on rq

No

A= ) .C'*(fl)F'n(»)
i=1
No

gp
——) e;(0)F,"p (r2).

(4)

4;(0) is a close-coupling-type channel function, with 0
representing all spatial and spin coordinates for the elec-
tron pair except the radial coordinate of the outer elec-
tron. The outer electron spin is ignored in the jK-
coupling case. In this paper we will use either LS cou-
pling or jK coupling. The exact form for the 4;(0) in
each coupling scheme is

@;(O)= x'(ri) l(lil2) I (aia2) ~~M),
4;(0)= y;(ri) l(aili) jil2K),

(6)

(7)

F'n(ro) = ((4"lie))
Fp(rs)= ((C"l@t)).

(8)
(9)

Here the double brackets refer to a surface integral over
the reaction surface, which is interpreted to include also
a trace over spin degrees of freedom.

If we insert Eq. (4) into the time-independent
Schrodinger equation and project from the left with

with the y;(ri) a radial core function for the inner elec-
tron. Here we have chosen to represent the angular mo-
mentum and spin degrees of freedom in the bra-ket nota-
tion, while using wave functions for the radial coordinate.
Another point worth mentioning is that exchange effects
are completely neglected in all calculations of this paper,
which is the reason there is no explicit antisymmetriza-
tion in Eqs. (4) and (5).The N x N matrices Fp(r) and
F,'&(r) are determined at ro by taking the projection of
the ith channel function 4;(0) on the Pth independent
solution
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(4z(O)~ we arrive at the following finite set of coupled
difFerential equations for the F;p(r):

F'p(r, )+2) [s;b;, —V,, (r, )]F,p(r, ) =0.

independent of r2 and we can write

Fp(r2)= f;(r2)I p
—g;(r2) Jp,

F,'p( )= f,'( )I,p —g,'( 2) J;p.

(»)
(13)

Here e, = E —E; is the asymptotic photoelectron energy
in channel i. E is the total energy and E; is the energy
of the ith core level. The potential matrix V,~ is given
explicitly by

Solution of this system of equations for the energy de-
pendent matrices I;p and J;p yields the reaction matrix
K = JI . Equivalently we could form the R matrix
from the solution matrices R = F(F') i with the K ma-
trix given in terms of the R matrix by

K = (f —f'R)(g —g'R) (14)

where we have neglected the efI'ect of the spin-orbit inter-
action V, (r2) for electron 2 at r2 ) rp. Equation (10)
includes some closed channels i at any given energy E
in which the components of F;p diverge exponentially
asymptotically. The physical boundary conditions at
r ~ oo are applied to the F,p with the aid of quantum-
defect theory, after the solutions have been propagated
to radial distances sufIiciently large that the long-range
multipole potentials, primarily the dipole term, are of
negligible importance. A multichannel Numerov algo-
rithm was used in propagating the solution matrix F;p
and its derivative F,'&.

B. Calculation of the MQDT parameters

We have determined an N x N solution matrix F;p
and its radial derivative F,& from the R-matrix procedure
outlined in the preceding section. We will now use these
matrices to calculate the necessary MQDT parameters
for calculation of the total and partial photoionization
cross sections. We must determine the reaction matrix K
or the scattering matrix S. These matrices are functions
of the energy E and give detailed information of the final
state channel interactions. In this paper we will deal with
the reaction matrix K but this contains equivalent infor-
mation to the scattering matrix, and the two are related
by a simple transformation K = —z(S —1)(S + 1)l

(Ref. [8]). We choose to use the reaction matrix because
it is a real quantity, whereas the scattering matrix is com-
plex.

The calculation of the reaction matrix from the solu-
tion matrices F;p and F,-'& is now straightforward. For r2
large enough that the k & 1 terms of the potential matrix
V;~ are negligible, we see that the F;p satisfy the radial
Schrodinger equation with a purely Coulomb potential
in each channel i. These F,.p can be matched to a linear
combination of regular and irregular Coulomb functions
f, (r) and g; (r) which are a function of the photoelectron
energy e, and the orbital angular momentum l; in chan-
nel i. This matching can be performed at any radius
ry such that the P& contribution to Vz in Eq. (11) is
negligible. The coefFicients of the expansion will then be

Here the Coulomb functions (f, g) and their radial deriva-
tives, all evaluated at the outermost matching radius r y,
are arranged in diagonal matrices.

We have not applied the physical boundary conditions
in the calculation of the reaction matrix K. These bound-
ary conditions are efIiciently imposed using multichannel
quantum-defect theory. We require that the wave func-
tion goes to zero in each asymptotically closed channel.
Physically this boundary condition represents the fact
that an electron can only escape to r ~ oo in the chan-
nels i for which c, = E —E; ) 0. Therefore the number
of physical solutions and any given energy E are exactly
equal to the number of open channels. We form these
physical solutions by taking a linear combination of the
4p with the requirement that in each closed channel the
wave function must go to zero. The specifics of this pro-
cedure are given elsewhere [15]; here we just note that
the effect of the channel elimination is to give a highly en-

ergy dependent physical reaction matrix K " ' contain-
ing only indices referring to the physical channels. The
strong energy dependence is caused by the infinite num-
ber of Rydberg autoionizing resonances in every channel;
each such resonance causes a pole in K " '.

Along with the reaction matrix we must calculate a set
of transition amplitudes which connect the initial state to
the final state. To this end we use the so-called "isolated-
core approximation" [16,17]. We assume that the initial
state can be written as a simple product wave function.
In this approximation the initial state MQDT wave func-
tion can be written as @p = C'p(O)u~ i (r2)/r2. Here Cp
is a core function for the initial state with 0 representing
all spatial and spin coordinates for the two electron sys-
tem except the outer electron radial coordinate r2. The
initial state radial wave function is u„,i, (r2) = r2R„,4,
with R„,~, a hydrogenic wave function for the outer Ryd-
berg electron and no, lo being the principal quantum
number and the orbital angular momentum, respectively.
Approximating the initial state wave function as a sim-
ple product neglects exchange and all correlation effects
for the initial state; this approximation should be valid
for the high lo values considered here, but it will be dis-
cussed further in Sec. III in the context of specific results.
Outside the reaction volume the final state MQDT wave
function will be as in Eq. (4) with F,p having its asymp-
totic form, Eq. (12). The transition amplitude connect-
ing the initial state to the final state can then be written
in general as Eq. (14) of Ref. [17]
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(15)

xu„,i, (r2) + Dp" '. (16)

dr2[f;(r2) I p
—g; (r2) J;p]u„,i, (r2)

Fp

(17)

= nov; W(f;(ro)I p

9 (r&)J'p u 4(ro))I(v' no) (18)

Here W(F, G) = FG' —F'G is the radial Wronskian, and
v, is the effective quantum number in channel i.

In Ref. [17] this equation was further simplified by as-
suming that the energy dependence of the f and g func-
tions could be ignored. This is a very good approxima-
tion when ro is small provided v, )) l;. In Ref. [17] the
value ro was taken to be 20 a.u. , whereas for our calcu-
lations ro will be in the range of 100—250 a.u. Therefore
we numerically calculate the Wronskian at each energy
E.

With the MQDT parameters K and the transition am-
plitudes Dp we can calculate physical observables such
as the partial and total cross sections eSciently through
straightforward manipulations. Specifics of the proce-
dure are given in Ref. [15].

III. RESULTS

We will now apply the formalism developed in Sec. II
to calculate photoionization cross sections for strontium
and barium, emphasizing the different approximations we
have used for the two calculations. We will also compare
our calculations with recent experimental data.

A. Photoionization cross section of strontium

In this section we give specific details for the calcu-
lation of the photoionization cross section of strontium.
We will focus on the global structures in the cross section
and not on a line by line comparison between the calcula-
tion and the experiment due to the enormous complexity
of the spectra.

In the recent experiment of Eichmann et al. [5], high-
lying doubly excited states of strontium were probed by

Here we have made the standard isolated-core approxi-
mation that the transition operator T only acts on the
core electron because the outer electron spends most of
its time far &om the nucleus where it cannot absorb vis-
ible or uv photons. D'"" ' is the contribution to the
transition amplitude &om inside of the reaction volume.
The specific form of the transition operator T depends
on the details of the excitation scheme, as will be dis-
cussed in more detail in Sec. III. The overlap integral
of the outer electron wave function in Eq. (16) can be
evaluated by applying Green's theorem, Eq. (16) of Ref.
[17]

multiphoton excitation. The final states probed in the
experiment were in the energy region near the 6f thresh-
old of Sr+ and the "initial state" was the 5d5y2n2,
17l2,. ——9 state. This autoionizing state has such a long
lifetime that we can treat it as though it is a bound level.
Here the quantum number n2, is the principal quantum
number for the outer electron and l2, is its orbital angular
momentum for the outer electron.

As is discussed in Sec. II we have neglected exchange
and correlation effects for the initial state in our calcu-
lation. This should be a very good approximation be-
cause the extremely high orbital angular momentum of
the outer electron prohibits it &om penetrating into the
region where the inner electron wave function is large.
We perform the calculation in LS coupling because the
fine-structure effects are of negligible importance for the
final state. Also, the total spin does not play a role in the
calculation because we are neglecting exchange, so the
channels are specified by the quantum numbers lz, , l2,.

which couple to form a total angular momentum L;.
The experiment claimed to select a single l2,. angular

momentum eigenstate, but there is no knowledge of the
total orbital angular momentum for the two electrons
L; = li,. + l2, Camus et al. [19] point out that more
than one l2,. eigenstate may be produced, but we con-
tinue in our analysis to neglect this Stark-induced mix-
ing. We assume that the experiment incoherently excites
all possible initial angular momenta L, with equal weight.
There does not seem to be any inherent reason to pre-
fer equal weighting to a statistical weighting. Our lack
of precise knowledge of the detailed preparation of the
"initial state" is perhaps the greatest uncertainty in the
calculations. For the initial state considered here with
I,q,.

——2 and lq,.
——9 the possible values of the total angu-

lar momentum of the initial state are L; = 7 ~ 11. In
treating the "initial state" in LS coupling we have ne-
glected the approximately 87 cm fine-structure split-
ting of the 5d~ levels. However, we use the correct 5d5y2
ionic energy level in the calculation, and the initial state
energy is taken to be Esp, , —1/(2n2), with n = 17.

The possible final states accessible by a one-photon
transition are those having total final angular momentum
in the range of Lf ——6 —+ 12, with the even parity. We
must do a separate calculation for each allowed initial and
final state. For each possible L, there are three possible
Lf = L; —1,L, , L; +1, which leads to a total of 15 MQDT
calculations.

In the energy region near the 6f threshold we have in-
cluded the following nearby thresholds in the calculation:
7d, 8p, 6f, 6g, 6h. We use experimental threshold energies
[6] in the R-xnatrix and MQDT calculations. For exam-
ple, the R-matrix and MQDT calculation for Ly = 12
included the following open and weakly closed channels:

7dc10, 7de'12, 8pe11, 6fe9, 6fel 1,6ge'8', 6gs10,

6ge12, 6he7, 6he9, 6hel 1.

Here our notation is nqflqfcl2& with the c representing
the energy of the outer electron. The channels with l2 f
13 have been found to be unimportant, and are neglected
in the calculations.
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The calculations were performed with an R-matrix box size of 100 a.u. and the solutions were propagated beyond
this box out to radial distances of approximately 250 a.u. using the methods discussed in Sec. II. The core-electron
transition amplitude Eq. (16) for a single photon excitation of the initial state (li l2, )L; to the final state (li l2 )Lf
is given by [18]

((';)I'll""III' 4 )i~) = &~ . I—')"'"'"I';ll' ilII ~III'l
l 0 „0' 1(i'o) (2O)

Here we have used the convention that [L] = y 2L + 1.
The quantity in parentheses is a Wigner 3-j symbol and
the quantity in braces is a 6-j symbol. Here C is the ra-
dial matrix element of the dipole operator which is a con-
stant. The reaction matrix was determined at ro ——250
a.u. at 2000 energy points in the energy region of 76 015—
76893 cm above the first ionization potential. Using
standard MQDT procedures we have calculated the cross
section &om the reaction matrix and the transition axn-

plitudes.
In Fig. 1 we compare the relative experimental pho-

toionization cross section with the relative theoretical
cross section of the 5d5/2n2, ——17l2, ——9 state of Sr
from Ref. [5]. We have modeled the saturation of the ex-
perimental cross section by plotting the theoretical cross
section as o, t ——1 —e ~ (Ref. [16]). The theoretical
cross section is a combination of the 15 individual cross
sections o(L, -+ Ly), summed over Ly and L, , which is
only approximate as discussed above. While the spec-
trum is very complicated, we have clearly achieved quali-
tative and even semiquantitative agreement with the ex-
perimental cross section.

Below the 6f threshold which is located at approx-
imately 23 560 cm the spectra are very complicated
due to the interaction between the 6fst2r, 6gs't2, and2f &

6hz" t&' Rydberg series. In this energy region these chan-
nels are closed and the Rydberg series converging to the
6f threshold are perturbed by the lower members of the
6gL 'l2 and 6hz"lz' series. Also, in both the theoret-

[

ical and experimental cross sections there is a sudden
transition below approximately 23450 cm where the
Rydberg series converging to the 6g threshold are much
less intense. This is at an efFective quantum number v of
approximately 20 relative to the 6g threshold. The rea-
son that the transition region occurs near v 20 can be
understood by examining the relevant &equency scales of
the Rydberg electron. The outer Rydberg electron oscil-
lates with a frequency m = 1/vs. The energy splitting
between the nearly degenerate 6g and 6h ionic thresholds
introduces another characteristic &equency, which can
be viewed qualitatively as the precession frequency of a
near-Keplerian elliptical orbit. For Rydberg frequencies
~ & E6& —E6~ the outer electron is subjected to a dipole
potential proportional to 1/r4, whereas for a ) Esp, Esg-
the potential is proportional to 1/r2. The transition re-
gion should occur for energies ~ = E6h —E6g', this trans-
lates into efFective quantum numbers of v —17, which is
close to the observed transition at v = 20.

One very noticeable discrepancy is seen in the region
between the 6f and 6g threshold. The Rydberg series in
the theoretical cross section converging to the 6g thresh-
old does not match up with the experimental cross sec-
tion. We have found that the agreement between theory
and experiment is improved dramatically if the theoret-
ical wavelength is shifted by +10 cm . The source of
this error has not been identified, the most likely problem
being in the theoretical thresholds used in the MQDT.
There is some disagreement about the true (experimen-

20000

Theory

10000—
O

ijNl ~jliI[II~i)PyliIIlgg~

Experiment

FIG. 1. Comparison of the
experimental relative cross sec-
tion of Ref. [10]with the present
calculation. The energy of the
6f threshold is approximately
23 560 cm and the nearly de-
generate 6g and 6h thresholds
are located at approximately
23740 cm

0

23200
t

23400
Energy (cm ')

23600



49 ASYMMETRIC TWO-ELECTRON EXCITATIONS IN ATOMIC. . . 1035

tal) thresholds for Sr+, as is evident &om the analysis of
Ref. [5].

In Fig. 2 we display a plot of the individual Lf cross
sections that were included in calculating Fig. 1. Only
one initial state L, is plotted for each Lf because only the
intensities change for diferent L; and not the resonance
positions. These figures show the rich number of features
in the spectrum, many of which are not experimentally
resolved.

In all of the calculations there appears one dominant
Rydberg series converging to the 6g threshold which can
be labeled 6get2&. The dominant decay path for the
6gs'l2~ channel is to the 6fslz channels. We expect2j
the probability for the 6ge'l2& ——8 channel to decay into
the 6fcl2& ——9 channel should be larger than the proba-
bility for the 6ge'l2& ——10 channel due to the propensity
for the autoionizing electron to gain energy and angular
momentum in the decay process. To verify this propen-
sity rule we have examined the scattering probability for
the processes 6gs'l2~ ——8 ~ 6fst2& ——9 and 6fs'l2& ——

10 ~ 6fstqz ——9 for Ly = 12. The element lS;zl of
the short-range scattering probability matrix gives the
probability that an electron in channel j will scatter into
channel i in a single collision with the core. Two channels
i g j are said to be strongly coupled if the correspond-
ing element of the scattering probability matrix lS;zl2
is large. For the process 6gs't2& ——8 ~ 6fst2& ——9 the
scattering probability matrix element is 0.26, whereas for
6gs't2& ——10 ~ 6fsl2& ——9 the matrix element is 0.07.
This verifies the usual propensity rule that the outermost
electron tends to gain angular momentum as well as en-

ergy when it autoionizes.
For the Lf ——6 calculation the propensity-favored de-

cay 6gs't2& ——8 + 6fst2& ——9 occurs with a probability of
0.046. This is approximately one fourth of the probability
for the propensity-favored decay probability for Lf ——12,
which explains why the Rydberg series converging to the
6g threshold is much broader in the Lf ——12 calculation
of Fig. 2. The larger coupling for the Lf ——12 calcu-
lation can be explained by examining the 1/rqq matrix

Lf=12

L,=11

L,=10

L,=9

element. For strongly interacting channels i and j the
matrix element (all/»2[g) will be large. Comparing the
dipole part of the angular matrix element for Lf ——12
and Ly ——6 we find

((f4, = 9)L~ = 611/»21(~l2, = 8)Lx = 6)

= 0.057, (21)

((f12~ ——9)Ly = 12ll/»2[(gl2~ ——8)Ly = 12)

= 0.46. (22)

B. Photoionization cross section of barium

In this section we apply the formalism developed in
Sec. II to the photoionization cross section of barium.
We will be considering the two-photon excitation of ex-
cited barium using the isolated-core approximation. The
isolated-core approximation assumes that the inner core
electron absorbs a photon while the outer electron is a
spectator. Here we will extend the usual isolated-core ap-
proximation to treat the case of two-photon excitation.

We will consider photoionization from the excited
6sqy2n;l; initial states to final states in the energy re-
gion near the 8sq/2 threshold. Experimental cross sec-
tions have been measured by Camus et al. [6] b.y a two-
photon isolated-core excitation. In the isolated-core ex-
citation, the outer electron is excited to a high Rydberg
Stark state lying in a hydrogenic manifold just below the
Ba+(6s) state, in the presence of an electric field. The
field is then adiabatically reduced to leave the atom in
a specific l; angular momentum eigenstate. The orbital
angular momentum of the initial state can be mixed if
there are stray electric fields in the experiment, an eH'ect

observed by Ref. [19]. After the atom has been excited
to the high-n;l; state the ionizing laser excites the core
electron by a two-photon process.

In the isolated-core approximation the transition am-
plitude is written as a product of an amplitude to ex-
cite the core electron and of an overlap factor for the
outer electron, as in Eq. (16). The specific form for the
core-electron transition amplitude in a two-photon pro-
cess is diferent &om the one-photon amplitude discussed
for strontium. The transition amplitude to excite a final
core state lf) from an initial state li) by a two-photon
process can be written in general as

Lf=7

23200
i

23400
Energy (crn ')

I

23600

FIG. 2. The calculated partial cross sections for the indi-
vidual L y. Only one L,. is plotted for each Lf because cross
sections with the same Lf but different L; have the same
resonance positions, only the intensities differ.

The sum is taken over all intermediate states
lj) coupled

to the initial state by the dipole operator Z - r. The en-
ergy denominator contains the initial state energy E;, the
intermediate state energy E~, and the photon energy Ru.

For an initial ionic s state having l; = 0, dipole se-
lection rules limit the intermediate state to be a p state
with lz ——1. The possible final state angular momenta
are then lf ——0, 2. For the small energy region we will be
considering, approximately 300 cm, we will neglect the
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energy dependence of the denominator in Eq. (23). This
is valid because there are no intermediate ionic states

~j) with orbital angular momentum l~ = 1 near the en-

ergy E; + Ru, but it would fail of course, if there was an
intermediate p state which could be resonantly excited.
The transition amplitude can be written as a sum of ir-
reducible tensorial operators having rank 0 and rank 2

D D(o) + D(2) (24)

The rank 0 operator D( ~ causes s + s ionic transitions,
while the rank 2 operator D( ~ causes s m d transitions.

We now make a further approximation to neglect the
D( ~ part of the two-photon transition amplitude, which
is primarily justified by the fact that the ionizing laser
frequency is close to half of the 6s ~ 8s transition fre-
quency and far &om any 6s ~ nd frequency. More-
over, in the isolated-core approximation the analytical
form for the overlap of the outer electron wave function
Eq. (18) falls off rapidly for large differences in the ef-

fective quantum number vy P v;. Here vy is the effec-
tive quantum number of the final state at an energy E,
i.e. , vy = 1//2(Fy —E) with Ey the threshold energy.
The factor v; is the effective quantum number of the ini-
tial state and is equal to the principal quantum number
v; = no I.n the experiment of Ref. [6] final states were
probed in the energy region near effective quantum num-
bers of vy

——12 —16 relative to the Ssl/2 threshold at
88.. . ——58025.18. The nearest d threshold is the 7d3/2
ionic state at E7& /

59800 31 and the effective quan-
tum number relative to the 7d3/2 at these energies is in

the range 6—7. The T( ~ amplitude for direct excitation
of the 7d3/2 channels is thus also weak owing to the large
difference between their effective quantum numbers from
that of the initial state.

The resulting approximation to the reduced transition
amplitude, from the initial state MQDT wave function
@, = 4, (O)u„, i to the final state MQDT wave function

imp
= g. 4'z(O)[fz(r2)I&p —gz(r2) Jzp], with @i.(O) hav-

ing the form given in Eq. (6), reads

Dp= &@pIID"'ll@*)

= ) (4'~IID" ~lc') dr2u. , t, (~2)[f, (r2)l, p
—

g( r) J,]p+ Dp
2

f 0

(25)

(26)

This expression neglects exchange and all correlation ef-
fects in the initial state. D'"" ' is the contribution to the
transition amplitude from inside of the reaction voluIne.
The sum in Eq. (26) is taken over all finaL state channels
included in the calculation. The choice of channels to
include will be discussed in the next section along with
the comparison between experiment and theory.

The reduced matrix element (C~~~DL L]~4,) in jK cou-
pling is

(4'& I ID I I C") = &~&, t, , ~i, ~,, ~~, , ~,, ~z'; a &
.

/2) p1/2~3/2) Spl/2, 3/2) 6d3/2 5/2) 7d3/275/

f5/2, , 7/2~ 5f5/2, 7/2~ 5g7/2, 9/2 ~

(28)

The final state channels were constructed kom these core
levels by adding an outer electron of orbital angular /2~,
satisfying the condition that Ky ——l2& + j2~. The the-
oretical cross section contains 20QQ energy mesh points

Here the constant C is the reduced matrix element of the
rank 0 operator D(o~ between the initial and final state
ionic radial functions. We do not need to calculate this
integral because experiments to date have measured only
the relative cross sections.

Figure 3 displays the relative photoionization cross sec-
tion measured by Ref. [6], while Fig. 4 shows our cal-
culation. The calculations were performed in jK cou-
pling with an R-matrix box of 100 a.u. Numerical tests
showed that it was unnecessary to propagate the solu-
tions outside of the reaction volume, in contrast to the
Sr calculation. The final state core levels included in the
calculation as open or weakly closed are

over an energy region from 57200 to 57640 cm above
the first ionization potential.

The energy scale in Fig. 3 and Fig. 4 is relative to the

6sl/2 ~ Ssl/2 ionic transition. These figures show the
evolution of the final state interaction as a function of the
initial state outer electron orbital angular momentum l2,

for n2, ——13. The experimental (Fig. 3) cross section
shows some contamination of neighboring l2 peaks due
to stray electric fields in the apparatus [19]. In jK cou-
pling for j = 1/2 there are two possible K, values for each
l2. , K; = /2, —1/2, l2, + 1/2. The calculated cross sec-
tion is a sum of the two possible K, For suKciently high
l2 a single peak occurs in the cross section because the
resonance positions for the two Ky values are degenerate.

A dramatic change occurs in the experimental cross
section for the case of l2, ——7. The complex structure in
the experimental cross section is not reproduced in the
theoretical calculation where we see two simple peaks
split by the K-splitting . The complex structure in the
experiment can be identified to be due to Rydberg series
converging to the 5fs/2 and 5 f7/2 thresholds. This dis-

crepancy is not fully understood, however it is possible
that there is a perturber from one of the 7d~ thresh-
olds which is in the wrong position in the calculation.
The cross section would depend sensitively on the po-
sition of the perturber because the interaction between
the 8si/2l2 ——7 channel and the 5f~lz channels can be
enhanced through an intermediate d perturber. This ef-
fect has been observed in the cross section for l2 ——6
and is discussed below. Another possibility is that the
experimental cross section has a large fraction of l2. ——6
mixed in due to the stray electric fields. Comparing the
l2, ——7 and l2. ——8 experimental cross sections in Fig. 3 it
is clear that there is a large fraction of the l2, ——8 charac-
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ter present in the l2,
——7 spectrum near 10 cm . Also,

there is a structure in the t2, ——6 cross section similar to
that in the l2, ——7 cross section near 20 cm

In Fig. 4 we display the experimental and theoretical
cross section for the initial state n2, ——14l2. ——6 over a
much larger energy region, including the overlap struc-
ture &om v8, ——16 + vs, ——12. The overlapping res-
onances are due to the 5f~s'lz channels, with the 5f&~2
threshold at —0.1061 a.u. and the 5fry2 threshold at
—0.105 a.u. One very noticeable discrepancy between
experiment and theory is in the intensities of the 5f~zl2
series. For energies in the range —0.1056 to —0.1062
a.u. the experimental 5fzsl2 resonances all have approx-
imately the same intensity, while the theoretical cross
section over the same energy range follows the distribu-
tion of the squared overlap integral given in Eq. (24).
Two possible explanations for the discrepancy between
experiment and theory are as follows. Firstly the ap-
proximation we have made to the dipole matrix elements
discussed above could be overly simpliied. This is cur-
rently dificult to test because the full calculation for the
two-photon process is beyond our present capabilities.
The second possible explanation which we have exam-
ined is the presence of a perturber in the energy region
of Fig. 4.

In order to examine the possible e8ects of a perturber
in the energy region of Fig. 4 we have examined the
energy derivative of the eigenphase sum which contains
information about the resonance positions but does not
incorporate the transition amplitude. Figures 5(a) and

Fig. 6(a) display the individual K contributions to the
theoretical cross section of Fig. 4. Figures 5(b) and 6(b)
display the derivative of the eigenphase sum for three
cases: (1) treating the 8si~2s'l2, 7d~s'l2 and 5f~el2 chan-'
nels as open [denoted sdf-open in Figs. 5(b), 6(b)j, (2)
treating the 8si~2sl2 and 5f~el2 channels as open (de-
noted sf-open), and (3) treating the 5f~sl2 channels as
open (denoted f-open). Artificially opening a channel in
the MQDT calculation removes all perturbers associated

Experiment.

Ba' Bs

0.0

—10
I

10
Energy (crn ')

20 30

Theory

FIG. 3. (a) Experimental relative cross section plotted as
a function of energy relative to the 6szgz ~ Sszg2 ionic tran-
sition energy. (From Ref. [7].) The plots are labeled for
different lq&, the outer electron orbital angular momentum.
(b) Theoretical relative cross section plotted as a function of
energy relative to the 6szy2 ~ Sszg2 ionic transition energy.
The plots are labeled for different l2&, the outer electron or-
bital angular momentum.

—0. 1052 -0.1054 -0.1056 —0. 1058 -0.1060 -0.1062 -0.1064 -0.1066
Energy (a.u. )

FIG. 4. Comparison of the experimental relative cross sec-
tion (top, from Ref. [7]) with the theoretical cross section
(bottom) for the initial state n2, ——14, l2, ——6. The theoret-
ical cross section is shown as a mirror image for comparison.
The position of the Ba+ ionic line is labeled for reference.
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with that channel. In Fig. 5(b) the calculation denoted
sdf-open has a perturber at approximately —0.106 a.u.
which must be of 5g~ nd character, because all other chan-
nels which could contribute a perturber in this energy
range have been treated as open in the MQDT calcula-
tion. Similarly, in the K = 11/2+ calculation [Fig. 6(b)]
with the 7d~rl2 channels treated as closed (denoted sf-

open) there is an additional perturber at —0.1054 a.u.
in the K = 11/2+ symmetry and at —0.10605 a.u. in
the K = 13/2+ symmetry. These perturbers must be
of 7d~ng character. From an examination of the eigen-
phase sum with the 5f7/2sl2 channels treated as closed
we have determined that the effect of the 5g~ nd perturber
in the K = 11/2+ calculation is to narrow the 5f~nl2
resonances. This can be seen in Fig. 5(a) where the res-
onances in the vicinity of the 5g~nd perturber have re-
duced widths. The 5gznd perturber in the K = 13/2+
symmetry [Fig. 6(a)] is near the minimum of the ICE
overlap factor and therefore has little effect on the spec-
tra. In both the K = 11/2+ and K = 13/2+ symme-
tries the effect of the 7' ng perturber on the widths of the
5 f7/272li2 resonances appears to be minimal. However, as
will be seen below, the 7del2 channels play a crucial role
in determining the intensity of these resonances.

It is very surprising that the intensities of the 5f~sl'2
series are so large, in view of the fact that mixing of the
8ssl2 ——6 channel with the 5f~ c'lz cha. nnels requires a2f 2 2f

change of three units of angular momentum. This led Ca-
mus et al. [6] to speculate that these channels are strongly
coupled by the octopole component of 1/ri2, which our
analysis below appears not to substantiate.

We can qualitatively understand the complexity of the
spectra for different l2 by looking at the adiabatic poten-
tials. Shown in Fig. 7 are the eigenvalues of the matrix
F,h, ~ + V~ (r2) plotted as a function of the square root of
the outer electron radial coordinate r2, with V~ given by
Eq. (11). The plots labeled (a)—(f) are for different values
of the outer electron orbital angular momentum 8sl' and
quantum numbers Kf, with vr the parity of the state.
The 8s&~2et2 channel is the single potential curve la-
beled in the figures. The 5fs/2z'I' and 5 fz/2E. "I' channels
lie energetically directly below the 8s channel at large
r2. It is clear in figures (c)—(f) that the single potential
labeled 8sl in each 6gure is almost completely diabatic,
which indicates that the interaction with the neighboring
channels is small. Due to the small channel interactions
we expect the photoionization spectra to be simple for

t2, ——7, 8. This is true in the theoretical calculation of
the cross section in Fig. 4. However, in the experimental
spectra in Fig. 3 the 12, ——8 cross section is simple while

the l2. ——7 cross section is very complex. As discussed
above, the complexity in the experimental 12,

——7 spec-
tra may be due to mixing of the L2, ——7 state with the
t2 ——6 state by stray electric fields.
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FIG. 5. (a) The calculated cross section for the
K = 11/2+ symmetry aud (b) the derivative of the eigeu-
phase sum. The three curves in (b) are explained in the text.

FIG. 6. (a) The calculated cross section for the
K = 13/2+ symmetry and (b) the derivative of the eigen-
phase sum. The three curves in (b) are explained in the text.
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The interactions in the adiabatic potentials become
much stronger in Figs. 7(a) and 7(b). In Fig. 7(a) there
is a large avoided crossing between the 5fsy2l2~ ——7 po-
tential and the 7d3~212&

——6 potential at small radial
distances which we suspect is responsible for the large
intensity of the resonances converging to the 5fz thresh-
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—0.11—
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lX —0.11
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olds in Fig. 4. However, the large number of avoided
crossings between many of the channels makes it difficult
to sort out the exact mechanism responsible for the cou-
pling between the 8sqy2e'lz~ ——6 channel and the 5f~s'l~z

channels solely &om an examination of the adiabatic po-
tentials and eigenvectors. To quantitatively understand
the strength of the 5f~ series and to specify the exact
mechanism responsible for the coupling it is necessary to
examine the scattering probability matrix.

We will now discuss the specific mechanism responsi-
ble for the interaction between the 88&~2cl2& ——6 chan-
nel and the 5f~s'tz channels. We have calculated the2f
weakly energy dependent scattering probability matrix
~S;~

~

with an R-matrix box size of ro ——50 a.u. and ana-
lyzed the elements connecting the 8s&~2el2& ——2 channel
to the 5f~c'l2& channels at an energy of —0.1058. The
largest coupling was found for the 5fr~2st2&

——7 channel.
A Rydberg electron striking the core in the 8s&~2el2& ——6
channel scatters into the 5f7~2sI2&

——7 channel with a
probability of 0.16. However, if we treat the 7d~ Et2& chan-
nels in the MQDT calculation as if they were open, the
scattering probability decreases to 0.046. This dramatic
decrease in the scattering probability provides strong evi-
dence that the interaction between the 88q~2el2~ ——6 and
5f~s't2~ channels is being mediated through an interac-
tion with the 7d~t "lz' channels. To rule out the pos-
sibility that the interaction between the 8szy2el2&

——6
channel and the 5fqg2s'l2& ——7 channel is due to a direct
octopole coupling we repeated the calculation of the scat-
tering probability matrix omitting all multipoles higher
than k = 2 in the expansion of 1/rq2. The scattering
probability with the 7d~e"lz' channels treated as closed
in the MQDT calculation was found to be 0.14, and with
the 7d~le"lz' channels treated as open, 0.045. This is a
relatively small difference &om the calculation including
all multipoles, again providing strong evidence that the
strong coupling between these two channels is being me-
diated by an interaction with one of the 7d~cl2& channels
and is not due to direct octopole coupling.
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—0.1

—0.11
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10
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FIG. 7. Barium adiabatic potential curves for outer elec-
tron angular momentum l2y

——6 —8 plotted as a function of
the square root of r2, with r2 the outer electron radial coor-
dinate. The quantum numbers K and x are discussed in the
text.

IV. CONCLUSIONS

We have presented a general theoretical &amework
that provides a detailed interpretation of high-lying
asymmetric two-electron states. Treatment of long-range
multipole interactions has been included by propagation
of the R-matrix solutions to large radial distances where
the application of standard MQDT is possible.

Application of this procedure to treat photoionization
of highly excited Sr and Ba has shown that despite the
complexity of the spectra the effect of the channel inter-
actions can be sorted out by examining "smooth" quan-
tities of MQDT (such as the scattering probability ma-
trix). Examination of the scattering probability matrix
for Ba photoionization has allowed us to interpret the
complexity of the spectra observed experimentally in [7].
We find that the coupling between the 8sl = 6 channel
and the 5f~l2 channels is a two-step process, mediated
by the 7d~lz channels, and not direct octopole coupling
as suggested by Ref. [6]. While the k = 1 (dipole) and
k = 2 (quadrupole) multipoles are important, octopole
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coupling plays a relatively minor role.
These kind of experiments provide a handle on an in-

teresting class of two-electron states, in which the elec-
trons exhibit nonperturbative correlations despite the
fact that they are almost completely nonoverlapping.
Given the extreme complexity of these experiments, and
the considerable uncertainty about the preparation of
the state being photoionized, the present calculations ac-
count for the measurements of Refs. [5,6] reasonably well.
The calculations also show far richer substructure not re-
solved by Refs. [5,6], which shows that future experimen-
tal studies at higher resolution are desirable.
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