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Double ionization of helium by a single photon with energy 89—14Q eV
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We have calculated the energy and angular distributions for double ionization of He by one photon,
over the range of photon energies 89—140 eV. Our results compare favorably with experimental data.

PACS number(s): 32.80.Fb

The theoretical treatment of double ionization of an
atom at photon energies of a few eV or more above
threshold remains a difficult challenge. The problem is
all the more interesting in view of recent measurements
of the energy distribution and the angular asymmetry
parameter for double ionization of He by one photon.
We report below the results of calculations of the en-

ergy distribution, the asymmetry parameter, the cross
section for double ionization, and its ratio to the single-
ionization cross section, for one-photon double ionization
of He over the range of photon energies 89—140 eV. We
compare our results with experimental data and other
theoretical data.

Taking the light to be linearly polarized, along the z
axis, and the atomic states to be spin-singlet (we factor
out the spin), we work in the velocity gauge, and unless
specified otherwise we use atomic units. I et k~ and k2 be
the final momenta of the two electrons, with Ei = ki/2
and E2 = k2/2 their final energies. Let Oi and O2 be the
angles which kq and k2 make with the z axis, and let Oq2

be the angle between kq and k2. The difFerential cross
section for the atom to absorb one photon, of frequency
~, and for the two electrons to emerge into solid angles
dn, and dn, is

dEgdOgd02

4''
kik2~f (ki, k2) i',

(dC

where, since the atom absorbs only one unit of angu-
lar momentum and is initially in a spherically symmetric
spin-singlet state, the amplitude f (ki, k2) has the form

f (ki, k2) = g(ki, k2, cos Oi2) cos Oi

+g(k2) ki, cos Oi2) cos O2, (2)

where ki ——~ki~ and k2 ——~k2~, and where the function
g(ki, k2, cos Oi2) is to be determined. The energy distri-
bution do/dEi and the angular asymmetry parameter
P(Ei) can be expressed in terms of the auxiliary func-
tions [1]

dc' 1 do [1+P(Ei)P2(cos Oi)],
dEgdOg 4' dEg

where [1]

(5)

d~ 64~'k, I,
u(ki, k2, 0) + u(k2, ki, 0)

dEy 34)c

1+—v(ki, k2, 1)

2[15u(ki, k2, 0) + 3u(k2, ki, 2) + 5v(ki, k2, 1)]
15[u(ki, kg) 0) + u(k2) ki, 0) + s v(kl, k2, 1)]

We see that do/dEi is symmetric about the midpoint
Ey/2, where Ey = Ei + E2 is the total final energy, but
P(Ei) is asymmetric. The function g(ki, k2, cos Oi2) may
be calculated by evaluating f(ki, k2) at selected values
of kg and k2.

For computational purposes it is convenient to start
from the following expression [3] for the amplitude:

where yz z (ri, r2) is any trial wave function that cor-(—)

rectly describes two outgoing electrons at asymptotically
large distances [4] and that is an eigenvector, with eigen-
value Ey, of soxne (possibly nonlocal) trial operator Hp
(whose form may depend on ki and k2) and where ~X+)
satisfies the inhomogeneous equation

(g)

Note that v(ki, k2, l) is symmetric in ki and k2 but that
u(ki, k2, l) is not. Integrating the right-hand side of
Eq. (1) over all directions of k2, using Eq. (2), gives,
after some algebra, the result [2]

dp lg(ki, k2, p) l
Pi (p), (3)

v(ki, k2, l)

x Pl (y, ).
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with H the full Hamiltonian of the atom and ]ill;) the
(fully correlated) ground-state eigenvector. The opera-
tor Ho is the asymptotic Hamiltonian of the doubly ion-
ized atom in the sense that (H —Hp)]y& & ) falls off
faster than a Coulomb potential in position space; in this
sense, the potential W = H —Hp is "short" range [5].
Unfortunately, a trial wave function having the correct
asymptotic form is not easy to handle [4], and therefore
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we invoke the following simplification: We first observe
that when the right-hand side of Eq. (8) is written as
an integral over position space, and the volume integral
is converted to a surface integral, the main contribution
comes from the point of stationary phase of the inte-
grand, which corresponds to the classical asymptotic mo-
tion of the electrons. Thus, following Rudge and Seaton
[6] and Jetzke and Faisal [7], we introduce a quasiclassical
wave function that describes the electrons moving asymp-
totically in the Coulomb potential —(ZI/rI) —(Z2/r2)
where Zi and Z2 are velocity-dependent efFective charges
given by Z, = Z —4, , i = 1, 2 with Z = 2 and

(k; k;~) k;
(10)

k,--

where k;~. = k, —k~. , j g i, and k;~ = ]k;~. I. We therefore
choose the trial wave function [6, 7]

+(—) (r r ) (2~)
—seikz rz+ik2'P2

1I 2

e ~'~ I'(1 —ip, )
h

j=1,2
xIEq(ip~, 1, ik, r, ——ik,. .r, ),

where p~ = —Z~/k~. Thus Ho simplifies to a local (but
velocity-dependent) operator H —W with

1
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where rq2 ——irI —rz]. We note that Pan and Starace [8]
recently made use of the same velocity-dependent efFec-
tive charges in their study of (e, 2e) collisions. Putting
ri ——kit) r2 ——k2t) and &i2 ——ki2t—we call this the
"stationary phase limit" —gives W = 0. However, sub-
stituting the form (11) for ]yk k ) into Eq. (8) gives a di-
vergent integral over rI and r2, since the form (12) for W
falls ofF asymptotically as a Coulomb potential; the trial
wave function of Eq. (11) has the correct asymptotic form
only in the stationary phase limit. To obtain a conver-
gent integral we represent the (divergent) amplitude by
a divergent series, and then we attempt to continue ana-
lytically this representation, that is, we attempt to sum
the series by using one of Levin's algorithms [9]. Since
the essential physics has been included in Eqs. (8), (9),
and (ll), we conjecture that if the series can be summed
to a converged finite number, that number is the correct
value of the amplitude. To obtain a series representation
of f (kI, kz) we expand ]X+) on a finite basis. As in our
previous work [3], we used a two-electron basis consisting
of terms S"I(rI)S",I, (r2)YII, (rI, r2), where YII, (rI, r2)
couples spherical harmonics and where S"I(r) is a ra-
dial Sturmian function that is a polynomial of degree
n„= n —l —1 multiplied by r + e'"". The "wave num-
ber" m was chosen to lie in the upper right quadrant of
the complex m plane so as to simulate both outgoing-
wave open channels and exponentially decaying closed
channels [10]. We have applied this method to double
ionization of He, and we now show results.

In Fig. 1 we show estimates of do/dEI vs EI, for var-
ious photon energies. Recall that der/dEI is symmetric
about (Eq + Ez)/2. The solid circles, in the upper box,
are our calculated points. We were able to obtain results

FIG. 1. Unnormalized (upper box) and normalized (lower
box) energy distributions at various photon energies.
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FIG. 2. Asymmetry parameter at various photon energies.
Broken curve: theoretical results of Ref. [16]. Solid curve:
present results. The experimental data are revised [15] from
Ref. [11].
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FIG. 3. Absolute integrated cross section. Solid circles:
experimental data from Ref. [18], revised as noted in text.
Short and long broken lines: Theoretical results of Tiwary [22]
and Carter and Kelly [21], respectively. Solid line: present
results (the slight jaggedness is probably due to numerical
noise —see text).

that were usually converged, with respect to basis size,
to within a few percent; the scatter of the solid circles
is most probably due to numerical errors arising from
imperfect convergence or numerical instability. The con-
tinuous lines are smooth interpolations. We see that the
curvature of the energy distribution changes from being
slightly negative to more strongly positive as the photon
energy increases. Wehlitz et al. [11] have measured an
energy distribution that is Bat, but the relative uncer-
tainty of the measurement is 20% so there is no conflict
with our results. The negative curvature of the energy
distribution, at lower photon energies, may be due in part
to the phase-space factor kqk2, which has a maximum at
the midpoint [12]. At higher photon energies, the curva-
ture changes sign owing to the difficulty of ejecting two
fast electrons. As the photon energy increases the distri-
bution becomes more deeply U shaped and at very high
photon energies it may become W shaped [13]. Le Rouzo
and Dal Cappello [14] have reported results for the cur-
vature of the energy distribution at photon energies from
100 to 300 eV, but they find significantly greater curva-
ture; e.g. , at a photon energy of 100 eV they calculate
about a 20% change in do/dEq over 0 ( Eq ( Ey/2,
compared to our l%%uo change.

In Fig. 2 we show the asymmetry parameter P(Eq)
for four different photon energies. We compare with the
measured results of Wehlitz et al. [11,15], and with the
recent theoretical results of Maulbetsch and Briggs [16]
based on using a final-state wave function with the cor-
rect asymptotic form. At photon energies not far above
threshold, when both Eq and E2 are small, P(Eq) does
not vary much, and remains small, over the allowed range
of Eq, as the two slow electrons depart, after absorb-
ing the photon, they continue to interact for a long time
and evidently lose their memory of the electric field, so
that there is no preferred direction into which one elec-
tron emerges when it is not detected with reference to
the other. However, at larger photon energies, P(Eq) in-

FIG. 4. Ratio of cross sections for double to single ioniza-
tion vs photon energy u, compared to the data of Refs. [11]
(~), [24] ( ), [25] (A), [26] (o), [27] (o), and [28] (*).

creases with increasing E~. Indeed, when Eq is very large,
P(Eq) —2 [17, 13]; a fast electron has a cos2(0q) angular
distribution (if it is not detected with reference to the
slow electron) since it absorbs the photon primarily from
a zero angular-momentum component of the ground state
and therefore emerges with one unit of angular momen-
tum.

In Fig. 3 we show the absolute integrated cross section.
Lablanquie et al. [18] measured the ratio of the cross
section for double-ionization to the total ionization cross-
section, and they used the values of the total ionization
cross section measured by Marr and West [20] to deduce
the cross section for double ionization. We have revised
the double-ionization cross-section results of Lablanquie
et al. by using values of the total ionization cross section
measured and compiled by Samson [19], which are be-
lieved to be more accurate. We show the revised results
in Fig. 3, along with the theoretical results (calculated in
the velocity gauge) of Tiwary [22] and Carter and Kelly
[21] (similarly revised).

Finally, in Fig. 4, we show our estimate of the ratio of
cross sections for double to single ionization [23], and we
compare with various experimental data [11,24—28].

In conclusion, we have proposed a method, which is rel-
atively easy to implement, for treating double ionization
of two-electron systems. The soundness of the method
is indicated, if not confirmed, by the reasonable agree-
ment between the available experimental data and our
calculated results in our application to He.
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