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Information-theoretic limits to quantum cryptography
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We develop an information-theoretic formalism to describe a quantum-cryptographically protected
communication channel. We thereby establish the fundamental limits on the security of the channel.
This formalism enables us to propose protocols that allow detection of an eavesdropper by examination
of data that would normally be discarded.
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Quantum cryptography is the name given to a tech-
nique of distributing a sequence of random bits to two or
more parties in such a way that can guarantee security
against an unauthorized eavesdropping attempt. The leg-
itimate users of the channel then possess a shared, and
secret, random sequence of bits. This shared, secret infor-
mation can then be used as a key for cryptographic pur-
poses. The aim of an eavesdropper is to obtain as much
of the secret key as possible without being detected.
Quantum cryptography frustrates both of these ambi-
tions. Three ingenious schemes that fulfill this function
have so far been proposed. The first, by Bennett et al.
[l], relies on the uncertainty principle of quantum
mechanics to provide key security. This particular
scheme has been demonstrated experimentally [2]. A fur-
ther elegant technique has been proposed by Ekert [3],
which relies on the violation of the Bell inequalities to
provide the key security. An experimental realization of
this scheme has also been proposed [4]. The security of
this latter scheme has been shown to be equivalent to that
of the first [5], although the Ekert scheme gives the addi-
tional feature of secure key storage. The third technique,
devised by Bennett [6], is based on the transmission of
nonorthogonal quantum states. Communication using
quantum states allows many novel and fundamental tech-
niques to be exploited [7]. These techniques cannot be
envisaged within the framework of classical physics. It is
clear that quantum cryptography represents a radical
new departure both in physics and cryptology.

Broadly speaking, quantum-cryptographic key-
distribution techniques can be classified in the following
way: they are the exploitation of a physical phenomenon
through a data-handling protocol to provide security
against eavesdroppers. Thus there are two crucial ele-
ments: the physical eff'ect (for example, the uncertainty
principle or the violation of the Bell theorem) and the
protocol designed to exploit this effect to yield a
guaranteed security. The Bennett-Brassard protocol (BB,
for short) is fundamentally different from the Ekert pro-
tocol in that the BB protocol discards approximately —,

' of
the collected data before any test for the eavesdropper is
made. The BB protocol sacrifices some of the potentially
useful key data to detect the presence of the eaves-

dropper. The Ekert protocol splits the data into two
groups and performs the eavesdropper detection test on
one group and then, if eavesdropper-free, uses the other
group of data as the key. One of the purposes of this pa-
per is to describe a method whereby the BB cryptograph-
ic scheme can be adapted so that none of the potentially
useful data is lost; the eavesdropper detection test is per-
formed only on "rejected" data, data that would not be
used as key data and would, under the original BB proto-
col, be discarded or rejected.

One of the problems with the proposed quantum-
cryptography schemes is that it is not easy to see where
the limits of the techniques lie. We present in this paper
an information-theoretic formulation of the quantum
communication channel that allows a natural description
of the fundamental limits to quantum cryptography. It is
interesting to note that this formalism has to be
developed still further if it is to be applied to a quantum-
correlated channel [8]. In such cases the information
only "comes into being" after the users of the channel
make an a posteriori agreement on their measurements
[3]. The information is stored in a nonlocal fashion in
such channels; that is, it has no aspect of local reality,
even though the information How between the users of
the channel does not violate causality [8]. We shall
present, in this paper, the application of information
theory to channels designed to exploit the BB protocol.
We find that an eavesdropper can both destroy and create
information on the quantum channel. It is this creation
of information by the eavesdropper that allows the devel-
opment of a rejected-data protocol.

Let us consider two legitimate users of a quantum
channel and a third, unauthorized, user with access to
that quantum channel. We follow the established con-
vention and ca11 the legitimate users "Alice" and "Bob"
and the eavesdropper we shall call "Eve." The various
possible communication pathways between these users of
the channel are depicted schematically in Fig. 1. Alice
will send a sequence of quantum states I [al] ), which
form the symbols of an alphabet. These states will be as-
sumed to be the eigenstates of a Hermitian operator A.
Bob will attempt to measure the symbols I [Pk ] ) of some
alphabet consisting of the operator 8, which is not neces-
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FIG. I. Schematic representation of the communication
pathways between Alice, Bob, and Eve.

This quantity varies between 0 and lnN. The channel
capacity is achieved when Alice and Bob use the same al-
phabets. When Alice and Bob use conjugate alphabets so
that I& aj IPk &1 =1/N and each input symbol is equally
likely to cause any output symbol, we have J3( A, B ) =0.
Suppose now, however, that Alice and Bob attempt to
communicate along pathways 1 and 2 (in Fig. 1) via Eve.
The presence of Eve unavoidably affects the channel, and
the channel transition probability, which we label as I k,
is given by

sarily the same as the operator used by Alice. Eve will

attempt to eavesdrop in yet another basis
1 I e 1), which

is the eigenbasis of an operator P, which is not necessari-
ly the same as that used by Alice or Bob. She will then
faithfully retransmit the eigenstate she has measured on
to Bob. We shall make the simplifying, but not restric-
tive, assumption that each of the alphabets used consists
of N symbols. For a classical channel with finite alpha-
bets of dimension N the channel capacity of lnN is
reached when an equal a priori choice of input symbols is
made. We shall also adopt this input coding for the
quantum channel.

Suppose now that Alice and Bob attempt to cornmuni-
cate along pathway 3 of Fig. 1; that is, in the absence of
the eavesdropper. The channel transition probability,
that is, the probability that Bob receives the symbol lPk )
given that la ) was sent is just the square modulus of the
overlap integral

1 & a !Pk ) l . The system mutual informa-
tion, which measures the correlation between the input
and output symbols and therefore defines the information
flow rate between Alice and Bob, is given by

N

J3( ~,~ ) =»N+ —g & I & a, I pk & I'»
I & a, 113k & I' .

j=l k=1

where J3'" defines the maximum possible information
flow between Alice and Bob given their initial choice of
input symbols and alphabets, and in the above case is just
the channel capacity lnN. This new parameter measures
the degree of disturbance introduced by the eavesdropper
on the channel, and we find that —1 ~ g~ 1. A negative
value implies that the eavesdropper has caused a reduc-
tion in the flow of information between Alice and Bob.
In the BBprotocol it is this reduction of information flow
that is responsible for the ability to detect the presence of
Eve; the BB protocol operates in the regime of negative g.
A positive value of g implies that the presence of Eve
causes an increase in the flow of information. As we shall
demonstrate below this is a new operating regime for this
quantum cryptography scheme and the increased infor-
rnation flow will betray the presence of an eavesdropper.
Only if /=0 for all possible choices of alphabet by Alice
and Bob can Eve escape detection [9]. This is possible if
Eve always uses the same alphabet as Alice and/or Bob,
and this can be made extremely diKcult if Alice and Bob
choose randomly between their alphabets. This random
choice of transmission and reception alphabets is crucial
to the success of the quantum cryptography scheme. Eve
can also ensure that /=0 when Alice and Bob use conju-
gate alphabets and Eve chooses an alphabet conjugate to
both of these. However, she remains vulnerable to detec-
tion with this strategy whenever Alice and Bob choose
the same alphabet. Furthermore, by measuring in an al-
phabet conjugate to both Alice and Bob's in this fashion,
Eve will gain precisely zero information about the key that
is eventually established between Alice and Bob.

As a particular example we shall choose a communica-
tion channel based on an alphabet size N =2 (that is,
equivalent to a spin system or the polarization basis of
the BB protocol). Alice and Bob use alphabets generated
by the spin-z and spin-x operators labeled as &, and o„.
The spin-up states 1+ ), and 1+ ) will represent the log-
ical symbol 1 and the spin-down states —), and —)„
will represent the logical symbol 0. We shall assume that
Eve tries to measure some intermediate spin operator, say
&&, and faithfully retransmits the results in this basis on
to Bob. The advantages of using some intermediate basis
in the standard BB protocol have been explained else-
where [1,2, 10]. The transmission and reception probabil-
ities are shown in the table of Fig. 2. Let us follow
through a particular sequence by way of example. Alice
sends the state 1+ ), and the expansion of this state in
Eve's basis is

& I'1 & e IP & I' . (2)
l+ &, =cos(8/2) l+ ) e

—sin(8/2)
l

—
& g .

m =1

The system mutual information in the presence of Eve is
now given by

1 N N

Jiz(A, S)=l Nn+ —g g I klnI k .
N j=l k=1

Therefore, Eve will read the symbol 1 with probability
cos 0/2 and the symbol 0 with probability sin 0/2. We
shall suppose that Eve, in fact, reads the symbol 1 and
therefore transmits the state 1+ ) e on to Bob, whom we
assume to measure & . The expansion of this state in
Bob's basis is

We introduce a parameter g defined by

J)z(A, S)—J3(A,S)
JmRx( g g )

(4)

I+ )e= —(cos8/2+ sin8/2)
1
+ )

1

2

+ —(sin8/2 —cos8/2)
1

—)„,1

V2
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so that Bob reads the symbol 1 with probability
—,
' coso/2+sin8/2I and the symbol 0 with probability

—,
' Icos8/2 —sin9/2I . From the table of Fig. 2 we see that
the probability that Alice and Bob disagree, if they choose
diferent alphabets, is given by

q =
—,
' —

—,'sin20 . (7)

Thus if Alice and Bob compare M bits of data for which
they have measured different alphabets they find that the
number of disagreements is substantially changed when
an eavesdropper is present. We denote the probability of
k disagreements by P(k) and use the subscript exp to
denote the expected distribution in the absence of the
eavesdropper. The probability of k disagreements be-
tween Alice and Bob is given by the kth term in the bino-
mial expansion

P(k) ~k(1 )M
—kMt

k!(M —k)! (8)

The expected distribution can be obtained from (8) by set-
ting 0=0 so that q =

—,'.
For large M this distribution can be approximated by a

Gaussian function, so that we find

P(k) = 1
exp —

2
k — [2—sin28]

1 M
&2~~' 2~' 4

P,„~(k)=+2/Mmexp — (k —M/2)2 2

(9)

cr = (1 ——'sin 28) .M
4 4 (10)

Alice and Bob now set some threshold k,h &k,„p, the
average expected number of disagreements. The thresh-
old is set below this mean value because Eve's interven-
tion always causes the number of disagreements to fall.

Eve measures at angle 8

2
cos 0/2

Bob measures in z or x

2
cos 0/2

where we have written the width of the Gaussian func-
tion o. as

and the probability that the expected distribution gives
rise to fewer than this number is

M —
kth

P (exp (k,h ) = 1 —f P,„~(k)dk
0

=—,
' erfc

M —2k, h

&2M
(12)

where the error function and complementary error func-
tion are defined in the usual way [11]. These probabilities
are plotted in Figs. 3—5, where the thresholds have been
set at k,h

=3M /8, k,h
=5M /16, and k,h

=7M /16, re-
spectively, and Eve is assumed to have made an attack in
the Breidbart basis [1,10] at O=vr/4. Curve (a) in each of
these figures is the probability that Eve triggers the
alarm, and curve (b) is the probability of a false alarm
from the expected distribution. The threshold in Fig. 3
has been set midway between the mean values of the ex-
pected and actual distributions. At M =24, Eve is 92%
likely to trigger the alarm if the midpoint threshold is
used, 76% likely if the lower threshold is used, and 98%%uo

likely if the upper threshold is used. Conversely, the
alarm is 11% likely to have been triggered by the expect-
ed distribution for the midpoint threshold, 3% likely for
the lower threshold, and 27% likely for the upper thresh-
old. These statistics improve considerably as M in-
creases, so that for the midpoint threshold and the num-
ber of compared bits M set at 75 we have that Eve is
99.4% likely to trigger the alarm and a false alarm is only
1.5% likely. The users of the channel must set their re-
quired confidence level by an adjustment of M and k,h.

Clearly the sensible course of action is for Alice and
Bob to first examine their normally rejected data to deter-
mine whether an eavesdropping attempt has been made
in an intermediate basis. The standard BB check can
then be used to test for an attack in the spin-z or spin-x

The probability that Eve causes fewer than k,h errors to
occur between Alice and Bob is simply given by

k
P(Eve (k, h)= f P(k)dk

1 4k,h
—M

1+erf
2 6M

I+&z

I-&

2
K

C3'

a
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X
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FICz. 2. Probability table for Alice and Bob's possible
transmissions and receptions if they use the spin-z and spin-x al-
phabets and Eve measures and retransmits in some intermediate
alphabet at an angle 0.

FIG 3 Plots of (a) the probability that Eve, eavesdropping
in the Breidbart basis at 0=m/4, causes fewer than k,h errors to
occur between Alice and Bob, and (b) the probability that fewer
than k,h errors arise from the expected distribution. Both
curves are plotted against the number of compared bits M, and
the threshold is set at the midpoint k,h

=3M/8.
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