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From the experimental measurement of probability distributions of quadrature-field amplitudes, fol-
lowed by numerical inversion (optical homodyne tomography), we have determined distributions and/or
moments of the optical phase of small-photon-number fields for several definitions of the phase variable,
including those based on Hermitian operators and on quasiprobability distributions. These measure-
ments were performed on a vacuum field, and a weakly squeezed field. It is found that each definition of
phase yields different distributions and/or moments for the experimental data. In addition, all of the ex-
perimentally determined quantities agree with the corresponding theoretical predictions.

PACS number(s): 42.50.Wm, 03.65.Bz, 42.50.Dv

The quantum-mechanical description of the phase of
an electromagnetic field has long been a subject of in-
terest [1-3]. Since Dirac’s earliest proposal for a phase
operator, there have been many theoretical proposals put
forth for operators that for intense fields reproduce some
aspect of the statistics of the classical phase of the field.
The proposed operators may give widely different statis-
tics, however, for fields that contain only a few photons
[3]. Other approaches that do not require the definition
of a Hermitian phase operator have also been proposed
[4—6]. The weak-field regime is of fundamental interest
because it is here that interesting quantum-mechanical
effects can most easily be studied, such as the uncertainty
principle applied to phase and photon-number variables
[71.

Despite this interest, there have been few experimental
attempts to measure the phase of fields with small photon
number [6,8,9]. Early measurements of phase were car-
ried out by Gerhardt, Biichler, and Litfin, who measured
the phase of a coherent state with as few as three photons
[8]. This measurement has been compared with predic-
tions using several different phase operators [10,11].
Noh, Fougeres, and Mandel have performed measure-
ments that determine the relative phase between two
coherent-state fields with low mean photon number, and
the results agree well with a phase operator defined for
this specific experiment [6].

Previously there have been no methods proposed for
experimentally determining either the Pegg-Barnett [3],
or the marginal Wigner [4] phase distributions. Here we
demonstrate an experimental technique, based on state
measurement, for inferring these distributions without
the need to make individual measurements of the corre-
sponding phase variable. We note that the Wigner phase
variable is unmeasurable, even in principle, on individual
trials, due to the fact that the Wigner phase distribution
can be negative [12].

We apply this technique to both a vacuum state and a
weakly quadrature-squeezed state of a single spatial-
temporal mode of the field, containing on average less
than one photon. The results for the squeezed state
represent experimentally determined phase distributions
for a nonclassical state of the electromagnetic field, i.e., a
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state that cannot be represented by a classical mixture of
coherent states. The density matrix and Wigner distribu-
tion that we used to determine the phase distributions
were obtained using the technique of optical homodyne
tomography [13]. In the standard interpretation of quan-
tum mechanics, the density matrix contains all knowable
information about a given quantum system. Thus, from
the density matrix for the measured mode, we are able to
calculate distributions and/or moments for any appropri-
ately defined phase operator, including those of Pegg and
Barnett [3], and Susskind and Glogower [2]. We can also
calculate phase distributions that are not directly associ-
ated with operators, such as the Wigner phase distribu-
tion defined by Schleich, Horowicz, and Varro [4].

Our results illustrate that it is possible to obtain phase
distributions without making individual phase measure-
ments (or even estimates). Using homodyne detection, we
measure an ensemble of field-quadrature amplitudes and
mathematically construct phase distributions from the
data. In the language of Ref. [6], our phase distributions
would thus be “inferred” rather than “measured,” be-
cause individual phase measurements are not made. We
find that the experimental data, when analyzed according
to each of the various theories for quantum phase, yields
significantly different distributions and/or moments.
Nevertheless, each distribution or moment agrees quite
well with the corresponding theoretical prediction. In a
sense, ours is the opposite point of view of that taken by
Noh, Fougeres, and Mandel, who propose that it may be
necessary to define a particular phase operator for a given
experimental arrangement [6]. If one is willing to
sacrifice phase measurements on individual realizations,
it is possible to obtain several phase distributions from
one apparatus that measures the state of the system.

The first useful phase operators were defined by
Susskind and Glogower. They defined exponential phase
operators in terms of the number states as [2]

eX‘pSG(+i¢)=§ [n){n+1], (1a)
n=0

efpss(—id)=3 [n+1)(n| . (1b)
n=0
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These operators are not unitary, however, and as such
they are not functions of a unique Hermitian phase
operator. From these operators, Hermitian sine and
cosine operators can be defined as

0653G=%[eﬂ)sg( +l¢)+efpsg( _i¢)] , (2a)
SﬁlSG=2Li[CXT)SG(+l¢)—ebeG(_l¢)] . (Zb)

The statistical moments of cOsgg and singg can be calcu-
lated from the density matrix in the number-state repre-
sentation. Since the operators contain no explicit value
for a phase reference, phase shifts must be performed by
multiplying Egs. (1) by complex exponentials [5].

In retrospect, part of the problem with defining a Her-
mitian phase operator is found to be due to the fact that
the operators in Egs. (1) operate in an infinite dimension-
al Hilbert space. By restricting the operation of a phase
operator to a finite (but arbitrarily large) dimensional Hil-
bert space, Pegg and Barnett (PB) have defined a Hermi-
tian phase operator [3]. In an (s + 1)-dimensional Hilbert
space the phase states are defined as

—— 1 <
|¢> ‘/m ngoe |n ) . (3)

This Hilbert space is spanned by a complete orthonormal
set of basis phase states |¢,, ), where

2mm
= -, =0,1,...,s, 4
¢m ¢0+ s+1 m N ( )
and ¢, is a reference phase. In terms of the states |¢,, )
the Hermitian phase operator is

3=3 bnldm)bnl . (s)
m =0

With this definition, the phase states are the eigenstates
of the phase operator, i.e., $|¢) =¢|¢). Since ¢ is Her-
mitian, it is possible to create cos(¢) and sin(¢) operators
in terms of Taylor expansions.

Using the PB formalism, one can define a probability
distribution for the phase. For a system in a state de-
scribed by a density operator p, the probability of
measuring a particular value of the phase is
Ppp(d)=[(s +1)/27]{$|pl¢). In terms of the number-
state basis, this distribution is

1

o 2 e! M= nlplm) . (6)

n,m =0

Ppp(d)=

Another phase distribution is the Wigner phase distri-
bution, proposed by Schleich, Horowicz, and Varro [4].
This is defined in terms of the Wigner quasiprobability
density W (x,p), which for a single degree of freedom is
defined as

W(JC,p):Lf00 (x +x'|plx —x"Ye ¥P%dx' , (7)
o —

where |x ) is an eigenstate of the operator X, which obeys
[%,p ]=1i with its conjugate variable p. For a light mode
with annihilation operator @, the operators X and p are
defined as £ =(a+a")/v2 and p=(a—a')/iV2. The
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Wigner phase distribution Py,(¢) is given by the overlap
in the x-p phase space of the Wigner distribution and a
narrow “wedge-shaped” region, having an angular width
A¢ and making an angle ¢ with respect to the x axis.
This yields the marginal distribution

Py($)Ag= f:+A¢d¢’ J "drrWrcosg,rsing) . ®

Our measurement apparatus is a balanced homodyne
detector [14]. In this detector a pulsed signal field E; is
superposed by a 50-50 beam splitter with a pulsed
coherent-state field E; called the local oscillator (LO),
with phase 0. The local oscillator is an approximately
400-ps duration, near transform-limited pulse, with a
wavelength of 1064 nm. The LO pulse contains an aver-
age of 4X10° photons. The two resulting fields are
detected with high-quantum-efficiency (~85%) photo-
diodes, and the resulting current pulses are temporally in-
tegrated and subtracted with a low-noise preamplifier.
This yields the total photoelectron difference number N,.
Recently we showed that our apparatus allows the mea-
surement of distributions of the photoelectron difference
number in the macroscopic domain [15]. The subtraction
eliminates classical-like fluctuations of the LO (but not of
the signal field). Assuming the LO to be much stronger
than the signal, the operator N ¢ for the total photon-
difference number is proportional to the quadrature-
amplitude operator, defined with respect to the LO phase
6 by Rp=3% cosf+p sind=N, /(27 5)'/?, where i g is
the mean photoelectron number in the LO pulse. Thus,
for a given local oscillator phase, properly normalized
distributions of N yield Py(x,) distributions of the quad-
rature amplitude.

The quadrature-squeezed field was generated by a
type-11 phase-matched, walkoff-compensated KTP opti-
cal parametric amplifier with no injected signal, i.e., a
“squeezed vacuum.” With this field, we find that the field
quadrature with minimum variance has a variance that is
25% below the shot noise level [13]. Since in this experi-
ment the local oscillator is pulsed, the operator @ corre-
sponds to the “spatial-temporal mode” of the local oscil-
lator. Further experimental details are found in [15,13].

The distribution Py(x,) is related to the Wigner func-
tion by the relation

Py(xq)= f_w W (xgcos0—pgsind,xqsinf+pycosb)dpy .
9)

Given a set of distributions Pg(x4) for values of 8 be-
tween O and m, it is possible to invert Eq. (9) to obtain
W (x,p) [16]. This is done numerically by using the in-
verse radon transformation familiar in tomographic im-
aging. Experimentally, we make measurements at 27
equally spaced values of 0; each distribution Py(xg) is ob-
tained from 4000 measurements of the photoelectron
difference number in the balance homodyne detector. To
obtain the density matrix in the x representation from
W(x,p), all that is necessary is to perform a one-
dimensional Fourier transform of W (x,p):

(x+x'|plx —x’)=f_°° Wi(x,p)e*P*dp . (10)
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In Ref. [13] we demonstrated the ability to obtain
W(x,p) and {x|p]x’) from the measured distributions
Py(xgy). We refer to this technique as optical homodyne
tomography. Since in this technique, we use a strong
coherent-state local oscillator, our phase distributions are

1

(nlptm)= | — L
nlpim 272\ |

where the functions H;(x) are Hermite polynomials.
Thus, simple integration of our experimentally deter-
mined density matrix in the x representation yields the
density matrix in the number-state representation. An
indication of the experimental accuracy with which we
can calculate the matrix elements is determined by
evaluating (n|plm ) for large values of n and m, where
we expect {n|plm ) to approach zero. We find that for
values of n and m greater than about 6, the value of
[{n|plm }| is typically less than 0.005.

It should be noted that the diagonal terms {n|p|n)
yield the probability P (n) of having n photons in the sig-
nal mode after losses. For the experimentally measured
vacuum signal, we find P(0)=0.99, and all other P(n)’s
to be less than 0.006. For the measured squeezed state
we find P(0)=0.94, P(1)=0.042, P(2)=0.010, and all
other P(n)’s less than 0.005. For a pure squeezed vacu-
um state without losses, the probability of measuring an
odd number of photons is zero. However, when losses
are introduced it is possible to measure odd numbers of
photons, and we believe that the high probability of see-
ing a single photon in our experiment is due to losses
(both the quantum efficiency of the photodiodes, and the
homodyne efficiency due to the spatial-temporal overlap
of the local oscillator with the squeezed field).

Shown in Fig. 1 are the experimentally determined
Pegg-Barnett and Wigner phase distributions, for both a
vacuum signal and a squeezed-vacuum signal. Because
the phase distribution of the vacuum is assumed to be
uniform, we infer that the deviation from a uniform dis-
tribution is an indication of our experimental error. As
the number of photoelectron difference number measure-
ments increases, the determination of the distributions
Py(x4) will become better and the noise on the phase dis-
tributions should decrease. The 27 phase angles used in
the reconstruction of the Wigner function is more than
enough to accurately determine it; so increasing the an-
gular resolution should not significantly alter these phase
distributions [13]. It is found that Ppg(4) is not sensitive
to the choice of the Hilbert-space dimension, as long as
the dimension is not too small; the results of Fig. 1(b) are
essentially identical if a 10-, 25-, or 100-dimensional
space is used. _

It is seen in Fig. 1(b) that the experimental phase distri-
bution of the squeezed state has two maxima, located at
approximately 7/2 and 37/2. The theoretical results
shown in Fig. 1(c), which are for a pure squeezed state
with 25% squeezing in the variance, are in agreement
with the experimental results, for both Pegg-Barnett and
Wigner phases. The theoretical results were obtained by
using the same algorithm as used for the experimental re-
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referenced to the phase of this field.

In order to obtain Ppg(¢), or the moments of cOssg
and singg, it is necessary to transform the density matrix
from the x representation into the number-state represen-
tation. This is done by the transformation

172
f_w dx f_m dx’e_("2+"'2V2H,,(x)Hm(x’)(x|p‘|x’) , (11)

f
sults, but by using a theoretical Wigner function. .-In both
the theoretical and experimental plots, the reference
phase ¢, was taken to be 7/2. The choice of ¢, is arbi-
trary, and we have made a choice that minimizes the
variance of ¢ for the theoretical data [3]. Precise quanti-
tative agreement between the theoretical and experimen-
tal distributions is not expected, because the theory is for
a pure squeezed state, while the experimental data indi-
cate that the measured state is not pure. The slight
discrepancy of the location of the peak near 37 /2 in Fig.
1(b) may be due to drift in our interferometer, which is
only passively stabilized, as well as statistical error, due
to the finite sample numbers. Note that the theoretical
results for the Wigner phase distribution are more sharp-
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FIG. 1. The Wigner (solid lines) and Pegg-Barnett (dashed
lines) phase distributions are plotted over a 27 phase window.
The Wigner phase distributions are obtained from Eq. (8), while
the Pegg-Barnett distributions are obtained from Eqgs. (6) and
(11). The dotted lines represent a uniform, random-phase distri-
bution. (a) shows the distributions for the experimentally mea-
sured vacuum signal (the deviations from a uniform, random
distribution are due to experimental noise); (b) shows the distri-
butions for the experimentally measured squeezed-vacuum sig-
nal, the error bars represent the rms error estimated from (a); (c)
shows the distributions for a theoretical squeezed vacuum,
whose minimum variance is 25% below the shot noise level.

P(0-0,.)
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TABLE 1. Experimental and theoretical moments of functions of
phase, for several different definitions of phase. The mean and variance
of f are signified by (f) and (Af?), respectively. These moments are
for a vacuum signal state. )
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TABLE II. Same as Table I, but for a squeezed-vacuum signal state.

Pegg-Barnett Wigner Susskind-Glogower
Expt. Theory Expt. Theory Expt. Theory
(p—rep) 310 311 311 3.1
(A(B— o)) 319 329 315 3.29
(cos(¢—o.)) —0.028 O —0.036 0 —0.028 0

(Acos (¢—¢)) 0.50 0.5 050 0.5 0.25 0.25
(sin(¢—rep)) 0.003 © 0.003 0 0003 0O
(AsinX(¢—¢, ) 050 0.5 050 0.5 0.25 0.25

ly peaked than those for the PB phase distribution; this
fact is also reflected in the experimental results.

Tables I and II give a summary of various statistical
moments calculated using several different definitions of
phase. Table I shows the moments for a vacuum signal,
while Table II shows the moments for the squeezed sig-
nal. Generally the different definitions of phase yield the
same mean values, but different values for higher mo-
ments. The values of the PB and Wigner moments are
similar, with the phase variance of the Wigner phase dis-
tribution being slightly smaller, as expected from the
above discussion. The Susskind-Glogower moments are
dissimilar from the others. The experimental moments
agree well in all cases with the theoretical moments. This
emphasizes that any of these phase definitions may be
taken to be a useful characterization of phase properties
of the state.

Since our technique for inferring phase distributions is
based on measurements of the state of the system, not on
direct phase measurements, the results do not favor one
phase definition over any other. We believe this to be a
strength, not a weakness, of the technique, because it is
possible to compare the results for many different phase
definitions from a single set of data. If, however, one

Pegg-Barnett Wigner Susskind-Glogower
Expt. Theory Expt. Theory Expt. Theory
(= rer) 306 311 305 3.11
(A(g— .0 3.07 319  3.00 3.15
(cos(p—¢,s)) —0.029 0 —0.036 0 —0.029 0

(Acos’(p—¢p)) 044 045 042 043 021 0.20
(sin(¢—ep)) 0.003 0 0.004 0 0003 0
(Asin®(¢—¢,0)) 056 055 058 057 0.32 0.30

wishes to obtain phase information on individual mea-
surements, our technique is not useful. In many cir-
cumstances what is important are phase distributions. In
any method for determining a distribution many repeated
measurements are required, whether they be direct phase
measurements or measurements of some other quantity
(here, quadrature amplitude). So, measuring a quantity
other than phase is not necessarily a disadvantage.

We have demonstrated that it is possible to obtain dis-
tributions and/or moments for the phase of a mode of an
electromagnetic field using optical homodyne tomogra-
phy. The obtained phase information is referenced to the
phase of a strong coherent state, and is intrinsically
characteristic of the measured field; it is not tied to any
particular measurement apparatus. These results have
been demonstrated here for the case of a vacuum and
squeezed states, but the technique will in principle work
for arbitrary states of the field. It is notable that this in-
formation can be obtained without directly making mea-
surements, or even estimates, of the phase of the field on
individual measurements.
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