
PHYSICAL REVIEW A VOLUME 48, NUMBER 6 DECEMBER 1993

Necessity of sine-cosine joint measurement
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The quantum measurement of trigonometric variables is revisited. We show that the probability
distributions of the sine and cosine operators of Susskind and Glogower [Physics 1, 49 (1964)] sufFer

unphysical features for nonclassical states. We suggest that any measurement of a trigonometric
variable needs necessarily a joint measurement of the two cosine-sine phase quadratures. In this way
unphysical quantum statistics are avoided, and no violation of the trigonometric calculus occurs for
expected values. We show that this trigonometric measurement can be defined in general terms in
the framework of quantum estimation theory.

PACS number(s): 42.50.Dv, 03.65.Bz

As illustrated in Fig. 1, the probability distribution has
fixed positive curvature, and the c = +1 bounds of the
cosine range have infinite probability density, because
they correspond to stationary points of the cosine. In
the quantum-mechanical description of the harmonic os-
cillator the simplest example of random-phase states is
provided by the number states ln). The outcomes of a
set of physical measurements of the cosine for an oscil-
lator in a number state should be randomly distributed
according to the probability (1).

An ideal cosine measurement is customarily described
in terms of the observable t"" introduced by Susskind and
Glogower [1],

c= z'(e +e+), (2)

where e+ denote the raising and lowering operators

e+ln) = ~n + 1), e—:(e+) . In a similar fashion one
can also define a sine quadrature for the phase

The two operators c and s do not commute, even though
they are thought of as functions of the same phase "vari-
able. " In fact, one has

[c, s] = 2lo)&o

What should a cosine probability distribution dp(c)
behave like? Let us consider the simplest situation of a
state with uniformly distributed (i.e. , perfectly random)
phase. A constant phase distribution dp(P) = dP/2'
trivially does not correspond to a constant cosine distri-
bution, as the Radon-Nikodym derivative leads to

1 1
dp(c) = — dc.

1 —c

(1 —c ) ~ ) sin[(n + 1) arccos c] ln) .
n=O

One can simply check that the states (6) for c g [—1, 1]
correctly provide the resolution of identity, thus ensur-
ing that (5) is a genuine probability distribution. For a
number state p = ln)(n], the latter is given by

dp(c) 2 sin [(n+ 1) arccosc]
dc m +1 —c2 (7)

In Fig. 2 the function (7) is plotted for n = 0, 10, 50, and
is compared with the probability density (1). The dif-
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the above sine and cosine operators are well defined for
states with a negligible vacuum component. This argu-
ment certainly holds true for semiclassical highly excited
coherent states, where, however, the main quantum fea-
tures are lost. On the other hand, the expectation values
of the commutator (4) on number states ]n) rigorously
vanish for n ) 0, but, as we will see, for such nonclassical
states the probability distributions of the two observables
suer unphysical features also in the limit of large n.

Let us focus attention on the cosine operator (the case
of the sine is similar). The probability distribution of c
is given by

dp(c) = (clplc)dc,

where p is the density matrix of the states and lc) de-
notes the eigenstate of c corresponding to the eigenvalue
c, namely [1, 2]

As a consequence of Eq. (4) it is generally accepted that
I s ~ I ~ I I ~ I
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FIG. 1. Illustration of the probability distribution of the
cosine for a perfectly random-phase state.
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I I }
I I I ranging in a chosen 2n interval (in the following we use

[
—vr, vr) ). From the POM (9) one can define any

operator functions of the phase as follows:

f(4) = dp(&)f(&) .
V}0
O

C4 Nonorthogonality of states le'&) leads in general to vi-
olations of the operator function calculus, namely, one
has

0 0.5
f(4) 8 f(4),

ferences with the random-phase probability (1) are strik-
ing: the vacuum distribution has the wrong curvature,
whereas the distributions for number states depend on
the number of photons n and oscillate rapidly around
the function (1). Do such probabilities have an actual
meaning? And what is the physical meaning of the ob-
servable c for meaningless probability distributions?

Despite the operator, (2) being the only self-adjoint
one that has been devised for a quantum analog of the
cosrne, we assert that it cannot describe an actual cosine
measurement. Here we show that an alternative way to
de6ne a cosine measurement can be naturally given in
general terms in the framework of quantum estimation
theory [3]. As we will see, the resulting expectation val-
ues are identical to those obtained by averaging the op-
erator c, but the probability distribution of the measure-
ment outcomes is very diferent from Eq. (7), and does
not suffer the above unphysical features. IA'e analyze the
cosine measurement both in the ideal and in a feasible
scheme: in the ideal case the same results could also be
equivalently obtained using the Pegg-Barnett approach
[4]

The main ingredient of the quantum estimation the-
ory of Helstrom [3] is the probability operator measure
(or POM) dp(P), which gives the probability distribution
dp, (P) of the phase P for any state p according to the rule

du(0) = T [p@(4)]. (8)

The explicit form of the POM dp(P) in Eq. (8) depends
on the particular detection scheme. At a purely abstract
level, however, the theory provides the PQM of the ideal
detection, with the following form:

d p(&) = —I"')("'I .dP
2' (9)

In Eq. (9) le'~) denote the Susskind-Glogower phase
states

I" ) =).""~l~)
n=O

(10)

which form a nonorthogonal complete set of states for P

cosg

FIG. 2. The Susskind-Glogower cosine probability distri-

bution for number states in comparison with the random-

phase distribution of Fig. 1. The convex. distribution refers to
the vacuum; the slowly oscillating distribution is for n = 10,
the rapidly oscillating one is for n = Go.

where P is defined again as in Eq. (11) for f (P) = 0, the
identical function. The cosine and sine operators which
result from Eq. (11) coincide with those in Eqs. (2) and
(3), and hence the same expectation values are obtained.
However, due to violation (12) the POM operators for
products (or higher powers) of sine and cosine are dif-
ferent from the corresponding products of operators (2)
and (3), thus leading to different nonlinear moments and
diferent probability distributions. Moreover, as a con-
sequence of definition (11) the expectation values of all
phase functions obey the customary trigonometric cal-
culus, whereas the Susskind-Glogower operators lead to
violations. For example, one has that

T [p(c'+ s')] = 1 —-', (olplo),

whereas in the POM description one obtains

Tr[p(sin P + cos2$)] = 1 .

One should notice that violations of the function calculus
do not sufFer interpretational problems when occurring
at the operator level, whereas they lead to unavoidable
diKculties when occurring at the expected. -value level.

The probability distribution of the cosine in the present
context is obtained with the rule

dp(c) = Tr[pdp(c)],

where dp, (c) is the Radon-Nikodym derivative of the
POM (9)

8c 1d"
( )

i iarccosca s iarccoscle
7t ] c2

One can see that for any number state the probabilit
j~correctly corresponds to the random-phase distribu-

a iiy

tion (1).
Thhe present measurement scheme represents an ideal

joint measurement of both sine-cosine phase quadratures
[a thorough analysis of the physical interpretation of the
POM (9) can be found in Ref. [5]]. As this measurement,
is only an ideal limit and does not correspond to any
feasible detection scheme, here we also discuss an actual
scheme, which corresponds to the joint measurement of a
couple of conjugated field quadratures (obviously, being
nonideal, this scheme will exhibit more noise than the
ideal one).

The detection apparatus is the double-homodyne
scheme of Ref. [6] (the quantum oscillator is represented
by a selected mode of the electromagnetic field). In short )
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whereas for truly nonclassical ones (number states or
highly squeezed states) the Susskind-Glogower distribu-
tion exhibits undesired oscillations, whereas the double-
homodyne probability is qualitatively similar to the ideal
one. Furthermore, as in the ideal case, the double-
homodyne measurement does not lead to violations of
the trigonometric calculus for expected values, because
it corresponds again to a joint detection of the two phase
quadratures.

In conclusion, we have seen that a customary quan-
tum description of trigonometric measurements based on

FIG. 3. Computer simulation of the double-homodyne ex-
perimental procedure for a coherent state. The experimental
histogram (2 x 10 events) is compared with the theoretical
result from the POM in Eq. (9). The angle bP is a (ampli-
fied) representation of an angular bin used to construct the
"experimental" histogram.

one measures two output commuting photocurrents I1
and I2 from two balanced homodyne detectors and, in the
limit of strong local reference oscillator, the two currents
have the same probability distribution of a joint measure-
ment of the two field quadratures [7]. From the outcomes
of the complex current I = Ii+ I'I2 (representing the am-
plitude of the field), one can infer the phase itself and the
cosine-sine couple. In Fig. 3 the experimental procedure
is illustrated on the basis of a computer simulation. The
probability distribution of the phase is obtained in the
&amework of the quantum estimation theory using the
following POM [8]:
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where Iz) (z E C) denote customary coherent states. For
comparison in Fig. 3 the probability distribution from
the POM (17) is superimposed onto the simulated his-
togram. The Radon-Niko dym derivative of the POM
(17) and the evaluation of the integral lead to the POM
for the cosine
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dc 1
dp(c) =-

7r +1 —c2

). r(1+ (ri + m) y2)
n!m!n, m=p

I I I I
f

I I I l~+I I I I
f

3x 10 Events
/ -- Ideal

Susskind~'
Glog ower

i~

(c)

For number states one correctly obtains the random-
phase distributions (1), as in the ideal case. In Fig. 4 we
compare the cosine probability for coherent states from
POM's (16) and (18) with that from Eq. (5). One can
see that the diH'erences between the ideal POM distribu-
tion and the Susskind-Glogower one—which are dramatic
for the vacuum state —become less and less relevant for
highly excited coherent states. On the other hand, as pre-
viously announced, the double-homodyne (nonideal) dis-
tribution exhibits additional "instrumental" noise with
respect to the ideal joint phase-quadrature measure-
ment. We stress again that the high-energy agreement
between the ideal and the Susskind-Glogower probabili-
ties is found only for coherent —i.e. , semiclassical —states,
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FIG. 4. Comparison for various coherent states of the
three different cosine probability distributions: (i) the
Susskind-Glogower distribution (5); (ii) the ideal distribution
(15); and (iii) the double-homodyne distribution from POM
(18). The histograms give the results of a simulated exper-
iment for different value of average number of photons (n).
(a) ( ) =O (b) ( ) =1 ( ) ( ) =8.
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the self-adjoint operators of Susskind and Glogovrer suf-
fers unphysical probability distributions for nonclassical
states, and leads to violations of the trigonometric calcu-
lus for expected values. In contrast, a correct quantum

analysis of the phase detection, which consists of a joint
measurement of both sine-cosine quadratures, does not
suer such unphysical features either in the ideal or in a
nonideal feasible scheme.

[1] L. Susskind and J. Glogower, Physics 1, 49 (1964).
[2] P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411

(1968).
[3] C. W. Helstrom, Quantum Detection and Estimation The-

ory (Academic Press, New York, 1976).
[4] D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665

(1989).

[5] J. H. Shapiro and S. R. Shepard, Phys. Rev. A 43, 3795
(1991).

[6] J. W. Noh, A. Fougeres, and L. Mandel, Phys. Rev. Lett.
67, 1426 (1991); Phys. Rev. A 45, 424 (1992); 46, 2840
(1992).

[7 U. Leonhardt and H. Paul, Phys. Rev. A 47, 2460 (1993).
[8 G. M. D'Ariano and M. G. A. Paris (unpublished).


